草业学报 ›› 2024, Vol. 33 ›› Issue (12): 23-33.DOI: 10.11686/cyxb2024117
鲍平安1,2(), 季波1,2(), 孙果3, 张娜4, 吴旭东1,2, 何建龙1,2, 王占军1,2, 田英1,2
收稿日期:
2024-04-10
修回日期:
2024-05-17
出版日期:
2024-12-20
发布日期:
2024-10-09
通讯作者:
季波
作者简介:
E-mail: nxjibo311@163.com基金资助:
Ping-an BAO1,2(), Bo JI1,2(), Guo SUN3, Na ZHANG4, Xu-dong WU1,2, Jian-long HE1,2, Zhan-jun WANG1,2, Ying TIAN1,2
Received:
2024-04-10
Revised:
2024-05-17
Online:
2024-12-20
Published:
2024-10-09
Contact:
Bo JI
摘要:
为探究光伏电站建设对荒漠草原植被和土壤的影响,本研究以宁夏境内2个建成后植被恢复时间分别为1和2年的光伏电站为对象,设置光伏板间(BJ)、光伏板下(BX)和光伏电站外(对照,CK)3个处理进行植被调查和土壤采样,比较不同处理下植物群落与土壤理化特征的差异,并分析二者之间的关系。研究结果显示,植被恢复1年,植物群落盖度、地上生物量和多样性指数均为对照样地最高;土壤有机质、全磷、全钾和有效磷含量均为光伏电站区显著高于光伏电站外对照样地;植被恢复2年,植物群落物种多样性指数、土壤全钾、碱解氮和速效钾含量显著高于CK。植物群落盖度和地上生物量与土壤pH呈正相关,与土壤电导率、有机质、碱解氮含量呈负相关,Shannon-Wiener指数与土壤电导率、有机质和碱解氮含量呈正相关。土壤pH值和有机质含量是影响植物群落特征最主要的因子。研究结果表明,光伏电站建设对植被群落及土壤理化特征产生影响,电站建设过程中对生态的破坏可在一定程度上得以恢复。
鲍平安, 季波, 孙果, 张娜, 吴旭东, 何建龙, 王占军, 田英. 光伏电站建设对植物群落与土壤特征的影响[J]. 草业学报, 2024, 33(12): 23-33.
Ping-an BAO, Bo JI, Guo SUN, Na ZHANG, Xu-dong WU, Jian-long HE, Zhan-jun WANG, Ying TIAN. Effects of photovoltaic power station construction on plant community and soil characteristics[J]. Acta Prataculturae Sinica, 2024, 33(12): 23-33.
科 Family | 种 Species | 国能宁东GNND | 盐池中能YCZN | ||||
---|---|---|---|---|---|---|---|
BJ | BX | CK | BJ | BX | CK | ||
禾本科Gramineae | 画眉草E. pilosa | 18.77 | 34.50 | 15.06 | 5.72 | - | 6.93 |
冠芒草E. borealis | 11.04 | 33.69 | 13.73 | - | - | - | |
锋芒草T. mongolorum | 4.56 | 2.54 | 7.70 | - | - | - | |
狗尾草S. viridis | 23.71 | 9.49 | 15.73 | 3.09 | 7.62 | 7.46 | |
糙隐子草C. squarrosa | - | - | 6.50 | 1.77 | 2.83 | 0.99 | |
短花针茅Stipa breviflora | - | - | - | 3.71 | 4.19 | - | |
白草Pennisetum flaccidum | - | - | - | 21.31 | 5.71 | 7.70 | |
赖草Leymus secalinus | - | - | - | 9.72 | 1.51 | - | |
豆科Fabaceae | 狭叶米口袋Gueldenstaedtia stenophylla | - | 3.30 | 10.80 | - | 0.47 | - |
牛枝子Lespedeza potanini | - | - | 0.89 | 1.89 | 4.10 | - | |
苦豆子Sophora alopecuroides | - | - | - | 2.95 | 10.53 | 6.93 | |
