草业学报 ›› 2024, Vol. 33 ›› Issue (7): 205-214.DOI: 10.11686/cyxb2023328
• 研究简报 • 上一篇
谭湘蛟1,4(), 董逵才2, 张华3, 唐川川1, 杨燕1()
收稿日期:
2023-09-06
修回日期:
2023-11-09
出版日期:
2024-07-20
发布日期:
2024-04-08
通讯作者:
杨燕
作者简介:
E-mail: yyang@imde.ac.cn基金资助:
Xiang-jiao TAN1,4(), Kui-cai DONG2, Hua ZHANG3, Chuan-chuan TANG1, Yan YANG1()
Received:
2023-09-06
Revised:
2023-11-09
Online:
2024-07-20
Published:
2024-04-08
Contact:
Yan YANG
摘要:
积雪增加引起土壤水热变化,进而可能改变草地生态系统土壤磷循环过程。本研究以青藏高原多年冻土区高寒草甸为研究对象,采用积雪栅栏诱导方式模拟积雪增加,分析测试了对照和积雪增加处理下土壤表层的水热特征、土壤理化性质和磷酸酶活性、土壤磷的有效性和组分特征。结果表明:1)积雪增加提高了生长季(5-9月)浅层(0~10 cm)土壤温度和湿度;2)积雪增加在0~10 cm、10~20 cm土层显著增加了土壤中全磷、有效磷、Al-P含量,降低了有机磷和Ca2-P含量,Ca8-P含量在0~10 cm土层降低,在10~20 cm土层增加;3)冗余分析表明,影响土壤磷形态的关键因子为土壤全氮、有机质和土壤水热状态。积雪增加通过改变土壤全氮含量、有机质含量和水热状态等土壤理化性质和土壤磷酸酶活性,提高土壤有机磷矿化速率,促进Ca8-P和Al-P等缓效磷源释放更多的磷,提高土壤磷有效性。
谭湘蛟, 董逵才, 张华, 唐川川, 杨燕. 积雪增加对青藏高原高寒草甸土壤磷有效性的影响[J]. 草业学报, 2024, 33(7): 205-214.
Xiang-jiao TAN, Kui-cai DONG, Hua ZHANG, Chuan-chuan TANG, Yan YANG. Effects of snow addition on soil phosphorus availability in an alpine meadow of the Tibetan Plateau[J]. Acta Prataculturae Sinica, 2024, 33(7): 205-214.
图1 积雪栅栏诱导积雪梯度效果和试验样地[14]a: 积雪梯度效果Snow gradient effect; b: 试验样地示意图Experiment plot diagram.
Fig.1 Snow depth distribution induced by snow fence and sampling plots[14]
图2 积雪增加对土壤温湿度的影响所有数据来自2019年10月-2020年9月。Data is from October in 2019 to September in 2020.
Fig.2 Effects of snow addition on soil temperature and moisture
图4 积雪增加对土壤全氮、碱解氮、有机质、磷酸酶活性、pH值的影响
Fig.4 Effects of snow addition on soil total nitrogen, alkali nitrogen, soil organic matter, soil phosphatase activity and pH
图5 积雪增加对土壤不同形态磷影响的冗余分析1~6: 积雪处理Snow addition; 7~12: 对照Control; 全磷: Total phosphorus; 有机磷: Organic phosphorus; 有效磷: Available phosphorus; 水分: Water content; 温度: Temperature; 磷酸酶活性: Soil phosphatase activity; 有机质: Soil organic matter; 全氮: Total nitrogen; 碱解氮: Alkali nitrogen。图左下角表示环境因子对土壤磷变化的相应解释比例The lower left corner of the figure indicates the corresponding interpretation ratio of environmental factors to soil phosphorus changes.
