草业学报 ›› 2025, Vol. 34 ›› Issue (5): 40-50.DOI: 10.11686/cyxb2024221
收稿日期:2024-06-11
修回日期:2024-07-15
出版日期:2025-05-20
发布日期:2025-03-20
通讯作者:
张前兵
作者简介:E-mail: qbz102@163.com基金资助:
Kong-qin WEI(
), Ying-ying ZHANG, Jin-feng HUI, Chun-hui MA, Qian-bing ZHANG(
)
Received:2024-06-11
Revised:2024-07-15
Online:2025-05-20
Published:2025-03-20
Contact:
Qian-bing ZHANG
摘要:
为揭示磷肥配施解磷细菌对紫花苜蓿根系非结构碳水化合物及化学计量特征的影响,采用双因素完全随机设计,设置了2个施磷(P2O5)水平:0(P0)和100 mg·kg-1(P1),4个接菌处理:不接菌(J0)、单接种胶质芽孢杆菌(J1)、单接种巨大芽孢杆菌(J2)和混合接菌(J3),共8个处理。测定了紫花苜蓿的根系活力、可溶性糖、可溶性蛋白、淀粉、丙二醛、根际土-根系碳(C)、氮(N)、磷(P)含量。双因素方差分析表明:施磷和接菌处理显著改变了紫花苜蓿的根系活力、丙二醛、可溶性糖、淀粉含量、根际土N/P、根系C/N、C/P及N/P(P<0.05),但对根系可溶性蛋白的影响不显著(P>0.05)。进一步分析表明,在相同施磷水平下,与不接菌相比,接种解磷菌提高了紫花苜蓿的根系活力、可溶性糖、可溶性蛋白(除J2P0和J2P1)、淀粉(除J1P1)、根际土-根系C、N、P含量(除J2P1的根系C及J1P0和J2P0的根系N含量)及根际土C/P(除J3P0)和N/P,降低了根际土C/N及根系丙二醛含量(除J1P1和J2P1)。在相同接菌处理下,与不施磷相比,施磷处理提高了紫花苜蓿的根系活力、可溶性糖、可溶性蛋白、淀粉、根际土C、根际土P、根系N及P含量,降低了根系C/N、C/P、N/P、丙二醛及根际土N/P。综合分析表明,不同处理的综合得分依次为:J3P1>J2P1>J1P1>J0P1>J3P0>J2P0>J1P0>J0P0。综上,施磷(100 mg·kg-1)和混合接种胶质芽孢杆菌及巨大芽孢杆菌,可以有效提高紫花苜蓿根际土养分含量并促进根系非结构碳水化合物的积累。
魏孔钦, 张盈盈, 回金峰, 马春晖, 张前兵. 菌磷配施对紫花苜蓿根系非结构碳水化合物及碳氮磷化学计量特征的影响[J]. 草业学报, 2025, 34(5): 40-50.
Kong-qin WEI, Ying-ying ZHANG, Jin-feng HUI, Chun-hui MA, Qian-bing ZHANG. Effect of phosphate-solubilizing bacteria and phosphorus on non-structural carbohydrate content and the carbon∶nitrogen∶phosphorus stoichiometry of alfalfa roots[J]. Acta Prataculturae Sinica, 2025, 34(5): 40-50.