菊科Asteraceae | 猪毛蒿A. scoparia | 27.20 | 2.31 | 5.71 | 4.94 | 0.78 | 7.69 |
藜科Chenopodiaceae | 猪毛菜K. collinum | 2.69 | 7.80 | - | 10.30 | 15.77 | 31.53 |
虫实Corispermum hyssopifolium | - | - | 1.95 | 7.27 | 4.54 | - | |
沙米Agriophyllum squarrosum | - | - | - | - | 10.56 | - | |
苋科Amaranthaceae | 雾冰藜Grubovia dasyphylla | 6.21 | - | 1.64 | 4.54 | 11.78 | 15.36 |
灰绿藜Oxybasis glauca | - | - | 1.97 | 8.35 | 0.86 | 9.09 | |
远志科Polygalaceae | 远志Polygala tenuifolia | - | - | 1.37 | 2.37 | 0.55 | - |
表1 光伏阵列常见物种重要值
Table 1 Important values of common species in photovoltaic arrays
科 Family | 种 Species | 国能宁东GNND | 盐池中能YCZN | ||||
---|---|---|---|---|---|---|---|
BJ | BX | CK | BJ | BX | CK | ||
禾本科Gramineae | 画眉草E. pilosa | 18.77 | 34.50 | 15.06 | 5.72 | - | 6.93 |
冠芒草E. borealis | 11.04 | 33.69 | 13.73 | - | - | - | |
锋芒草T. mongolorum | 4.56 | 2.54 | 7.70 | - | - | - | |
狗尾草S. viridis | 23.71 | 9.49 | 15.73 | 3.09 | 7.62 | 7.46 | |
糙隐子草C. squarrosa | - | - | 6.50 | 1.77 | 2.83 | 0.99 | |
短花针茅Stipa breviflora | - | - | - | 3.71 | 4.19 | - | |
白草Pennisetum flaccidum | - | - | - | 21.31 | 5.71 | 7.70 | |
赖草Leymus secalinus | - | - | - | 9.72 | 1.51 | - | |
豆科Fabaceae | 狭叶米口袋Gueldenstaedtia stenophylla | - | 3.30 | 10.80 | - | 0.47 | - |
牛枝子Lespedeza potanini | - | - | 0.89 | 1.89 | 4.10 | - | |
苦豆子Sophora alopecuroides | - | - | - | 2.95 | 10.53 | 6.93 | |
菊科Asteraceae | 猪毛蒿A. scoparia | 27.20 | 2.31 | 5.71 | 4.94 | 0.78 | 7.69 |
藜科Chenopodiaceae | 猪毛菜K. collinum | 2.69 | 7.80 | - | 10.30 | 15.77 | 31.53 |
虫实Corispermum hyssopifolium | - | - | 1.95 | 7.27 | 4.54 | - | |
沙米Agriophyllum squarrosum | - | - | - | - | 10.56 | - | |
苋科Amaranthaceae | 雾冰藜Grubovia dasyphylla | 6.21 | - | 1.64 | 4.54 | 11.78 | 15.36 |
灰绿藜Oxybasis glauca | - | - | 1.97 | 8.35 | 0.86 | 9.09 | |
远志科Polygalaceae | 远志Polygala tenuifolia | - | - | 1.37 | 2.37 | 0.55 | - |
图2 光伏电站建设对植物群落盖度与地上生物量的影响不同小写字母表示差异显著(P<0.05)。Different lowercase letters indicate significant differences (P<0.05).
