草业学报 ›› 2025, Vol. 34 ›› Issue (6): 168-180.DOI: 10.11686/cyxb2024287
• 研究论文 • 上一篇
张晴晴1,2,3,4(
), 马兴羽1,2,3,4(
), 鲁艳1,2,3, 赵广兴1,2,3,4, 曾凡江1,2,3(
), 黄彩变1,2,3(
)
收稿日期:2024-07-17
修回日期:2024-09-25
出版日期:2025-06-20
发布日期:2025-04-03
通讯作者:
曾凡江,黄彩变
作者简介:huangcaibian@ms.xjb.ac.cn基金资助:
Qing-qing ZHANG1,2,3,4(
), Xing-yu MA1,2,3,4(
), Yan LU1,2,3, Guang-Xing ZHAO1,2,3,4, Fan-jiang ZENG1,2,3(
), Cai-bian HUANG1,2,3(
)
Received:2024-07-17
Revised:2024-09-25
Online:2025-06-20
Published:2025-04-03
Contact:
Fan-jiang ZENG,Cai-bian HUANG
摘要:
为探究不同NaCl浓度对油莎豆生长和生理的影响及其不同时期耐盐性的差异,采用盆栽试验,设置0 g·kg-1(对照)、0.5 g·kg-1(轻度)、1.0 g·kg-1(中度)、2.0 g·kg-1 (重度)和3.5 g·kg-1 (盐土)5个不同NaCl胁迫梯度,在幼苗期和不同块茎期分析了油莎豆的生物量累积、渗透调节物质和抗氧化酶活性等差异,并对其在不同时期的耐盐性进行评价。结果表明:在幼苗期,轻度盐胁迫严重抑制油莎豆地上和地下生长,盐胁迫加剧后其生物量变化不显著。从块茎初期至块茎后期,地上和地下生物量均随盐胁迫程度增强而显著下降,在重度和盐土处理下从块茎中期开始已停止生长;各盐分处理的Na+和Cl-含量均随盐胁迫程度加剧呈显著增加趋势,K+/Na+则呈下降趋势。油莎豆在幼苗期和块茎初期主要通过可溶性蛋白、可溶性糖、甜菜碱的积累,过氧化氢酶(CAT)和超氧化物歧化酶(SOD)活性的提高来适应盐胁迫。在块茎中期主要依靠SOD活性的明显提升来减轻盐胁迫。在块茎后期,主要通过可溶性蛋白和甜菜碱的大量积累及SOD活性的提高来适应盐胁迫,各生育期耐盐性由高到低为幼苗期>块茎后期>块茎中期>块茎初期。综合表现来看,推荐生长的土壤NaCl≤1.0 g·kg-1。本研究结果可对新疆沙质盐渍化土地油莎豆规模化种植提供科学理论支撑。
张晴晴, 马兴羽, 鲁艳, 赵广兴, 曾凡江, 黄彩变. 沙化盐渍土地不同生长时期油莎豆的耐盐性差异研究[J]. 草业学报, 2025, 34(6): 168-180.
Qing-qing ZHANG, Xing-yu MA, Yan LU, Guang-Xing ZHAO, Fan-jiang ZENG, Cai-bian HUANG. A study of salt tolerance differences in Cyperus esculentus at different growth stages in a sandy saline soil[J]. Acta Prataculturae Sinica, 2025, 34(6): 168-180.
处理 Treatment | Cl- (g·kg-1) | NaCl (g·kg-1) | NaCl浓度 NaCl concentration (mmol·L-1) |
|---|---|---|---|
| CK | 0 | 0 | 0 |
| S1 | 0.3 | 0.5 | 47 |
| S2 | 0.6 | 1.0 | 94 |
| S3 | 1.2 | 2.0 | 189 |
| S4 | 2.1 | 3.5 | 332 |
表1 不同处理土壤盐分添加量
Table 1 Salt addition in different treatments
处理 Treatment | Cl- (g·kg-1) | NaCl (g·kg-1) | NaCl浓度 NaCl concentration (mmol·L-1) |
|---|---|---|---|
| CK | 0 | 0 | 0 |
| S1 | 0.3 | 0.5 | 47 |
| S2 | 0.6 | 1.0 | 94 |
| S3 | 1.2 | 2.0 | 189 |
| S4 | 2.1 | 3.5 | 332 |
图1 不同盐分条件下油莎豆生物量及根冠比差异不同小写字母表示不同盐分处理之间差异显著(P<0.05),不同大写字母表示不同时期之间差异显著(P<0.05),下同。Different lowercase letters indicate significant difference among different salt treatments (P<0.05). Different capital letters indicate significant difference among different stages (P<0.05). The same below.