Fig.5 Redundancy analysis of different forms of phosphorus under snow addition
环境因子 Environmental factors | 有效磷 Available phosphorus | 全磷 Total phosphorus | 有机磷 Organic phosphorus | Ca2-P | Ca8-P | Al-P | Fe-P | O-P | Ca10-P |
---|---|---|---|---|---|---|---|---|---|
温度Temperature | 0.033 | 0.218 | -0.621* | 0.575 | -0.735** | 0.401 | 0.136 | 0.564 | 0.371 |
水分Water content | 0.167 | -0.085 | -0.143 | -0.405 | -0.002 | -0.336 | 0.090 | 0.083 | 0.276 |
磷酸酶活性Soil phosphatase activity | 0.025 | 0.076 | -0.418 | 0.560 | -0.842** | 0.360 | 0.361 | 0.633* | 0.491 |
有机质Soil organic matter | 0.143 | 0.248 | -0.378 | 0.483 | -0.727** | 0.536 | 0.855** | 0.802** | 0.564 |
全氮Total nitrogen | 0.190 | 0.263 | -0.391 | 0.441 | -0.713** | 0.547 | 0.861** | 0.822** | 0.595* |
碱解氮Alkali nitrogen | 0.352 | -0.040 | -0.249 | 0.041 | -0.521 | 0.227 | 0.749** | 0.628* | 0.609* |
表1 土壤理化性质及磷酸酶活性与土壤不同形态磷的相关性分析
Table 1 Correlations between soil physicochemical properties and soil phosphatase activity and different forms of phosphorus in soil
环境因子 Environmental factors | 有效磷 Available phosphorus | 全磷 Total phosphorus | 有机磷 Organic phosphorus | Ca2-P | Ca8-P | Al-P | Fe-P | O-P | Ca10-P |
---|---|---|---|---|---|---|---|---|---|
温度Temperature | 0.033 | 0.218 | -0.621* | 0.575 | -0.735** | 0.401 | 0.136 | 0.564 | 0.371 |
水分Water content | 0.167 | -0.085 | -0.143 | -0.405 | -0.002 | -0.336 | 0.090 | 0.083 | 0.276 |
磷酸酶活性Soil phosphatase activity | 0.025 | 0.076 | -0.418 | 0.560 | -0.842** | 0.360 | 0.361 | 0.633* | 0.491 |
有机质Soil organic matter | 0.143 | 0.248 | -0.378 | 0.483 | -0.727** | 0.536 | 0.855** | 0.802** | 0.564 |
全氮Total nitrogen | 0.190 | 0.263 | -0.391 | 0.441 | -0.713** | 0.547 | 0.861** | 0.822** | 0.595* |
碱解氮Alkali nitrogen | 0.352 | -0.040 | -0.249 | 0.041 | -0.521 | 0.227 | 0.749** | 0.628* | 0.609* |
1 | Rixen C, Hoye T T, Macek P, et al. Winters are changing: Snow effects on Arctic and alpine tundra ecosystems. Arctic Science, 2022, 8(3): 572-608. |
2 | Pulliainen J, Luojus K, Derksen C, et al. Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018. Nature, 2020, 581: 294-298. |
3 | Notarnicola C. Hotspots of snow cover changes in global mountain regions over 2000-2018. Remote Sensing of Environment, 2020, 243: 111781. |
4 | Che T, Hao X H, Dai L Y, et al. Snow cover variation and its impacts over the Qinghai-Tibet Plateau. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1247-1253. |
车涛, 郝晓华, 戴礼云, 等. 青藏高原积雪变化及其影响. 中国科学院院刊, 2019, 34(11): 1247-1253. | |
5 | Zhou X Y, Zhao C Y, Li N, et al. Spatiotemporal variation of snow and its response to climate change in Northeast China. Plateau Meteorology, 2021, 40(4): 875-886. |
周晓宇, 赵春雨, 李娜, 等. 东北地区积雪变化及对气候变化的响应. 高原气象, 2021, 40(4): 875-886. | |
6 | Immerzeel W W, Van Beek L P H, Bierkens M F P. Climate change will affect the Asian water towers. Science, 2010, 328(5984): 1382-1385. |
7 | Bai S Y, Shi J Q, Gao J X. Analysis of spatial-temporal variations of snow depth over the Qinghai-Tibetan Plateau during 1979-2010. Journal of Geo-information Science, 2014, 16(4): 628-637. |
白淑英, 史建桥, 高吉喜. 1979-2010年青藏高原积雪深度时空变化遥感分析. 地球信息科学学报, 2014, 16(4): 628-637. | |