Fig.2 The impact of photovoltaic power station construction on plant community coverage and aboveground biomass
土壤因子 Soil factor | 国能宁东GNND | 盐池中能YCZN | ||||
---|---|---|---|---|---|---|
板间BJ | 板下BX | 对照CK | 板间BJ | 板下BX | 对照CK | |
pH | 8.26±0.03b | 8.44±0.01a | 8.45±0.01a | 8.35±0.01b | 8.31±0.01c | 8.38±0.01a |
电导率Electrical conductivity (dS·m-1) | 0.11±0.001a | 0.06±0.001b | 0.06±0.001b | 0.07±0.001b | 0.10±0.001a | 0.06±0.001c |
有机质Organic matter (g·kg-1) | 4.91±0.15a | 2.59±0.06b | 2.08±0.03c | 1.26±0.02c | 3.69±0.06a | 1.64±0.03b |
全氮Total nitrogen (g·kg-1) | 0.49±0.09a | 0.28±0.02b | 0.30±0.03b | 0.15±0.00b | 0.23±0.02b | 0.38±0.04a |
全磷Total phosphorus (g·kg-1) | 0.51±0.01a | 0.52±0.01a | 0.38±0.01b | 0.36±0.00a | 0.36±0.00a | 0.38±0.02a |
全钾Total potassium (g·kg-1) | 14.51±0.21a | 14.55±0.04a | 13.82±0.10b | 14.86±0.05a | 14.30±0.12b | 13.51±0.06c |
碱解氮Available nitrogen (mg·kg-1) | 47.12±4.36a | 21.00±2.01b | 21.43±4.91b | 10.70±0.00b | 18.55±0.02a | 8.66±1.25b |
有效磷Available phosphorus (mg·kg-1) | 8.09±1.88a | 7.96±0.73a | 4.43±0.45b | 6.91±0.93a | 4.35±0.47b | 7.35±1.12a |
速效钾Available potassium (mg·kg-1) | 85.13±1.77a | 66.37±0.88b | 84.58±1.35a | 130.19±0.80a | 105.63±0.48b | 57.95±0.52c |
表2 光伏阵列对土壤理化因子的影响
Table 2 Effects of photovoltaic array on soil physicochemical factors
土壤因子 Soil factor | 国能宁东GNND | 盐池中能YCZN | ||||
---|---|---|---|---|---|---|
板间BJ | 板下BX | 对照CK | 板间BJ | 板下BX | 对照CK | |
pH | 8.26±0.03b | 8.44±0.01a | 8.45±0.01a | 8.35±0.01b | 8.31±0.01c | 8.38±0.01a |
电导率Electrical conductivity (dS·m-1) | 0.11±0.001a | 0.06±0.001b | 0.06±0.001b | 0.07±0.001b | 0.10±0.001a | 0.06±0.001c |
有机质Organic matter (g·kg-1) | 4.91±0.15a | 2.59±0.06b | 2.08±0.03c | 1.26±0.02c | 3.69±0.06a | 1.64±0.03b |
全氮Total nitrogen (g·kg-1) | 0.49±0.09a | 0.28±0.02b | 0.30±0.03b | 0.15±0.00b | 0.23±0.02b | 0.38±0.04a |
全磷Total phosphorus (g·kg-1) | 0.51±0.01a | 0.52±0.01a | 0.38±0.01b | 0.36±0.00a | 0.36±0.00a | 0.38±0.02a |
全钾Total potassium (g·kg-1) | 14.51±0.21a | 14.55±0.04a | 13.82±0.10b | 14.86±0.05a | 14.30±0.12b | 13.51±0.06c |
碱解氮Available nitrogen (mg·kg-1) | 47.12±4.36a | 21.00±2.01b | 21.43±4.91b | 10.70±0.00b | 18.55±0.02a | 8.66±1.25b |
有效磷Available phosphorus (mg·kg-1) | 8.09±1.88a | 7.96±0.73a | 4.43±0.45b | 6.91±0.93a | 4.35±0.47b | 7.35±1.12a |
速效钾Available potassium (mg·kg-1) | 85.13±1.77a | 66.37±0.88b | 84.58±1.35a | 130.19±0.80a | 105.63±0.48b | 57.95±0.52c |
图4 植物群落特征与土壤因子相关性分析a: 国能宁东新能源光伏基地National energy Ningdong new energy photovoltaic base; b: 盐池中能新能源光伏基地New energy photovoltaic base in Yanchi; TC: 总盖度Total coverage; AGB: 地上生物量 Aboveground biomass; pH: 土壤pH Soil pH; EC: 土壤电导率Soil electric conductivity; SOM: 土壤有机质Soil organic matter; TN: 全氮Total nitrogen; TP: 全磷Total phosphorus; TK: 全钾Total potassium; AN: 碱解氮Available nitrogen; AP: 有效磷Available phosphorus; AK: 速效钾Available potassium。下同The same below; *: P≤0.05; **: P≤0.01.