有机质 Organic matter (g·kg-1) | 容重 Bulk weight (g·cm-3) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 碱解氮 Alkaline nitrogen (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) |
|---|---|---|---|---|---|---|
| 23.6 | 1.45 | 1.55 | 0.21 | 69.50 | 17.40 | 134.50 |
表1 供试土壤理化性质
Table 1 Physico-chemical properties of test soils
有机质 Organic matter (g·kg-1) | 容重 Bulk weight (g·cm-3) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 碱解氮 Alkaline nitrogen (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) |
|---|---|---|---|---|---|---|
| 23.6 | 1.45 | 1.55 | 0.21 | 69.50 | 17.40 | 134.50 |
| 序号Rank | 名称Name | 菌种编号Strain No. | 培养基名称Medium name | 简称Abbreviation |
|---|---|---|---|---|
| 1 | 胶质芽孢杆菌Bacillus mucilaginosus | ACCC 10013 | 钾细菌琼脂Potassium bacterial agar | J1 |
| 2 | 巨大芽孢杆菌Bacillus megaterium | ACCC 10245 | 营养肉汁琼脂Nutrient agar | J2 |
表2 2种解磷菌基本信息
Table 2 Basic information of the two phosphate solubilizing bacteria
| 序号Rank | 名称Name | 菌种编号Strain No. | 培养基名称Medium name | 简称Abbreviation |
|---|---|---|---|---|
| 1 | 胶质芽孢杆菌Bacillus mucilaginosus | ACCC 10013 | 钾细菌琼脂Potassium bacterial agar | J1 |
| 2 | 巨大芽孢杆菌Bacillus megaterium | ACCC 10245 | 营养肉汁琼脂Nutrient agar | J2 |
变异来源 Source of variation | 根际土 Rhizosphere soil | 根Root | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 碳 C | 氮 N | 磷 P | 碳 C | 氮 N | 磷 P | |||||||
| F | P | F | P | F | P | F | P | F | P | F | P | |
| J | 5.164 | 0.011 | 7.722 | 0.002 | 6.467 | 0.004 | 6.235 | 0.005 | 33.650 | <0.001 | 10.818 | <0.001 |
| P | 5.937 | 0.027 | 3.610 | 0.076 | 73.533 | <0.001 | 0.848 | 0.371 | 66.381 | <0.001 | 115.144 | <0.001 |
| J×P | 1.854 | 0.178 | 1.053 | 0.396 | 0.833 | 0.495 | 4.619 | 0.016 | 5.763 | 0.007 | 4.623 | 0.016 |
表3 接菌处理和施磷水平对各因子影响的方差分析
Table 3 Analysis of variance of the effects of inoculation treatments and phosphorus application levels on the factors
变异来源 Source of variation | 根际土 Rhizosphere soil | 根Root | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 碳 C | 氮 N | 磷 P | 碳 C | 氮 N | 磷 P | |||||||
| F | P | F | P | F | P | F | P | F | P | F | P | |
| J | 5.164 | 0.011 | 7.722 | 0.002 | 6.467 | 0.004 | 6.235 | 0.005 | 33.650 | <0.001 | 10.818 | <0.001 |
| P | 5.937 | 0.027 | 3.610 | 0.076 | 73.533 | <0.001 | 0.848 | 0.371 | 66.381 | <0.001 | 115.144 | <0.001 |
| J×P | 1.854 | 0.178 | 1.053 | 0.396 | 0.833 | 0.495 | 4.619 | 0.016 | 5.763 | 0.007 | 4.623 | 0.016 |
图1 接菌处理和施磷水平下紫花苜蓿根际土及根系碳、氮、磷含量不同小写字母表示在同一施磷水平下不同接菌处理之间差异显著(P<0.05)。*,**分别表示在同一接菌处理下不同施磷水平之间差异显著(P<0.05)和极显著(P<0.01),下同。Different lowercase letters indicate significant differences among different inoculation treatments at the same level of phosphorus application (P<0.05). * and ** indicates significant differences (P<0.05) and extremely significant differences (P<0.01) between different levels of phosphorus application at the same inoculation treatment, respectively, the same below.