8 | Zhao Q, Zeng D H. Phosphorus cycling in terrestrial ecosystems and its controlling factors. Chinese Journal of Plant Ecology, 2005, 29(1): 153-163. |
赵琼, 曾德慧. 陆地生态系统磷素循环及其影响因素. 植物生态学报, 2005, 29(1): 153-163. | |
9 | Filippelli G M. The global phosphorus cycle: Past, present, and future. Elements, 2008, 4(2): 89-95. |
10 | Vitousek P M, Porder S, Houlton B Z, et al. Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 2010, 20(1): 5-15. |
11 | Chen X, Gong L, Zhao J, et al. Litter decomposition, microbial community dynamics and their relationships under seasonal snow cover. Ecological Engineering, 2021, 159: 106089. |
12 | Xiang W S, Huang M, Li X Y. Progress on fractioning of soil phosphorous and availability of various phosphorous fractions to crops in soil. Journal of Plant Nutrition and Fertilizers, 2004, 10(6): 663-670. |
向万胜, 黄敏, 李学垣. 土壤磷素的化学组分及其植物有效性. 植物营养与肥料学报, 2004, 10(6): 663-670. | |
13 | Wipf S, Rixen C. A review of snow manipulation experiments in Arctic and alpine tundra ecosystems. Polar Research, 2010, 29(1): 95-109. |
14 | Tang C C, Wang G X, Zhang L, et al. Responses of plant community biomass and below-ground CNP stocks to snow addition in alpine swamp meadow on the Tibetan Plateau. Journal of Glaciology and Geocryology, 2021, 43(2): 618-627. |
唐川川, 王根绪, 张莉, 等. 青藏高原高寒沼泽化草甸群落生物量及地下CNP对积雪增加的响应. 冰川冻土, 2021, 43(2): 618-627. | |
15 | Bombonato L, Gerdol R. Manipulating snow cover in an alpine bog: Effects on ecosystem respiration and nutrient content in soil and microbes. Climatic Change, 2012, 114: 261-272. |
16 | Li P, Sayer E J, Jia Z, et al. Deepened snow cover mitigates soil carbon loss from intensive land-use in a semi-arid temperate grassland. Functional Ecology, 2022, 36(3): 635-645. |
17 | Zhang N, Guo R, Song P, et al. Effects of warming and nitrogen deposition on the coupling mechanism between soil nitrogen and phosphorus in Songnen Meadow Steppe, Northeastern China. Soil Biology and Biochemistry, 2013, 65: 96-104. |
18 | Yano Y, Brookshire E N J, Holsinger J, et al. Long-term snowpack manipulation promotes large loss of bioavailable nitrogen and phosphorus in a subalpine grassland. Biogeochemistry, 2015, 124: 319-333. |
19 | Chen L X, Huang L Y, Qiao L, et al. Influence of simulated nitrogen deposition on soil nitrogen mineralization rate under different forest stands. Journal of Soil and Water Conservation, 2012, 26(6): 139-146. |
陈立新, 黄兰英, 乔璐, 等. 模拟氮沉降对温带不同森林类型土壤氮矿化速率的影响. 水土保持学报, 2012, 26(6): 139-146. | |
20 | Hui R, Zhao R M, Liu L C, et al. Effect of snow cover on water content, carbon and nutrient availability, and microbial biomass in complexes of biological soil crusts and subcrust soil in the desert. Geoderma, 2022, 406: 115505. |
21 | Li W, Wu J, Bai E, et al. Response of terrestrial nitrogen dynamics to snow cover change: A meta-analysis of experimental manipulation. Soil Biology and Biochemistry, 2016, 100: 51-58. |
22 | Li W, Wu J, Bai E, et al. Response of terrestrial carbon dynamics to snow cover change: A meta-analysis of experimental manipulation (II). Soil Biology and Biochemistry, 2016, 103: 388-393. |