Fig.4 Correlation analysis between plant community characteristics and soil factors
图5 植物群落特征与土壤因子主成分分析图中红色箭头表示解释变量,蓝色箭头表示响应变量。The red arrow in the figure represents the explanatory variable, while the blue arrow represents the response variable.
Fig.5 Principal component analysis of plant community characteristics and soil factors
1 | Joshi P, Arora S. Maximum power point tracking methodologies for solar PV systems-A review. Renewable and Sustainable Energy Reviews, 2017, 70: 1154-1177. |
2 | Wu Z Q, Njoke M L, Tian G N, et al. Challenges of investment and financing for developing photovoltaic power generation in Cameroon, and the countermeasures. Journal of Cleaner Production, 2021, DOI: 10.1016/j.jclepro.2021.126910. |
3 | Zhang Z P, Shang W, Wang Q, et al. Biodiversity of herbaceous species under large photovoltaic(PV) power stations in desert region of Hexi Corridor. Journal of Northwest Forestry University, 2020, 35(2): 190-196. |
张芝萍, 尚雯, 王祺, 等. 河西走廊荒漠区光伏电站植物群落物种多样性研究. 西北林学院学报, 2020, 35(2): 190-196. | |
4 | Pérez-de-los-Reyes C, Ormeño M S, Ortíz-Villajos J Á A, et al. Revegetation in solar photovoltaic farms in Mediterranean areas. Fresenius Environmental Bulletin, 2013, 22(12A): 3680-3688. |
5 | Liu Y, Zhang R I, Huang Z, et al. Solar photovoltaic panels significantly promote vegetation recovery by modifying the soil surface microhabitats in arid sandy ecosystem. Land Degradation and Development, 2019, 30(18): 2177-2186. |
6 | Yang J N, Li X Y, Peng W, et al. Climate, air quality and human health benefits of various solar photovoltaic deployment scenarios in China in 2030. Environmental Research Letters, 2018, DOI: 10.1088/1748-9326/aabe99. |
7 | Li Y, Kalnay E, Motesharrei S, et al. Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation. Science, 2018, 361(6406): 1019-1022. |
8 | Wang T, Wang D X, Guo T D, et al. The impact of photovoltaic power construction on soil and vegetation. Research of Soil and Water Conservation, 2016, 23(3): 90-94. |
王涛, 王得祥, 郭廷栋, 等. 光伏电站建设对土壤和植被的影响. 水土保持研究, 2016, 23(3): 90-94. | |
9 | Zhou M R, Wang X J. Influence of photovoltaic power station engineering on soil and vegetation: Taking the gobi desert area in the Hexi corridor of Gansu as an example. Science of Soil and Water Conservation, 2019, 17(2): 132-138. |
周茂荣, 王喜君. 光伏电站工程对土壤与植被的影响-以甘肃河西走廊荒漠戈壁区为例. 中国水土保持科学, 2019, 17(2): 132-138. | |
10 | Bao P A, Qiu K Y, Huang Y Y, et al. Leaf functional traits characteristics and plasticity of desert steppe plants under nitrogen and phosphorus addition. Acta Prataculturae Sinica, 2024, 33(3): 97-106. |
鲍平安, 邱开阳, 黄业芸, 等. 荒漠草原植物在氮磷添加下叶功能性状特征及其可塑性. 草业学报, 2024, 33(3): 97-106. | |