Fig.1 Carbon, nitrogen and phosphorus content of alfalfa rhizosphere soil and root under inoculation treatment and phosphorus application level
| 变异来源Source of variation | 根际土Rhizosphere soil | 根Root | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 碳氮比 C/N | 碳磷比 C/P | 氮磷比 N/P | 碳氮比 C/N | 碳磷比 C/P | 氮磷比 N/P | |||||||
| F | P | F | P | F | P | F | P | F | P | F | P | |
| J | 0.762 | 0.532 | 1.655 | 0.217 | 5.158 | 0.011 | 5.285 | 0.010 | 8.344 | 0.001 | 16.181 | <0.001 |
| P | 0.028 | 0.868 | 7.395 | 0.015 | 10.618 | 0.005 | 23.008 | <0.001 | 63.950 | <0.001 | 33.266 | <0.001 |
| J×P | 0.128 | 0.942 | 1.626 | 0.223 | 1.219 | 0.335 | 2.667 | 0.083 | 0.773 | 0.526 | 2.944 | 0.065 |
表4 接菌处理和施磷水平对化学计量比影响的方差分析
Table 4 Analysis of variance of the effect of inoculation treatments and phosphorus application levels on stoichiometric ratios
| 变异来源Source of variation | 根际土Rhizosphere soil | 根Root | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 碳氮比 C/N | 碳磷比 C/P | 氮磷比 N/P | 碳氮比 C/N | 碳磷比 C/P | 氮磷比 N/P | |||||||
| F | P | F | P | F | P | F | P | F | P | F | P | |
| J | 0.762 | 0.532 | 1.655 | 0.217 | 5.158 | 0.011 | 5.285 | 0.010 | 8.344 | 0.001 | 16.181 | <0.001 |
| P | 0.028 | 0.868 | 7.395 | 0.015 | 10.618 | 0.005 | 23.008 | <0.001 | 63.950 | <0.001 | 33.266 | <0.001 |
| J×P | 0.128 | 0.942 | 1.626 | 0.223 | 1.219 | 0.335 | 2.667 | 0.083 | 0.773 | 0.526 | 2.944 | 0.065 |
图2 接菌处理和施磷水平下紫花苜蓿根际土及根系化学计量比的变化
Fig.2 Changes in rhizosphere soil and root stoichiometric ratios of alfalfa under inoculation treatments and phosphorus application levels
变异来源 Source of variation | 根系活力Root activity | 丙二醛Malondialdehyde | 可溶性糖Soluble sugar | 可溶性蛋白Soluble protein | 淀粉Starch | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| F | P | F | P | F | P | F | P | F | P | |
| J | 218.751 | <0.001 | 21.612 | <0.001 | 40.824 | <0.001 | 3.067 | 0.058 | 7.402 | 0.003 |
| P | 166.668 | <0.001 | 98.983 | <0.001 | 26.717 | <0.001 | 2.678 | 0.121 | 32.372 | <0.001 |
| J×P | 73.885 | <0.001 | 6.397 | 0.005 | 2.120 | 0.138 | 0.154 | 0.926 | 1.442 | 0.268 |
表5 接菌处理和施磷水平对根系生理指标影响的方差分析
Table 5 Analysis of variance of the effects of inoculation treatment and phosphorus application level on root physiological index
变异来源 Source of variation | 根系活力Root activity | 丙二醛Malondialdehyde | 可溶性糖Soluble sugar | 可溶性蛋白Soluble protein | 淀粉Starch | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| F | P | F | P | F | P | F | P | F | P | |
| J | 218.751 | <0.001 | 21.612 | <0.001 | 40.824 | <0.001 | 3.067 | 0.058 | 7.402 | 0.003 |
| P | 166.668 | <0.001 | 98.983 | <0.001 | 26.717 | <0.001 | 2.678 | 0.121 | 32.372 | <0.001 |
| J×P | 73.885 | <0.001 | 6.397 | 0.005 | 2.120 | 0.138 | 0.154 | 0.926 | 1.442 | 0.268 |
图4 接菌处理和施磷水平下紫花苜蓿根系可溶性糖、可溶性蛋白及淀粉含量
Fig.4 Soluble sugars, soluble protein and starch content of alfalfa roots under inoculation treatments and phosphorus application level
图5 紫花苜蓿根际土及根系各指标相关性热图*表示P<0.05,**表示P<0.01。图例中数字为皮尔逊相关系数。* denotes P<0.05, ** denotes P<0.01. The numbers on the legend are Pearson correlation coefficients.