23 | Wu Q Q, Wu F Z, Yang W Q, et al. Effect of snow cover on phosphorus release from leaf litter in the alpine forest in eastern Qinghai-Tibet plateau. Acta Ecologica Sinica, 2015, 35(12): 4115-4127. |
武启骞, 吴福忠, 杨万勤, 等. 冬季雪被对青藏高原东缘高海拔森林凋落叶P元素释放的影响. 生态学报, 2015, 35(12): 4115-4127. | |
24 | Walker M D, Walker D A, Welker J M, et al. Long-term experimental manipulation of winter snow regime and summer temperature in Arctic and alpine tundra. Hydrological Processes, 1999, 13(14/15): 2315-2330. |
25 | Wen Y Q, Guo Y, Zhang G Q. Research on determination of soil total phosphorous by colorimetry methods. Journal of Anhui Agricultural Sciences, 2013, 41(6): 2442-2444. |
文衍秋, 郭烨, 张国庆. 土壤全磷测定中显色方法的研究. 安徽农业科学, 2013, 41(6): 2442-2444. | |
26 | Di C X, Zhang S F, Sha N, et al. The use of national standard soil in available phosphorus testing and quality control. Soil and Fertilizer Science in China, 2013(1): 100-104. |
狄彩霞, 张三粉, 莎娜, 等. 国标土样在土壤有效磷含量检测和质控中的应用. 中国土壤与肥料, 2013(1): 100-104. | |
27 | Bao S D. Soil agro-chemistrical analysis (The Third Edition). Beijing: China Agriculture Press, 2000: 12. |
鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2000: 12. | |
28 | Qian B, Liu L, Xiao X. Comparative tests on different methods for content of soil organic matter. Journal of Hohai University (Natural Sciences), 2011, 39(1): 34-38. |
钱宝, 刘凌, 肖潇. 土壤有机质测定方法对比分析. 河海大学学报(自然科学版), 2011, 39(1): 34-38. | |
29 | Qin L, Huang S Q, Zhong L L, et al. Comparison of Dumas combustion and Kjeldahl methods for determining total nitrogen content in soil. Soil and Fertilizer Science in China, 2020(4): 258-265. |
秦琳, 黄世群, 仲伶俐, 等. 杜马斯燃烧法和凯氏定氮法在土壤全氮检测中的比较研究. 中国土壤与肥料, 2020(4): 258-265. | |
30 | Wang X L, Kalibinuer, Yang W N. Comparison of methods for determining alkali-hydrolyzer nitrogen in soil. Journal of Beijing Normal University (Natural Science), 2010, 46(1): 76-78. |
王晓岚, 卡丽毕努尔, 杨文念. 土壤碱解氮测定方法比较. 北京师范大学学报(自然科学版), 2010, 46(1): 76-78. | |
31 | Lu R K. Analysis method of soil agricultural chemistry. Beijing: China Agricultural Science and Technology Press, 2000. |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. | |
32 | Wu J F, Liu J S, Li Z M, et al. Grassland soil phosphorus cycle and its response to global change. Chinese Journal of Grassland, 2021, 43(6): 102-111. |
吴金凤, 刘鞠善, 李梓萌, 等. 草地土壤磷循环及其对全球变化的响应. 中国草地学报, 2021, 43(6): 102-111. | |
33 | Kang H, Freeman C. Phosphatase and arylsulphatase activities in wetland soils: Annual variation and controlling factors. Soil Biology and Biochemistry, 1999, 31(3): 449-454. |
34 | Wick B, Kühne R F, Vlek P L G. Soil microbiological parameters as indicators of soil quality under improved fallow management systems in south-western Nigeria. Plant and Soil, 1998, 202: 97-107. |
35 | Rui Y C, Wang Y F, Chen C R, et al. Warming and grazing increase mineralization of organic P in an alpine meadow ecosystem of Qinghai-Tibet Plateau, China. Plant and Soil, 2012, 357: 73-87. |
36 | Ade L J, Zi H B, Liu M, et al. Response of belowground root growth dynamics to snow cover change in alpine meadow. Acta Ecologica Sinica, 2017, 37(20): 6773-6784. |
阿的鲁骥, 字洪标, 刘敏, 等. 高寒草甸地下根系生长动态对积雪变化的响应. 生态学报, 2017, 37(20): 6773-6784. | |