11 | Bao S D. Soil agrochemical analysis (Third edition). Beijing: China Agriculture Press, 2008. |
鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2008. | |
12 | He F L, Liu S Z, Li C L, et al. Study on composition and diversity of phytocoenosium in Gobi region of Hexi, Gansu. Journal of Arid Land Resources and Environment, 2016, 30(4): 74-78. |
何芳兰, 刘世增, 李昌龙, 等. 甘肃河西戈壁植物群落组成特征及其多样性研究. 干旱区资源与环境, 2016, 30(4): 74-78. | |
13 | Zhou H K, Zhao X Q, Wen J, et al. The characteristics of soil and vegetation of degenerated alpine steppe in the Yellow River Source Region. Acta Prataculturae Sinica, 2012, 21(5): 1-11. |
周华坤, 赵新全, 温军, 等. 黄河源区高寒草原的植被退化与土壤退化特征. 草业学报, 2012, 21(5): 1-11. | |
14 | Ren N F, Li Y K, Zhu B Q, et al. Effects of photovoltaic panels on plant community characteristics and species diversity in meadow steppe. Chinese Journal of Ecology, 2024, 43(3): 766-772. |
任乃芃, 李一坤, 朱柏全, 等. 光伏电板对草甸草原植物群落特征及物种多样性的影响. 生态学杂志, 2024, 43(3): 766-772. | |
15 | Liu J M, Liu S, Liu Q Z, et al. Response of herbaceous diversity and biomass to luminous environment changes under Larix olgensis plantations. Journal of Beihua University (Natural Science), 2018, 19(4): 446-452. |
刘津铭, 刘盛, 刘庆忠, 等. 长白落叶松人工林下草本植物对光环境变化的响应. 北华大学学报: 自然科学版, 2018, 19(4): 446-452. | |
16 | Li S H, Gao Q, Wang X Q, et al. Characteristics of vegetation and soil property changes by photovoltaic plant interference in alpine desert steppe. Journal of Soil and Water Conservation, 2016, 30(6): 325-329. |
李少华, 高琪, 王学全, 等. 光伏电厂干扰下高寒荒漠草原区植被和土壤变化特征. 水土保持学报, 2016, 30(6): 325-329. | |
17 | Guo Q. Effects of photovoltaic panel arrays on plant communities and soil characteristics in degraded grassland in the Songnen Plain. Changchun: Northeast Normal University, 2022. |
郭嫱. 光伏板阵列对松嫩退化草地植物群落和土壤特征的影响. 长春: 东北师范大学, 2022. | |
18 | Li T Y, Kang F F, Han H R, et al. Responses of soil microbial carbolic metabolism characteristics to home-field advantage of leaf litter decomposition in Liaoheyuan Nature Reserve of northern Hebei Province, China.Chinese Journal of Applied Ecology, 2015, 26(7): 2156-2166. |
立天宇, 康峰峰, 韩海荣, 等. 冀北辽河源自然保护区土壤微生物碳代谢特征对凋落物分解主场效应的响应. 应用生态学报, 2015, 26(7): 2156-2166. | |
19 | Sun H, Wang Q X, Zhang C G, et al. Effects of different leaf litters on the physicochemical properties and soil microbial communities in Panax ginseng-growing soil. Acta Ecologica Sinica, 2018, 38(10): 3603-3615. |
孙海, 王秋霞, 张春阁, 等. 不同树叶凋落物对人参土壤理化性质及微生物群落结构的影响. 生态学报, 2018, 38(10): 3603-3615. | |
20 | Su Z X, Su B Q, Shangguan Z P. Advances in effect of plant litter decomposition on the stability of soil organic carbon. Research of Soil and Water Conservation, 2022, 29(2): 406-413. |