Fig.5 Heat map of the correlation of rhizosphere soil and root indexes of alfalfa
图6 不同菌磷处理下各指标间主成分分析及综合评价得分
Fig.6 Principal component analysis and comprehensive evaluation score among indicators under different bacterial-phosphorus treatments
| 1 | Guo T, Xue B, Bai J, et al. Discussion of the present situation of China’s forage grass industry development: An example using alfalfa and oats. Pratacultural Science, 2019, 36(5): 1466-1473. |
| 郭婷, 薛彪, 白娟, 等. 刍议中国牧草产业发展现状-以苜蓿、燕麦为例. 草业科学, 2019, 36(5): 1466-1473. | |
| 2 | Zhang W H, Hou L Y, Yang J, et al. Establishment and management of alfalfa pasture in cold regions of China. Chinese Science Bulletin, 2018, 63(17): 1651-1663. |
| 张文浩, 侯龙鱼, 杨杰, 等. 高寒地区苜蓿人工草地建植技术. 科学通报, 2018, 63(17): 1651-1663. | |
| 3 | Hakl J, Kunzová E, Tocauerová Š, et al. Impact of long-term manure and mineral fertilization on yield and nutritive value of lucerne (Medicago sativa) in relation to changes in canopy structure. European Journal of Agronomy, 2021, 123: 126219. |
| 4 | Duan B H, Lu J Y, Liu M G, et al. Relationships between biological nitrogen fixation and leaf resorption of nitrogen, phosphorus, and potassium in the rain-fed region of eastern Gansu, China. Acta Prataculturae Sinica, 2016, 25(12): 76-83. |
| 段兵红, 陆姣云, 刘敏国, 等. 陇东雨养农区紫花苜蓿叶片氮、磷、钾重吸收与生物固氮的偶联关系. 草业学报, 2016, 25(12): 76-83. | |
| 5 | Francisquini J A, Calonego J C, Rosolem C A, et al. Increase of nitrogen-use efficiency by phosphorus fertilization in grass-legume pastures. Nutrient Cycling in Agroecosystems, 2020, 118(2): 165-175. |
| 6 | Yu T F, Liu X J, Hao F. Effect of phosphate fertilizer application on alfalfa yield, nutritive value and N and P use efficiency. Acta Prataculturae Sinica, 2018, 27(3): 154-163. |
| 于铁峰, 刘晓静, 郝凤. 施用磷肥对紫花苜蓿营养价值和氮磷利用效率的影响. 草业学报, 2018, 27(3): 154-163. | |
| 7 | Ma Y, Cheng Y Y, Shi X J, et al. Phosphate-solubilizing bacteria: roles in phosphorus cycling and ecological agriculture and application as potential biofertilizers. Acta Microbiologica Sinica, 2023, 63(12): 4502-4521. |
| 马莹, 程莹莹, 石孝均, 等. 溶磷菌在磷素循环和生态农业中的作用与其生物肥料应用. 微生物学报, 2023, 63(12): 4502-4521. | |
| 8 | Liu J Y, Hui J F, Sun M Y, et al. Effects of phosphorus application and inoculation arbuscular mycorrhizae fungi (AMF) and phosphate solubilizing bacteria on dry matter yield and phosphorus use efficiency of alfalfa. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(19): 142-149. |
| 刘俊英, 回金峰, 孙梦瑶, 等. 施磷水平和接种AMF与解磷细菌对苜蓿产量及磷素利用效率的影响. 农业工程学报, 2020, 36(19): 142-149. | |
| 9 | Liu J Y, Liu X S, Zhang Q B, et al. Response of alfalfa growth to arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria under different phosphorus application levels. AMB Express, 2020, 10: 1-13. |