Fig.1 Comparison of biomass and root-shoot ratio of C. esculentus under different salt treatments
图2 不同盐分条件下油莎豆抗氧化酶活性和丙二醛含量差异
Fig.2 Comparison of antioxidant enzyme activity and malondialdehyde content of C. esculentus under different salt treatments
时期 Stage | 处理 Treatment | 地上生物量 AB | 地下生物量 UB | 过氧化氢酶 CAT | 过氧化物酶 POD | 超氧化物歧化酶 SOD | 丙二醛 MDA | 可溶性蛋白 SP | 可溶性糖 SS | 甜菜碱 BT | 脯氨酸 Pro | Na+ | K+ | Cl- | K+/Na+ | 隶属函数 Membership function | 耐盐性排序 Order of salt tolerance | ||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| T1 | CK | 0.86 | 0.95 | 0.76 | 0.70 | 0.91 | 0.89 | 0.82 | 0.90 | 0.81 | 0.57 | 0.94 | 0.85 | 0.75 | 0.84 | 0.83Aa | 0.568 | 1 | |
| S1 | 0.42 | 0.43 | 0.64 | 0.53 | 0.50 | 0.40 | 0.55 | 0.58 | 0.68 | 0.58 | 0.21 | 0.73 | 0.32 | 0.05 | 0.47Ab | 4 | |||
| S2 | 0.26 | 0.17 | 0.26 | 0.79 | 0.75 | 0.36 | 0.57 | 0.63 | 0.33 | 0.61 | 0.85 | 0.59 | 0.69 | 0.46 | 0.52Ab | 3 | 1 | ||
| S3 | 0.32 | 0.24 | 0.58 | 0.80 | 0.69 | 0.45 | 0.63 | 0.51 | 0.62 | 0.84 | 0.82 | 0.45 | 0.67 | 0.35 | 0.57Ab | 2 | |||
| S4 | 0.36 | 0.17 | 0.52 | 0.77 | 0.55 | 0.34 | 0.19 | 0.16 | 0.25 | 0.74 | 0.85 | 0.21 | 0.79 | 0.38 | 0.45Ab | 5 | |||
| T2 | CK | 0.90 | 0.48 | 0.82 | 0.61 | 0.78 | 0.73 | 0.81 | 0.66 | 0.64 | 0.21 | 0.82 | 0.39 | 0.87 | 0.63 | 0.67Ba | 0.492 | 1 | |
| S1 | 0.73 | 0.57 | 0.64 | 0.29 | 0.73 | 0.47 | 0.41 | 0.52 | 0.33 | 0.36 | 0.60 | 0.61 | 0.75 | 0.58 | 0.54Aab | 2 | |||
| S2 | 0.52 | 0.58 | 0.78 | 0.37 | 0.45 | 0.31 | 0.42 | 0.38 | 0.27 | 0.60 | 0.64 | 0.49 | 0.81 | 0.53 | 0.51Abc | 3 | 4 | ||
| S3 | 0.19 | 0.32 | 0.51 | 0.31 | 0.53 | 0.17 | 0.32 | 0.53 | 0.53 | 0.47 | 0.52 | 0.12 | 0.60 | 0.17 | 0.38Bcd | 4 | |||
| S4 | 0.25 | 0.39 | 0.69 | 0.37 | 0.44 | 0.29 | 0.50 | 0.20 | 0.37 | 0.81 | 0.23 | 0.23 | 0.22 | 0.07 | 0.36Ad | 5 | |||
| T3 | CK | 0.84 | 0.49 | 0.44 | 0.31 | 0.72 | 0.74 | 0.53 | 0.37 | 0.61 | 0.54 | 0.62 | 0.46 | 0.56 | 0.50 | 0.55Ba | 0.494 | 1 | 3 |
| S1 | 0.56 | 0.47 | 0.61 | 0.41 | 0.36 | 0.38 | 0.34 | 0.20 | 0.53 | 0.35 | 0.73 | 0.30 | 0.71 | 0.61 | 0.47Aa | 4 | |||
| S2 | 0.32 | 0.38 | 0.26 | 0.25 | 0.50 | 0.36 | 0.46 | 0.54 | 0.80 | 0.73 | 0.63 | 0.54 | 0.79 | 0.55 | 0.51Aa | 2 | |||
| S3 | 0.24 | 0.59 | 0.63 | 0.64 | 0.49 | 0.40 | 0.66 | 0.21 | 0.90 | 0.73 | 0.37 | 0.34 | 0.60 | 0.20 | 0.50ABa | 3 | |||
| S4 | 0.06 | 0.45 | 0.58 | 0.38 | 0.63 | 0.62 | 0.58 | 0.62 | 0.76 | 0.62 | 0.16 | 0.44 | 0.15 | 0.09 | 0.44Aa | 5 | |||
| T4 | CK | 0.93 | 0.37 | 0.83 | 0.17 | 0.73 | 0.45 | 0.78 | 0.19 | 0.88 | 0.60 | 0.57 | 0.43 | 0.67 | 0.32 | 0.57Ba | 0.504 | 1 | |
| S1 | 0.49 | 0.56 | 0.75 | 0.19 | 0.57 | 0.20 | 0.59 | 0.27 | 0.87 | 0.78 | 0.72 | 0.64 | 0.58 | 0.56 | 0.55Aa | 2 | |||
| S2 | 0.41 | 0.49 | 0.70 | 0.37 | 0.91 | 0.75 | 0.67 | 0.40 | 0.27 | 0.75 | 0.55 | 0.42 | 0.64 | 0.32 | 0.55Aa | 3 | 2 | ||