苏卓侠, 苏冰倩, 上官周平. 植物凋落物分解对土壤有机碳稳定性影响的研究进展. 水土保持研究, 2022, 29(2): 406-413. | |
21 | Liu Z Y, Peng T, Ma S L, et al. Potential benefits and risks of solar photovoltaic power plants on arid and semi-arid ecosystems: an assessment of soil microbial and plant communities. Frontiers in Microbiology, 2023, DOI: 10.3389/fmicb.2023.1190650. |
22 | Cai X B, Zhou J. Spatial-tem poral variation of soil organic carbon and its relations to soil physical properties in degraded alpine grasslands. Chinese Journal of Applied Ecology, 2009, 20(11): 2639-2645. |
蔡晓布, 周进. 退化高寒草原土壤有机碳时空变化及其与土壤物理性质的关系. 应用生态学报, 2009, 20(11): 2639-2645. | |
23 | Smith M D. The ecological role of climate extremes: current understanding and future prospects. Journal of Ecology, 2011, 99(3): 651-655. |
24 | Ma R M, Cai C F, Li Z X, et al. Evaluation of soil aggregate microstructure and stability under wetting and drying cycles in two Ultisols using synchrotron-based X-ray micro-computed tomography. Soil and Tillage Research, 2015, 149: 1-11. |
25 | Li W L, Liu M Y, Zhang Y X, et al. Effects of types of vegetation restoration on the soil nutrients between photovoltaic arrays. Journal of Shanxi Agricultural University (Natural Science Edition), 2020, 40(5): 16-23. |
李文龙, 刘美英, 张有新, 等. 植被恢复模式对光伏阵列间土壤养分的影响. 山西农业大学学报(自然科学版), 2020, 40(5): 16-23. | |
26 | Niu Y J, Yang S W, Wang G Z, et al. Relation between species distribution of plant community and soil factors under grazing in alpine meadow.Chinese Journal of Applied Ecology, 2017, 28(12): 3891-3898. |
牛钰杰, 杨思维, 王贵珍, 等. 放牧作用下高寒草甸群落物种分布与土壤因子的关系. 应用生态学报, 2017, 28(12): 3891-3898. | |
27 | Vermeer J G, Berendse F. The relationship between nutrient availability, shoot biomass and species richness in grassland and wetland communities. Vegetatio, 1983, 53(2): 121-126. |
28 | Marrs R H. Soil fertility and nature conservation: theoretical considerations and practical management solutions. Advances in Ecological Research, 1993, 24: 241-300. |
29 | Critchley C N R, Chambers B J, Fowbert J A, et al. Plant species richness, functional type and soil properties of grasslands and allied vegetation in English environmentally sensitive areas. Grass and Forage Science, 2010, 57(2): 82-92. |
30 | Han Y, Jiang K S, Du H D, et al. Effect of open-pit coal mining on grassland plant community characteristics and stability in arid gravel desert area. Acta Botanica Boreali-Occidentalia Sinica, 2023, 43(6): 1035-1043. |
韩勇, 姜凯升, 杜华栋, 等. 干旱砾漠区露天采煤对草地植物群落特征及其稳定性影响. 西北植物学报, 2023, 43(6): 1035-1043. | |