| 10 | Zhang B B, Wang Y J, Liu H J, et al. Optimal phosphorus management strategies to enhance crop productivity and soil phosphorus fertility in rapeseed-rice rotation. Chemosphere, 2023, 337: 139392. |
| 11 | Zhang P P, Liu G W, Yu Y. Ecological stoichiometry of soil carbon, nitrogen and phosphorus in reclaimed farmland in coal mining subsidence area. Journal of Soil Science and Plant Nutrition, 2023, 23(2): 2498-2511. |
| 12 | Zheng S M, Xia Y H, Hu Y J, et al. Stoichiometry of carbon, nitrogen, and phosphorus in soil: Effects of agricultural land use and climate at a continental scale. Soil and Tillage Research, 2021, 209: 104903. |
| 13 | Gu X D, Zhang F J, Xie X W, et al. Effects of N and P addition on nutrient and stoichiometry of rhizosphere and non-rhizosphere soils of alfalfa in alkaline soil. Scientific Reports, 2023, 13(1): 12119. |
| 14 | Sun Y, Wang C T, Chen X L, et al. Phosphorus additions imbalance terrestrial ecosystem C∶N∶P stoichiometry. Global Change Biology, 2022, 28(24): 7353-7365. |
| 15 | Yang K X, Zhao J W, Zhao J T, et al. Effects of nitrogen and phosphorus addition on biochemical and stoichiometric characteristics of alfalfa fine roots and root collars. Chinese Journal of Grassland, 2023, 45(12): 72-79. |
| 杨开鑫, 赵俊威, 赵建涛, 等. 氮磷添加对紫花苜蓿细根与根颈生化及化学计量特征的影响. 中国草地学报, 2023, 45(12): 72-79. | |
| 16 | Yuan H Z, Liu S L, Razavi B S, et al. Differentiated response of plant and microbial C∶N∶P stoichiometries to phosphorus application in phosphorus-limited paddy soil. European Journal of Soil Biology, 2019, 95: 103122. |
| 17 | An X X, Liu J Y, Liu X S, et al. Optimizing phosphorus application rate and the mixed inoculation of arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria can improve the phosphatase activity and organic acid content in alfalfa soil. Sustainability, 2022, 14(18): 11342. |
| 18 | Wang Z K, Xu Z H, Chen Z Y, et al. Synergistic effects of organic fertilizer coupled with phosphate-solubilizing and nitrogen-fixing bacteria on nutrient characteristics of yellow-brown soil under carbon deficiency. Chinese Journal of Applied Ecology, 2020, 31(10): 3413-3423. |
| 王志康, 徐子恒, 陈紫云, 等. 有机肥和解磷固氮菌配施对缺碳黄棕壤养分特性的协同效应. 应用生态学报, 2020, 31(10): 3413-3423. | |
| 19 | Chauhan P K, Sudhir K U. Mixed consortium of salt-tolerant phosphate solubilizing bacteria improves maize (Zea mays) plant growth and soil health under saline conditions. Molecular Biotechnology, 2024, 66(3): 489-499. |
| 20 | Hartmann H, Trumbore S. Understanding the roles of nonstructural carbohydrates in forest trees-from what we can measure to what we want to know. New Phytologist, 2016, 211(2): 386-403. |
| 21 | Du Y, Lu R L, Xia J J. Impacts of global environmental change drivers on non-structural carbohydrates in terrestrial plants. Functional Ecology, 2020, 34(8): 1525-1536. |