| S3 | 0.17 | 0.67 | 0.69 | 0.28 | 0.48 | 0.27 | 0.31 | 0.50 | 0.21 | 0.68 | 0.23 | 0.76 | 0.25 | 0.20 | 0.41Ba | 5 | |||
| S4 | 0.06 | 0.47 | 0.34 | 0.52 | 0.51 | 0.38 | 0.65 | 0.69 | 0.47 | 0.88 | 0.17 | 0.63 | 0.31 | 0.15 | 0.44Aa | 4 | |||
表2 不同盐分条件下油莎豆的耐盐性综合评价
Table 2 Subjection values and salt to tolerance evaluation of C. esculentus under different salt conditions
时期 Stage | 处理 Treatment | 地上生物量 AB | 地下生物量 UB | 过氧化氢酶 CAT | 过氧化物酶 POD | 超氧化物歧化酶 SOD | 丙二醛 MDA | 可溶性蛋白 SP | 可溶性糖 SS | 甜菜碱 BT | 脯氨酸 Pro | Na+ | K+ | Cl- | K+/Na+ | 隶属函数 Membership function | 耐盐性排序 Order of salt tolerance | ||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| T1 | CK | 0.86 | 0.95 | 0.76 | 0.70 | 0.91 | 0.89 | 0.82 | 0.90 | 0.81 | 0.57 | 0.94 | 0.85 | 0.75 | 0.84 | 0.83Aa | 0.568 | 1 | |
| S1 | 0.42 | 0.43 | 0.64 | 0.53 | 0.50 | 0.40 | 0.55 | 0.58 | 0.68 | 0.58 | 0.21 | 0.73 | 0.32 | 0.05 | 0.47Ab | 4 | |||
| S2 | 0.26 | 0.17 | 0.26 | 0.79 | 0.75 | 0.36 | 0.57 | 0.63 | 0.33 | 0.61 | 0.85 | 0.59 | 0.69 | 0.46 | 0.52Ab | 3 | 1 | ||
| S3 | 0.32 | 0.24 | 0.58 | 0.80 | 0.69 | 0.45 | 0.63 | 0.51 | 0.62 | 0.84 | 0.82 | 0.45 | 0.67 | 0.35 | 0.57Ab | 2 | |||
| S4 | 0.36 | 0.17 | 0.52 | 0.77 | 0.55 | 0.34 | 0.19 | 0.16 | 0.25 | 0.74 | 0.85 | 0.21 | 0.79 | 0.38 | 0.45Ab | 5 | |||
| T2 | CK | 0.90 | 0.48 | 0.82 | 0.61 | 0.78 | 0.73 | 0.81 | 0.66 | 0.64 | 0.21 | 0.82 | 0.39 | 0.87 | 0.63 | 0.67Ba | 0.492 | 1 | |
| S1 | 0.73 | 0.57 | 0.64 | 0.29 | 0.73 | 0.47 | 0.41 | 0.52 | 0.33 | 0.36 | 0.60 | 0.61 | 0.75 | 0.58 | 0.54Aab | 2 | |||
| S2 | 0.52 | 0.58 | 0.78 | 0.37 | 0.45 | 0.31 | 0.42 | 0.38 | 0.27 | 0.60 | 0.64 | 0.49 | 0.81 | 0.53 | 0.51Abc | 3 | 4 | ||
| S3 | 0.19 | 0.32 | 0.51 | 0.31 | 0.53 | 0.17 | 0.32 | 0.53 | 0.53 | 0.47 | 0.52 | 0.12 | 0.60 | 0.17 | 0.38Bcd | 4 | |||
| S4 | 0.25 | 0.39 | 0.69 | 0.37 | 0.44 | 0.29 | 0.50 | 0.20 | 0.37 | 0.81 | 0.23 | 0.23 | 0.22 | 0.07 | 0.36Ad | 5 | |||
| T3 | CK | 0.84 | 0.49 | 0.44 | 0.31 | 0.72 | 0.74 | 0.53 | 0.37 | 0.61 | 0.54 | 0.62 | 0.46 | 0.56 | 0.50 | 0.55Ba | 0.494 | 1 | 3 |
| S1 | 0.56 | 0.47 | 0.61 | 0.41 | 0.36 | 0.38 | 0.34 | 0.20 | 0.53 | 0.35 | 0.73 | 0.30 | 0.71 | 0.61 | 0.47Aa | 4 | |||
| S2 | 0.32 | 0.38 | 0.26 | 0.25 | 0.50 | 0.36 | 0.46 | 0.54 | 0.80 | 0.73 | 0.63 | 0.54 | 0.79 | 0.55 | 0.51Aa | 2 | |||
| S3 | 0.24 | 0.59 | 0.63 | 0.64 | 0.49 | 0.40 | 0.66 | 0.21 | 0.90 | 0.73 | 0.37 | 0.34 | 0.60 | 0.20 | 0.50ABa | 3 | |||
| S4 | 0.06 | 0.45 | 0.58 | 0.38 | 0.63 | 0.62 | 0.58 | 0.62 | 0.76 | 0.62 | 0.16 | 0.44 | 0.15 | 0.09 | 0.44Aa | 5 | |||
| T4 | CK | 0.93 | 0.37 | 0.83 | 0.17 | 0.73 | 0.45 | 0.78 | 0.19 | 0.88 | 0.60 | 0.57 | 0.43 | 0.67 | 0.32 | 0.57Ba | 0.504 | 1 | |