37 | Xu W Y, Prieme A, Cooper E J, et al. Deepened snow enhances gross nitrogen cycling among Pan-Arctic tundra soils during both winter and summer. Soil Biology and Biochemistry, 2021, 160: 108356. |
38 | Chen M L, Chen H, Mao Q G, et al. Effect of nitrogen deposition on the soil phosphorus cycle in forest ecosystems: A review. Acta Ecologica Sinica, 2016, 36(16): 4965-4976. |
陈美领, 陈浩, 毛庆功, 等. 氮沉降对森林土壤磷循环的影响. 生态学报, 2016, 36(16): 4965-4976. | |
39 | Zhang L, Wu N, Wu Y, et al. Soil phosphorus form and fractionation scheme: A review. Chinese Journal of Applied Ecology, 2009, 20(7): 1775-1782. |
张林, 吴宁, 吴彦, 等. 土壤磷素形态及其分级方法研究进展. 应用生态学报, 2009, 20(7): 1775-1782. | |
40 | Li R N, Wang Z P, Batbayar J, et al. Relationship between soil available phosphorus and inorganic phosphorus forms under equivalent organic matter condition in a tier soil. Scientia Agricultura Sinica, 2019, 52(21): 3852-3865. |
李若楠, 王政培, Batbayar J, 等. 等有机质塿土有效磷和无机磷形态的关系. 中国农业科学, 2019, 52(21): 3852-3865. | |
41 | Guo Z F, Tu S X, Li X H, et al. Contribution of different forms of inorganic phosphates in calcareous soils to phosphorus nutrition of crops. Scientia Agricultura Sinica, 1997, 30(1): 27-33. |
郭智芬, 涂书新, 李晓华, 等. 石灰性土壤不同形态无机磷对作物磷营养的贡献. 中国农业科学, 1997, 30(1): 27-33. | |
42 | Gu Y C, Qin S W. Effect of long-term phosphorus fertilization on accumulation, transformation and availability of phosphorus in moisture soil. Soils, 1997, 29(1): 13-17. |
顾益初, 钦绳武. 长期施用磷肥条件下潮土中磷素的积累、形态转化和有效性. 土壤, 1997, 29(1): 13-17. | |
43 | Wang X. Responses of plant community and root to snowpack change in an alpine meadow of Northwestern Sichuan, China. Chengdu: Southwest Minzu University, 2020. |
王鑫. 川西北高寒草甸植被与根系对积雪变化的响应. 成都: 西南民族大学, 2020. | |
44 | Lajtha K, Schlesinger W H. The biogeochemistry of phosphorus cycling and phosphorus availability along a desert soil chronosequence. Ecology, 1988, 69(1): 24-39. |
45 | Kellogg L E, Bridgham S D. Phosphorus retention and movement across an ombrotrophic-minerotrophic peatland gradient. Biogeochemistry, 2003, 63(3): 299-315. |
46 | Huang L M, Jia X X, Zhang G L, et al. Soil organic phosphorus transformation during ecosystem development: A review. Plant and Soil, 2017, 417: 17-42. |
47 | Achat D L, Bakker M R, Zeller B, et al. Long-term organic phosphorus mineralization in spodosols under forests and its relation to carbon and nitrogen mineralization. Soil Biology and Biochemistry, 2010, 42(9): 1479-1490. |
48 | Robles-Aguilar A A, Pang J, Postma J A, et al. The effect of pH on morphological and physiological root traits of Lupinus angustifolius treated with struvite as a recycled phosphorus source. Plant and Soil, 2019, 434(1/2): 65-78. |
49 | Hayes P, Turner B L, Lambers H, et al. Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient-acquisition strategies along a 2-million-year dune chronosequence. Journal of Ecology, 2014, 102(2): 396-410. |
50 | Margalef O, Sardans J, Fernández-Martínez M, et al. Global patterns of phosphatase activity in natural soils. Scientific Reports, 2017, 7(1): 1-13. |