| 22 | Peleja V L, Peleja P L, Lara T S, et al. Seasonality and phosphate fertilization in carbohydrates storage: Carapa guianensis Aubl. seedlings responses. Plants, 2022, 11(15): 1956. |
| 23 | Zhao J J, Guo D Q, Yang M, et al. Effect of different dosage of dissolving phosphorus bacteria on growth and development in Paris polyphylla var. yunnanensis. Environmental Chemistry, 2022, 41(2): 761-769. |
| 赵晶晶, 郭冬琴, 杨敏, 等. 不同剂量解磷菌对滇重楼生长发育的影响. 环境化学, 2022, 41(2): 761-769. | |
| 24 | Li Y L, Zhang J X, Peng Y K, et al. A counting method of living bacteria in microbial fertilizer. Acta Agriculturae Boreali-occidentalis Sinica, 1999, 8(4): 94-96. |
| 李亚兰, 张建新, 彭玉魁, 等. 微生物肥料中有效活菌数检测方法. 西北农业学报, 1999, 8(4): 94-96. | |
| 25 | Zhang Y Y, An X X, Ma C H, et al. The coupling of phosphate solubilizing bacteria and phosphate fertilizer to improve the growth and photosynthetic performance of alfalfa. Chinese Journal of Grassland, 2023, 45(11): 43-51. |
| 张盈盈, 安晓霞, 马春晖, 等. 解磷细菌与磷肥耦合提高苜蓿生长及光合性能. 中国草地学报, 2023, 45(11): 43-51. | |
| 26 | Li H S. Principle and technology of plant physiological and biochemical experiments. Beijing: Higher Education Press, 2000. |
| 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. | |
| 27 | Lu R K. Analytical methods for soil and agro-chemistry. Beijing: China Agricultural Science and Technology Press, 2000. |
| 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. | |
| 28 | Wang S Q, Yu G R. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements. Acta Ecologica Sinica, 2008, 28(8): 3937-3947. |
| 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征. 生态学报, 2008, 28(8): 3937-3947. | |
| 29 | Wei K Q, Zhao J W, Zhang Q B. Effects of phosphorus application on soil respiration rate and active organic carbon components of alfalfa. Acta Prataculturae Sinica, 2024, 33(2): 80-92. |
| 魏孔钦, 赵俊威, 张前兵. 施磷对紫花苜蓿土壤呼吸速率及活性有机碳组分的影响. 草业学报, 2024, 33(2): 80-92. | |
| 30 | Sun J, Wang Y Y, Zhang X P, et al. Screening of phosphorus solubilizing microorganisms in cold environment and their effects on the growth of Brassica napus. Chinese Journal of Applied Ecology, 2023, 34(1): 221-228. |
| 孙健, 王亚艺, 张鑫鹏, 等. 青海地区解磷微生物的筛选及对小油菜生长的影响. 应用生态学报, 2023, 34(1): 221-228. | |
| 31 | Zhang J Y, Han F, Xia L, et al. The response strategies of growth and root traits to phosphorus addition in four herbaceous plants. Chinese Journal of Grassland, 2023, 45(1): 1-10. |
| 张家铱, 韩飞, 夏蕾, 等. 四种草本植物生长性状和根性状对磷添加的响应策略. 中国草地学报, 2023, 45(1): 1-10. | |
| 32 | Han Q F, Zhou F, Jia J, et al. Effect of fertilization on productivity different producing performance alfalfa varieties and soil fertility. Journal of Plant Nutrition and Fertilizers, 2009, 15(6): 1413-1418. |