| S1 | 0.49 | 0.56 | 0.75 | 0.19 | 0.57 | 0.20 | 0.59 | 0.27 | 0.87 | 0.78 | 0.72 | 0.64 | 0.58 | 0.56 | 0.55Aa | 2 | |||
| S2 | 0.41 | 0.49 | 0.70 | 0.37 | 0.91 | 0.75 | 0.67 | 0.40 | 0.27 | 0.75 | 0.55 | 0.42 | 0.64 | 0.32 | 0.55Aa | 3 | 2 | ||
| S3 | 0.17 | 0.67 | 0.69 | 0.28 | 0.48 | 0.27 | 0.31 | 0.50 | 0.21 | 0.68 | 0.23 | 0.76 | 0.25 | 0.20 | 0.41Ba | 5 | |||
| S4 | 0.06 | 0.47 | 0.34 | 0.52 | 0.51 | 0.38 | 0.65 | 0.69 | 0.47 | 0.88 | 0.17 | 0.63 | 0.31 | 0.15 | 0.44Aa | 4 | |||
| 1 | Hu Y, Yang F, Yang N, et al. Analysis and prospects of saline-alkali land in China from the perspective of utilization. Chinese Journal of Soil Science, 2023, 54(2): 489-494. |
| 胡炎, 杨帆, 杨宁, 等. 盐碱地资源分析及利用研究展望. 土壤通报, 2023, 54(2): 489-494. | |
| 2 | Tian C Y, Mai W X, Zhao Z Y. Study on key technologies of ecological management of saline alkali land in arid area of Xinjiang. Acta Ecologica Sinica, 2016, 36(22): 7064-7068. |
| 田长彦, 买文选, 赵振勇. 新疆干旱区盐碱地生态治理关键技术研究. 生态学报, 2016, 36(22): 7064-7068. | |
| 3 | Wang S P, Chen Y, Pan D W, et al. Review on salt marshes management: status, problems and countermeasures. Industrial Minerals & Progressing, 2023, 52(11): 59-68. |
| 王世平, 陈月, 潘大伟, 等. 盐碱地治理研究综述: 现状、问题与对策. 化工矿物与加工, 2023, 52(11): 59-68. | |
| 4 | Liu Y L, Zhao Y, Xu M Q, et al. Effect of row spacing on the growth of Cyperus esculentus L. and soil properties in extremely arid region. Acta Agrestia Sinica, 2021, 29(11): 2486-2493. |
| 刘亚兰, 赵月, 徐梦琦, 等. 极端干旱区种植行距对油莎豆生长及土壤特性的影响. 草地学报, 2021, 29(11): 2486-2493. | |
| 5 | Ren Z X, Shi J N, He J X, et al. Effects of salt stress on growth and physiological characteristics of Carex leucochlora. Acta Agrestia Sinica, 2022, 30(8): 2045-2052. |
| 任智新, 史建楠, 何佳星, 等. 盐胁迫对青绿苔草生长及生理特性的影响. 草地学报, 2022, 30(8): 2045-2052. | |
| 6 | Li D, Si J H, Li J Y, et al. Physiological responses and differences of Populus euphratica to salt stress and drought stress. Journal of Desert Research, 2023, 43(2): 205-215. |
| 李端, 司建华, 李继彦, 等. 胡杨(Populus euphratica)对盐胁迫和干旱胁迫的生理响应特征. 中国沙漠, 2023, 43(2): 205-215. | |
| 7 | Qiu L Z, Huang Y J, Huang J Q, et al. Comparative study on vegetal and physiological characteristics of different salt-tolerant plants under salt stress. Journal of Zhejiang University (Agriculture and Life Sciences), 2006, 32(4): 420-427. |
| 裘丽珍, 黄有军, 黄坚钦, 等. 不同耐盐性植物在盐胁迫下的生长与生理特性比较研究. 浙江大学学报(农业与生命科学版), 2006, 32(4): 420-427. | |
| 8 | Chen T X. Study on salt tolerance at different growth periods in fall dormancy standard varieties of alfalfa(Medicago sativa). Beijing: Beijing Forestry University, 2009. |
| 陈托兄. 不同生育时期紫花苜蓿秋眠型标准品种耐盐机制研究. 北京: 北京林业大学, 2009. | |
| 9 | Wang J J, Wang D L, Fan W L, et al. The characters of salt-tolerance at different growth stages in cotton. Acta Ecologica Sinica, 2011, 31(13): 3720-3727. |