31 | Pang J H, Liang X, Liu Y B, et al. Influence of recovery years on plant diversity and soil chemical properties for alpine metal mine dumps. Bulletin of Soil and Water Conservation, 2023, 43(4): 110-120. |
庞景豪, 梁燊, 刘亚斌, 等. 恢复年限对高寒金属矿山排土场植物多样性和土壤化学特性的影响. 水土保持通报, 2023, 43(4): 110-120. | |
32 | Xiao D R, Tian K, Zhang L Q. Relationship between plant diversity and soil fertility in Napahai wetland of Northwestern Yunnan Plateau. Acta Ecologica Sinica, 2008, 28(7): 3116-3124. |
肖德荣, 田昆, 张利权. 滇西北高原纳帕海湿地植物多样性与土壤肥力的关系. 生态学报, 2008, 28(7): 3116-3124. | |
33 | Pan H, Wang B W. Analysis on the dynamic relationships between plant community characteristics and soil factors in Western Songnen saline-alkaline grassland. Bulletin of Botanical Research, 2013, 33(6): 701-708. |
潘华, 王博文. 松嫩盐碱草地西部的植物群落特征与土壤因子动态关系分析. 植物研究, 2013, 33(6): 701-708. | |
34 | Li X R, Zhang J G, Liu L C, et al. Plant diversity in the process of succession of artificial vegetation types and environment in an arid desert region of China. Chinese Journal of Plant Ecology, 2000, 24(3): 257-261. |
李新荣, 张景光, 刘立超, 等. 我国干旱沙漠地区人工植被与环境演变过程中植物多样性的研究. 植物生态学报, 2000, 24(3): 257-261. |
[1] | 杜文盼, 赵桂琴, 柴继宽, 杨莉, 张建贵, 史怡超, 张官禄. 根系分隔方式对燕麦/豌豆间作地上生物量、土壤养分及根系性状的影响[J]. 草业学报, 2024, 33(8): 25-36. |
[2] | 刘芳, 王佩佩, 曹玉莹, 刘俊娥, 周正朝. 黄土高原典型草本植物根系分布特征及其对土壤理化性质的影响研究[J]. 草业学报, 2024, 33(10): 1-13. |
[3] | 赵朋波, 邱开阳, 谢应忠, 刘王锁, 李小伟, 陈林, 王继飞, 孟文芬, 黄业芸, 李小聪, 杨浩楠. 海拔梯度对贺兰山岩羊主要活动区植物群落特征的影响[J]. 草业学报, 2022, 31(6): 79-90. |
[4] | 田英, 许喆, 朱丽珍, 王俊, 温学飞. 生长季不同月份平茬对柠条人工林地土壤细菌群落特性的影响[J]. 草业学报, 2022, 31(5): 40-50. |
[5] | 倪芳芳, 吕世杰, 屈志强, 白璐, 孟彪, 张博涵, 李治国. 不同载畜率下荒漠草原非生长季植物群落特征对近地面风沙通量的影响[J]. 草业学报, 2022, 31(3): 26-33. |
[6] | 唐立涛, 毛睿, 王长庭, 李洁, 胡雷, 字洪标. 氮磷添加对高寒草甸植物群落根系特征的影响[J]. 草业学报, 2021, 30(9): 105-116. |
[7] | 贺翔, 白梅梅, 徐长林, 宋美娟, 汪鹏斌, 鱼小军. 东祁连山小叶金露梅+杯腺柳灌丛草地植被和土壤对其自然恢复演替的响应[J]. 草业学报, 2021, 30(8): 12-24. |
[8] | 孙忠超, 郭天斗, 于露, 马彦平, 赵亚楠, 李雪颖, 王红梅. 宁夏东部荒漠草原向灌丛地人为转变过程土壤粒径分形特征[J]. 草业学报, 2021, 30(4): 34-45. |
[9] | 张丽星, 海春兴, 常耀文, 高晓媚, 高文邦, 解云虎. 羊草及芨芨草草原和西北针茅草原土壤质量评价[J]. 草业学报, 2021, 30(4): 68-79. |
[10] | 张超, 闫瑞瑞, 梁庆伟, 娜日苏, 李彤, 杨秀芳, 包玉海, 辛晓平. 不同利用方式下草地土壤理化性质及碳、氮固持研究[J]. 草业学报, 2021, 30(4): 90-98. |
[11] | 李洁, 潘攀, 王长庭, 胡雷, 陈科宇, 杨文高. 三江源区不同建植年限人工草地根系动态特征[J]. 草业学报, 2021, 30(3): 28-40. |
[12] | 刘斯莉, 王长庭, 张昌兵, 胡雷, 唐立涛, 潘攀. 川西北高原3种禾本科牧草根系特征比较研究[J]. 草业学报, 2021, 30(3): 41-53. |
[13] | 车昭碧, 徐鹏飞, 郭亚亚, 曹佳敏, 黄星宇, 杨寒珺, 鲁为华. 北方蚁(Formica aquilonia)对山地草甸土壤种子库的影响[J]. 草业学报, 2021, 30(11): 40-51. |
[14] | 程分生, 尤龙辉, 余锦林, 徐惠昌, 游惠明, 聂森, 李建民, 叶功富. 冷季型绿肥对锥栗园土壤生化性质及微生物群落的影响[J]. 草业学报, 2021, 30(11): 62-75. |
[15] | 王琇瑜, 黄晓霞, 和克俭, 孙晓能, 吕曾哲舟, 张勇, 朱湄, 曾睿钦. 滇西北高寒草甸植物群落功能性状与土壤理化性质的关系[J]. 草业学报, 2020, 29(8): 6-17. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||