| 韩清芳, 周芳, 贾珺, 等. 施肥对不同品种苜蓿生产力及土壤肥力的影响. 植物营养与肥料学报, 2009, 15(6): 1413-1418. | |
| 33 | Chen Y M, Li Q, Wang Y X, et al. Effects of N, P, K fertilizers application on yield, rhizobium and nutrient up-take and utilization of alfalfa. Journal of Arid Land Resources and Environment, 2019, 33(7): 174-180. |
| 陈昱铭, 李倩, 王玉祥, 等. 氮、磷、钾肥对苜蓿产量、根瘤菌及养分吸收利用率的影响. 干旱区资源与环境, 2019, 33(7): 174-180. | |
| 34 | Tian H Q, Chen G S, Zhang C, et al. Pattern and variation of C∶N∶P ratios in China’s soils: a synthesis of observational data. Biogeochemistry, 2010, 98: 139-151. |
| 35 | Mao R, Chen H M, Zhang X H, et al. Effects of P addition on plant C∶N∶P stoichiometry in an N-limited temperate wetland of Northeast China. Science of the Total Environment, 2016, 559: 1-6. |
| 36 | Koerselman W, Meuleman A F M. The vegetation N∶P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 1996, 33: 1441-1450. |
| 37 | Xia J, Nan L L, Chen J, et al. Morphological and physiological responses of different root types of alfalfa under low phosphorus stress. Chinese Journal of Grassland, 2023, 45(10): 58-67. |
| 夏静, 南丽丽, 陈洁, 等. 低磷胁迫下不同根型苜蓿形态及生理响应. 中国草地学报, 2023, 45(10): 58-67. |
| [1] | 罗天蓉, 马健芝, 杜明阳, 多杰措, 熊辉岩, 段瑞君. 紫花苜蓿LACS基因家族成员鉴定及表达分析[J]. 草业学报, 2025, 34(4): 124-136. |
| [2] | 冯雅琪, 陈嘉慧, 张静妮, 隋超, 陈基伟, 刘志鹏, 周强, 刘文献. 基于重测序紫花苜蓿高蛋白、高产关联InDel分子标记开发[J]. 草业学报, 2025, 34(4): 137-149. |
| [3] | 董拓轩, 陈训锋, 梅大海, 郭永莎, 魏旭红, 宋秋艳. 纳米铁与铜对苜蓿壳二孢及其引致春季黑茎病的抑制与防治作用[J]. 草业学报, 2025, 34(4): 201-211. |
| [4] | 陈彩锦, 包明芳, 王文虎, 尚继红, 曾燕霞, 沙晓弟, 朱新忠, 王学敏, 刘文辉. 紫花苜蓿抗旱育种研究现状及展望[J]. 草业学报, 2025, 34(3): 204-223. |
| [5] | 李绍兴, 宋稳锋, 周玉玲, 宋李霞, 任可, 马群, 王龙昌. 秸秆与紫云英覆盖对土壤-微生物-甘薯植株生态化学计量特征的影响[J]. 草业学报, 2025, 34(3): 56-70. |
| [6] | 胡鹏飞, 叶雨浓, 王通锐, 王晶, 王星, 伏兵哲, 高雪芹. 紫花苜蓿半同胞家系农艺性状的遗传变异分析[J]. 草业学报, 2025, 34(3): 85-96. |
| [7] | 宁建凤, 陈勇, 姚建武, 梁紫薇, 曾瑞锟, 王荣辉, 李彤. 珠三角赤红壤常年连作菜地土壤磷库特征[J]. 草业学报, 2025, 34(2): 133-148. |
| [8] | 马超, 孙熙婧, 冯雅岚, 周爽, 琚吉浩, 吴毅, 王添宁, 郭彬彬, 张均. 紫花苜蓿GLK基因家族鉴定及渗透胁迫下的表达分析[J]. 草业学报, 2025, 34(1): 174-190. |
| [9] | 蔡文祺, 李淑霞, 王晓彤, 宋文学, 麻旭霞, 马小梅, 李小红, 代昕瑶. 外源褪黑素与乙烯交互对盐胁迫下紫花苜蓿幼苗生长和生理特性的影响[J]. 草业学报, 2025, 34(1): 80-93. |
| [10] | 郝丽芬, 徐晓阳, 季玉, 王瑞, 吴德宝, 李宇宇, 林克剑. 长刺蒺藜草两异型种子形态和萌发过程的生理动态特征比较[J]. 草业学报, 2024, 33(9): 40-50. |
| [11] | 王晓彤, 李小红, 麻旭霞, 蔡文祺, 冯学丽, 李淑霞. 紫花苜蓿FBA基因家族成员的鉴定与分析[J]. 草业学报, 2024, 33(9): 81-93. |
| [12] | 张盈盈, 胡丹丹, 马春晖, 张前兵. 苜蓿叶片结构和光合特性对菌磷添加的响应[J]. 草业学报, 2024, 33(8): 133-144. |
| [13] | 王峥, 常伟, 李俊诚, 苏连泰, 高鲤, 周鹏, 安渊. 紫花苜蓿还田对饲料玉米产量和氮素吸收转运的影响[J]. 草业学报, 2024, 33(8): 63-73. |
| [14] | 谭湘蛟, 董逵才, 张华, 唐川川, 杨燕. 积雪增加对青藏高原高寒草甸土壤磷有效性的影响[J]. 草业学报, 2024, 33(7): 205-214. |
| [15] | 李思媛, 孙宗玖, 于冰洁, 周晨烨, 周磊, 郑丽, 刘慧霞, 冶华薇. 封育对伊犁绢蒿荒漠草地土壤碳氮磷、酶活性及其化学计量特征的影响[J]. 草业学报, 2024, 33(7): 25-40. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||