| 王俊娟, 王德龙, 樊伟莉, 等. 陆地棉萌发至三叶期不同生育阶段耐盐特性. 生态学报, 2011, 31(13): 3720-3727. | |
| 10 | Tan W, Liu J T, Lyu C T, et al. Identification of salt tolerance of potato at different fertility stages. Journal of Yunnan Normal University (Natural Sciences Edition), 2023, 43(4): 29-35. |
| 谭薇, 刘金涛, 吕春桃, 等. 马铃薯不同生育期耐盐性鉴定. 云南师范大学学报(自然科学版), 2023, 43(4): 29-35. | |
| 11 | Xie L J, Duan M, Pan X B, et al. Identification and analysis of salt tolerance in different type rice cultivars during seedling and whole plant growth stage. Acta Agricultura Universitatis Jiangxiensis, 2015, 37(3): 404-410. |
| 谢留杰, 段敏, 潘晓飚, 等. 不同类型水稻品系苗期和全生育期耐盐性鉴定与分析. 江西农业大学学报, 2015, 37(3): 404-410. | |
| 12 | Pan X B, Huang S J, Chen K, et al. Selection of rice restorer lines with salinity tolerance through salt solution irrigation over whole growth stage under field conditions. Chinese Journal of Rice Science, 2012, 26(1): 49-54. |
| 潘晓飚, 黄善军, 陈凯, 等. 大田全生育期盐水灌溉胁迫筛选水稻耐盐恢复系. 中国水稻科学, 2012, 26(1): 49-54. | |
| 13 | Yang L S, Li G P. Study on effects of NaCl stress on tuber germination and seedling growth of Cyperus esculentus. Resource Development & Market, 2014, 30(7): 771-774. |
| 杨鹭生, 李国平. NaCl胁迫对油莎豆块茎萌发与幼苗生长的影响. 资源开发与市场, 2014, 30(7): 771-774. | |
| 14 | Tang R, Liang P X, Guo C L, et al. Effect of saline-alkali stress on growth and physiological characters of Cyperus esculentus L. seedlings. Journal of Zhejiang Agricultural Sciences, 2022, 63(3): 528-533. |
| 唐榕, 梁培鑫, 郭晨荔, 等. 盐碱胁迫对油莎豆幼苗生长和生理性状的影响. 浙江农业科学, 2022, 63(3): 528-533. | |
| 15 | Wang Y Z, Ding G D, Cui X R, et al. Effects of saline-alkali stress on the growth and photosynthetic characteristics of Cyperus esculentus and the responses of protective enzymes. Journal of Arid Land Resources and Environment, 2022, 36(5): 146-152. |
| 王艺臻, 丁国栋, 崔欣然, 等. 盐碱复合胁迫对油沙豆生长和光合特性的影响. 干旱区资源与环境, 2022, 36(5): 146-152. | |
| 16 | Ma X Y, Huang C B, Zeng F J, et al. To simulate the growth and physiological responses of Cyperus esculentus seedlings to salt stress in sandy soil. Arid Zone Research, 2022, 39(6): 1862-1874. |
| 马兴羽, 黄彩变, 曾凡江, 等. 沙地盐胁迫对油莎豆幼苗生理生长影响的模拟研究. 干旱区研究, 2022, 39(6): 1862-1874. | |
| 17 | Huang S W, Gao W, Tang J W, et al. Total salt content and ion composition in tillage layer of soils in the main vegetable production regions of China. Journal of Plant Nutrition and Fertilizers, 2016, 22(4): 965-977. |
| 黄绍文, 高伟, 唐继伟, 等. 我国主要菜区耕层土壤盐分总量及离子组成. 植物营养与肥料学报, 2016, 22(4): 965-977. | |
| 18 | Xu H Y, Zhao Y, Ruan Q, et al. Resistance of quinoa seedlings under different salt-alkali stress levels. Acta Prataculturae Sinica, 2023, 32(1): 122-130. |
| 许浩宇, 赵颖, 阮倩, 等. 不同混合盐碱下藜麦幼苗的抗性研究. 草业学报, 2023, 32(1): 122-130. | |