51 | Liu D, You G H, Song X Y, et al. Effects of phosphorus fertilization on soil phosphorus fractions and availability in an alpine grassland of northwestern Sichuan. Acta Ecologica Sinica, 2023, 43(6): 2378-2387. |
刘丹, 游郭虹, 宋小艳, 等. 施磷对川西北高寒草地土壤磷形态及有效性的影响. 生态学报, 2023, 43(6): 2378-2387. | |
52 | Zhao Z, De Frenne P, Peñuelas J, et al. Effects of snow cover-induced microclimate warming on soil physicochemical and biotic properties. Geoderma, 2022, 423: 115983. |
53 | Zhang T. Influence of the seasonal snow cover on the ground thermal regime: An overview. Reviews of Geophysics, 2005, 43(4): DOI: 10.1029/2004RG000157. |
54 | Campbell J L, Socci A M, Templer P H. Increased nitrogen leaching following soil freezing is due to decreased root uptake in a northern hardwood forest. Global Change Biology, 2014, 20(8): 2663-2673. |
55 | Moore T R, Trofymow J A, Taylor B, et al. Litter decomposition rates in Canadian forests. Global Change Biology, 1999, 5(1): 75-82. |
56 | Yang L, Gross A, Christine S O, et al. Anoxic conditions maintained high phosphorus sorption in humid tropical forest soils. Biogeosciences, 2020, 17(1): 89-101. |
57 | Tan B, Wu F Z, Yang W Q, et al. Effects of snow pack removal on the dynamics of winter-time soil temperature, carbon, nitrogen, and phosphorus in alpine forests of west Sichuan. Chinese Journal of Applied Ecology, 2011, 22(10): 2553-2559. |
谭波, 吴福忠, 杨万勤, 等. 雪被去除对川西高山森林冬季土壤温度及碳、氮、磷动态的影响. 应用生态学报, 2011, 22(10): 2553-2559. | |
58 | Dalling J W, Heineman K, Lopez O R, et al. Nutrient availability in tropical rain forests: The paradigm of phosphorus limitation. Tropical Tree Physiology, 2016(6): 261-273. |
[1] | 秦瑞敏, 程思佳, 马丽, 张中华, 魏晶晶, 苏洪烨, 史正晨, 常涛, 胡雪, 阿的哈则, 袁访, 李珊, 周华坤. 围封和施肥对高寒草甸群落特征和植被碳氮库的影响[J]. 草业学报, 2024, 33(4): 1-11. |
[2] | 油志远, 马淑娟, 王长庭, 丁路明, 宋小艳, 尹高飞, 毛军. 川滇高原高寒草甸生态系统不同功能群植物分布格局的MaxEnt模型预测[J]. 草业学报, 2024, 33(3): 1-12. |
[3] | 马源, 王晓丽, 马玉寿, 张德罡. 高寒草甸退化程度对优势物种根际土壤真菌群落和生态网络的影响[J]. 草业学报, 2024, 33(2): 125-137. |
[4] | 张东, 侯晨, 马文明, 王长庭, 邓增卓玛, 张婷. 高寒草地不同灌丛化梯度下土壤酶活性研究[J]. 草业学报, 2023, 32(9): 79-92. |
[5] | 杨欣怡, 杨富强, 周旭姣, 王明军, 黄海霞, 鲁松松, 张晓玮, 杜伟波, 王旭虎, 田青, 赵安, 贺万鹏, 周晓雷. 青藏高原东北边缘云杉-巴山冷杉林火烧迹地草本植物群落构建机理[J]. 草业学报, 2023, 32(8): 40-47. |
[6] | 李林芝, 张德罡, 马源, 罗珠珠, 林栋, 海龙, 白兰鸽. 不同退化程度高寒草甸土壤团聚体养分及生态化学计量特征研究[J]. 草业学报, 2023, 32(8): 48-60. |
[7] | 廖小琴, 王长庭, 刘丹, 唐国, 毛军. 氮磷配施对高寒草甸植物根系特征的影响[J]. 草业学报, 2023, 32(7): 160-174. |
[8] | 周晓雷, 杨富强, 王明军, 黄海霞, 田青, 周旭姣, 赵安, 贺万鹏, 赵艳丽, 姜礼红. 青藏高原东北边缘云杉-巴山冷杉林火烧迹地草本植物群落主要种生态位特征[J]. 草业学报, 2023, 32(7): 23-37. |
[9] | 路欣, 祁娟, 师尚礼, 车美美, 李霞, 独双双, 赛宁刚, 贾燕伟. 阔叶类草抑制剂与氮素配施对高寒草甸土壤特性的影响[J]. 草业学报, 2023, 32(7): 38-48. |
[10] | 刘彩凤, 段媛媛, 王玲玲, 王乙茉, 郭正刚. 高原鼠兔干扰对高寒草甸植物物种多样性与土壤生态化学计量比间关系的影响[J]. 草业学报, 2023, 32(6): 157-166. |
[11] | 孙玉, 杨永胜, 何琦, 王军邦, 张秀娟, 李慧婷, 徐兴良, 周华坤, 张宇恒. 三江源高寒草甸水源涵养功能及土壤理化性质对退化程度的响应[J]. 草业学报, 2023, 32(6): 16-29. |
[12] | 周娟娟, 刘云飞, 王敬龙, 魏巍. 短期养分添加对西藏沼泽化高寒草甸地上生物量、植物多样性和功能性状的影响[J]. 草业学报, 2023, 32(11): 17-29. |
[13] | 游郭虹, 刘丹, 王艳丽, 王长庭. 高寒草甸植物叶片生态化学计量特征对长期氮肥添加的响应[J]. 草业学报, 2022, 31(9): 50-62. |
[14] | 王瑞泾, 冯琦胜, 金哲人, 刘洁, 赵玉婷, 葛静, 梁天刚. 青藏高原退化草地的恢复潜势研究[J]. 草业学报, 2022, 31(6): 11-22. |
[15] | 张玉琢, 杨志贵, 于红妍, 张强, 杨淑霞, 赵婷, 许画画, 孟宝平, 吕燕燕. 基于STARFM的草地地上生物量遥感估测研究——以甘肃省夏河县桑科草原为例[J]. 草业学报, 2022, 31(6): 23-34. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||