| 19 | Gao J F. Experimental guidance for plant physiology. Beijing: Higher Education Press, 2006: 195-197, 258. |
| 高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006: 195-197, 258. | |
| 20 | Kumari G J, Reddy A M, Naik S T, et al. Jasmonic acid induced changes in protein pattern, antioxidative enzyme activities and peroxidase isozymes in peanut seedlings. Biologia Plantarum, 2006, 50: 219-226. |
| 21 | Chen L, Zhang X L, Gao Z, et al. Effect of lanthanum nitrate spraying on osmotic regulating substance accumulation in navel orange leaves. Chinese Agricultural Science Bulletin, 2021, 37(29): 114-119. |
| 陈璐, 张小丽, 高柱, 等. 喷施硝酸镧对脐橙叶片渗透调节物质的影响. 中国农学通报, 2021, 37(29): 114-119. | |
| 22 | Li H S. Principles and techniques of plant physiology and biochemical experiments. Beijing: Higher Education Press, 2000: 195-197, 258. |
| 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000: 195-197, 258. | |
| 23 | Wang J H, Wang L L, Wu Y M, et al. Measure of the amount of betaine in fodder beet by colorimetry. China Beet & Sugar, 2008(1): 5-7, 28. |
| 王金贺, 王丽丽, 吴玉梅, 等. 比色法测定饲料甜菜中甜菜碱含量. 中国甜菜糖业, 2008(1): 5-7, 28. | |
| 24 | Wang R, Shi X M, Zhang Y X, et al. Relationships between salt tolerance and ion absorption, photosynthetic characteristics of different grape rootstocks under NaCl stress. Agricultural Research in the Arid Areas, 2023, 41(3): 114-126. |
| 王瑞, 史晓敏, 张艳霞, 等. NaCl胁迫下不同葡萄砧木耐盐性与其离子吸收、光合特性的关系. 干旱地区农业研究, 2023, 41(3): 114-126. | |
| 25 | Yang F R, Liu W Y, Huang J, et al. Physiological responses of different quinoa varieties to salt stress and evaluation of salt tolerance. Acta Prataculturae Sinica, 2017, 26(12): 77-88. |
| 杨发荣, 刘文瑜, 黄杰, 等. 不同藜麦品种对盐胁迫的生理响应及耐盐性评价. 草业学报, 2017, 26(12): 77-88. | |
| 26 | Vicente O, Boscaiu M, Naranjo M Á, et al. Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae). Journal of Arid Environments, 2004, 58(4): 463-481. |
| 27 | Wang J W, Zhao C Z, Zhao L C, et al. Response of root morphology and biomass of Phragmites australis to soil salinity in inland salt marsh. Acta Ecologica Sinica, 2018, 38(13): 4843-4851. |
| 王继伟, 赵成章, 赵连春, 等. 内陆盐沼芦苇根系形态及生物量分配对土壤盐分因子的响应. 生态学报, 2018, 38(13): 4843-4851. | |
| 28 | Liang D, Yang Y J, Geng B, et al. Identification of salt tolerance and physiological characteristics of new germplasm of distant hybridization of cotton. Acta Agriculturae Boreali-Sinica, 2024, 39(1): 95-103. |
| 梁栋, 杨于杰, 耿彪, 等. 棉花远缘杂交新种质耐盐性鉴定及生理特性分析. 华北农学报, 2024, 39(1): 95-103. | |
| 29 | Zhang L L, Yu M H, Ding G D, et al. Effects of salt and alkali stress on the growth and physiological characteristics of Cyperus esculentus. Science of Soil and Water Conservation, 2022, 20(2): 65-71. |
| 张琳琳, 于明含, 丁国栋, 等. 盐碱胁迫对油沙豆生长和生理特性的影响. 中国水土保持科学, 2022, 20(2): 65-71. | |
| 30 | Li H Y, Liao F Z, Liu J C, et al. Effects of salt stress on physiological characteristics and photosynthetic fluorescence parameters of sweet cherry rootstocks. Acta Botanica Boreali-Occidentalia Sinica, 2023, 43(1): 127-135. |
| 李焕勇, 廖方舟, 刘景超, 等. 盐胁迫对甜樱桃砧木生理特性及光合荧光参数的影响. 西北植物学报, 2023, 43(1): 127-135. | |
| 31 | Tommasino E, Griffa S, Grunberg K, et al. Malondialdehyde content as a potential biochemical indicator of tolerant Cenchrus ciliaris L. genotypes under heat stress treatment. Grass and Forage Science, 2012, 67(3): 456-459. |
| 32 | Xu S N, Li Y, Chen Z L, et al. Physiological integration of antioxidant enzymes and malondialdehyde in connected and disconnected Zoysia japonica clonal ramet under nutrient heterogeneity. Pratacultural Science, 2018, 35(2): 341-347. |
| 徐苏男, 李悦, 陈忠林, 等. 养分异质条件下连接和断开结缕草克隆分株抗氧化酶及丙二醛的生理整合. 草业科学, 2018, 35(2): 341-347. | |
| 33 | Zhu T Q, Lu Z Y, Hu S Y, et al. Effects of salt stress on growth and physiological characteristics of two tall fescue cultivars. Acta Agrestia Sinica, 2022, 30(8): 2082-2088. |
| 朱天奇, 鲁泽宇, 胡桑源, 等. 盐胁迫对两个高羊茅品种幼苗生长及生理特性的影响. 草地学报, 2022, 30(8): 2082-2088. | |
| 34 | Yuan H, Zhang X H, Han X Q, et al. Effects of salt and alkali stresses on biomass and physiological characteristics of four Phleum pratense at seedling stage. Acta Agrestia Sinica, 2024, 32(4): 1184-1193. |
| 袁惠, 张鲜花, 韩禧卿, 等. 盐、碱胁迫对4份梯牧草苗期生物量及生理特性的影响. 草地学报, 2024, 32(4): 1184-1193. | |
| 35 | Zhang J L, Li H R, Guo S Y, et al. Research advances in higher plant adaptation to salt stress. Acta Prataculturae Sinica, 2015, 24(12): 220-236. |
| 张金林, 李惠茹, 郭姝媛, 等. 高等植物适应盐逆境研究进展. 草业学报, 2015, 24(12): 220-236. | |
| 36 | Guo W T, Wang G H, Gou Q Q. Effects of sodium salt stress on seed germination and seedling growth of three Chenopodiaceae annuals. Acta Prataculturae Sinica, 2023, 32(3): 128-141. |
| 郭文婷, 王国华, 缑倩倩. 钠盐胁迫对藜科一年生草本植物种子萌发和幼苗生长的影响. 草业学报, 2023, 32(3): 128-141. | |
| 37 | Zhang Y Y, Li X Y, Wang B, et al. Effects of salt stress on water use efficiency and osmotic adjustment of seedlings of different triticale strains. Acta Prataculturae Sinica, 2024, 33(4): 87-98. |
| 张译尹, 李雪颖, 王斌, 等. 盐胁迫对不同种质小黑麦幼苗水分利用效率和渗透调节的影响. 草业学报, 2024, 33(4): 87-98. | |
| 38 | Gutterman Y. Seed germination in desert plants. New York: Springer Science & Business Media, 2012. |
| 39 | Cui X Y, Liu Z Y, Hu Y J, et al. Comparison of osmoregulatory substance contents and antioxidase activity in leaves of Leymus chinensis in different salinized grassland. Chinese Journal of Grassland, 2012, 34(5): 40-46. |
| 崔喜艳, 刘忠野, 胡勇军, 等. 不同盐碱草地羊草叶片渗透调节物质含量和抗氧化酶活性的比较. 中国草地学报, 2012, 34(5): 40-46. | |
| 40 | Liang P X, Tang R, Guo R, et al. Effect of mixed salt-alkaline stress on growth and physiological characteristics in Cyperus esculentus L. Journal of Arid Land Resources and Environment, 2022, 36(10): 185-192. |
| 梁培鑫, 唐榕, 郭睿, 等. 混合盐碱胁迫对油莎豆生长及生理性状的影响. 干旱区资源与环境. 2022, 36(10): 185-192. | |
| 41 | Liu A R, Zhang Y B, Zhong Z H, et al. Effects of salt stress on the growth and osmotica accumulation of Coleus blumei. Acta Prataculturae Sinica, 2013, 22(2): 211-218. |
| 刘爱荣, 张远兵, 钟泽华, 等. 盐胁迫对彩叶草生长和渗透调节物质积累的影响. 草业学报, 2013, 22(2): 211-218. | |
| 42 | Rajappa S, Krishnamurthy P, Huang H, et al. The translocation of a chloride channel from the Golgi to the plasma membrane helps plants adapt to salt stress. Nature Communications, 2024, 15(1): 3978. |
| 43 | Hou W J, Ma D M, Zhang L, et al. Modulation of salt tolerance in Echinochloa frumentacea by foliar spraying of epibrassinolide. Acta Botanica Boreali-Occidentalia Sinica, 2024, 44(4): 517-528. |
| 侯汶君, 麻冬梅, 张玲, 等. 叶面喷施表油菜素内酯对湖南稷子耐盐性的调控作用. 西北植物学报, 2024, 44(4): 517-528. | |
| 44 | Li Y X, Wang L, Wang W, et al. Salt tolerance evaluation of sunflower germplasm resources. Journal of Plant Genetic Resources, 2024, 25(9): 1480-1492. |
| 李玉骁, 汪磊, 汪魏, 等. 向日葵种质资源的耐盐性评价. 植物遗传资源学报, 2024, 25(9): 1480-1492. |
| [1] | 马婷, 陈奋奇, 王勇, 哈雪, 李亚君, 马晖玲. NaCl胁迫下鹰嘴紫云英根系基因差异表达及相关通路分析[J]. 草业学报, 2025, 34(4): 104-123. |
| [2] | 王小风, 马步东, 黄海霞, 罗永忠, 齐建伟, 邓卓. 干旱胁迫及复水对裸果木幼苗生理特性的影响[J]. 草业学报, 2025, 34(4): 93-103. |
| [3] | 王梦琦, 王菲, 赵琬璐, 刘彦奇, 崔灿, 严俊鑫. 不同浓度硅、钙对留兰香幼苗生长和生理特性的影响[J]. 草业学报, 2025, 34(3): 154-163. |
| [4] | 蔡文祺, 李淑霞, 王晓彤, 宋文学, 麻旭霞, 马小梅, 李小红, 代昕瑶. 外源褪黑素与乙烯交互对盐胁迫下紫花苜蓿幼苗生长和生理特性的影响[J]. 草业学报, 2025, 34(1): 80-93. |
| [5] | 王晓彤, 李小红, 麻旭霞, 蔡文祺, 冯学丽, 李淑霞. 紫花苜蓿FBA基因家族成员的鉴定与分析[J]. 草业学报, 2024, 33(9): 81-93. |
| [6] | 张婷婷, 刘宇乐, 陈红, 许凌欣, 陈祥伟, 王恩姮, 严俊鑫. 不同外源物质对盐、碱及干旱胁迫下草木樨种子萌发、幼苗生长及生理的影响[J]. 草业学报, 2024, 33(8): 122-132. |
| [7] | 李伟, 王涵, 王常清, 潘玉鑫, 侯建荣, 康文娟, 尚素琴, 师尚礼. 苜蓿生卡螨种群参数对温度的响应[J]. 草业学报, 2024, 33(8): 181-189. |
| [8] | 张震欢, 姚立蓉, 汪军成, 司二静, 张宏, 杨轲, 马小乐, 孟亚雄, 王化俊, 李葆春. 盐生草AKR基因家族成员的鉴定及根系盐胁迫响应基因HgAKR42639的耐盐分析[J]. 草业学报, 2024, 33(7): 68-83. |
| [9] | 王萌, 鲁雪莉, 王菊英, 张梦超, 宋奕汝, 孟晨, 张莉, 徐宗昌. 小黑麦种质萌发期苗期耐盐资源评价与筛选[J]. 草业学报, 2024, 33(5): 58-68. |
| [10] | 张译尹, 李雪颖, 王斌, 宋珂辰, 兰剑, 胡海英. 盐胁迫对不同种质小黑麦幼苗水分利用效率和渗透调节的影响[J]. 草业学报, 2024, 33(4): 87-98. |
| [11] | 曹秭琦, 赵小庆, 张向前, 伍建辉, 张帆, 刘丹, 路战远, 任永峰. 施钾水平对北方风沙区油莎豆生长、块茎品质及产量的影响[J]. 草业学报, 2024, 33(12): 73-83. |
| [12] | 史先飞, 高宇, 黄旭升, 周雅莉, 蔡桂萍, 李昕儒, 李润植, 薛金爱. 油莎豆CeWRKY转录因子响应非生物胁迫的功能表征[J]. 草业学报, 2023, 32(8): 186-201. |
| [13] | 李超男, 王磊, 周继强, 赵长兴, 谢晓蓉, 刘金荣. 微塑料对紫花苜蓿生长及生理特性的影响[J]. 草业学报, 2023, 32(5): 138-146. |
| [14] | 郭文婷, 王国华, 缑倩倩. 钠盐胁迫对藜科一年生草本植物种子萌发和幼苗生长的影响[J]. 草业学报, 2023, 32(3): 128-141. |
| [15] | 孙守江, 唐艺涵, 马馼, 李曼莉, 毛培胜. 紫花苜蓿种子吸胀期胚根线粒体AsA-GSH循环对低温胁迫的响应[J]. 草业学报, 2023, 32(3): 152-162. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||