草业学报 ›› 2025, Vol. 34 ›› Issue (4): 104-123.DOI: 10.11686/cyxb2024185
• 研究论文 • 上一篇
收稿日期:2024-05-20
修回日期:2024-06-25
出版日期:2025-04-20
发布日期:2025-02-19
通讯作者:
马晖玲
作者简介:Corresponding author. E-mail: mahl@gsau.edu.cn基金资助:
Ting MA(
), Fen-qi CHEN, Yong WANG, Xue HA, Ya-jun LI, Hui-ling MA(
)
Received:2024-05-20
Revised:2024-06-25
Online:2025-04-20
Published:2025-02-19
Contact:
Hui-ling MA
摘要:
土壤盐渍化严重影响植物的生长和产量,限制农业生态经济的发展。鹰嘴紫云英作为优良生态草种、高效绿肥作物和优质蛋白饲草,探究其对NaCl胁迫适应性的分子机制,对提高鹰嘴紫云英的耐盐性,促进其在盐渍土中的栽培具有重要意义。本研究对NaCl胁迫下不同时间点(0、12、48和72 h)的鹰嘴紫云英根系进行转录组学分析,以探究鹰嘴紫云英对NaCl胁迫的响应机制。结果表明,与0 h相比,NaCl胁迫处理12、48和72 h后鹰嘴紫云英根系中分别有46051、45653和42869个差异表达基因,包括上调基因8027、10053和11042个,下调基因38024、35600和31827个。GO富集和KEGG富集显示,鹰嘴紫云英根系主要通过氧化还原酶活性、类黄酮生物合成和苯丙素生物合成等通路来响应NaCl胁迫。通过趋势分析,发现苯丙素生物合成和类黄酮生物合成通路的差异基因在胁迫处理48 h上调表达或恢复到初始量。C2H2、C3H、NAC、MYB、WRKY和bZIP等转录因子在胁迫处理不同时间点下均有表达,可能与鹰嘴紫云英的耐盐性密切相关。本研究结果为进一步探究鹰嘴紫云英耐盐机制提供了基础数据,也为后续提高鹰嘴紫云英的耐盐性提供了理论支撑。
马婷, 陈奋奇, 王勇, 哈雪, 李亚君, 马晖玲. NaCl胁迫下鹰嘴紫云英根系基因差异表达及相关通路分析[J]. 草业学报, 2025, 34(4): 104-123.
Ting MA, Fen-qi CHEN, Yong WANG, Xue HA, Ya-jun LI, Hui-ling MA. Differentially expressed genes and related pathways in root systems of Astragalus cicer under NaCl stress[J]. Acta Prataculturae Sinica, 2025, 34(4): 104-123.
| 名称Name | 描述Description | 上游引物Forward primer | 下游引物Reverse primer |
|---|---|---|---|
| CHI | 查尔酮异构酶Chalcone isomerase | TGCACCACCGAGGAAATAGG | GGGTATGGCAGCAACAATGG |
| CHR1 | 查尔酮还原酶1 Chalcone reductase 1 | AGCTCTTGGGAACAAACGTG | AGCTAGCAGGGGACCAAATG |
| F3'H | 类黄酮3'-羟化酶Flavonoid 3'-hydroxylase | CGTCCAGCACCAAAGGGTAT | GCCATAGCTCGTGACCCAAA |
| CHS | 查尔酮合成酶Chalcone synthase | CCAGGTGGTCCTGCAATTCT | GAGGACACAAGCACTCGACA |
| CHS1A-like | 查尔酮合成酶1A-like Chalcone synthase 1A-like | TGTCACACATGCGTCTGAACT | CCTGCCACTGTCTTGGCAAT |
| CYP450 | 细胞色素P450 Cytochrome P450 | ACGCATTTTGCGCCAATGAT | TGGCCACCCAAGTTCTACAC |
| C4H | 反肉桂酸4单加氧酶Trans-cinnamate 4-monooxygenase | TGCGCACACACACAAAAGAG | CTCCACATGAGGGACCAACC |
| PYL | 脱落酸感受器Abscisic acid receptor | TGATGATGAACGCCACGTCA | TCCATGCGGAACATCAACCA |
| bZIP | bZIP转录因子bZIP transcription factor | TATGGTCCTAGTTTGGCGGC | ACAACACCAGCTCTCACCAA |
| Actin | 肌动蛋白Actin | TGTTCCCTGGCATTGCTGAT | CTTTCTCTCGGGTGGTGCAA |
表1 鹰嘴紫云英根系差异基因的引物序列
Table 1 Sequence of primer for differentially expressed genes in A. cicer roots (5′-3′)
| 名称Name | 描述Description | 上游引物Forward primer | 下游引物Reverse primer |
|---|---|---|---|
| CHI | 查尔酮异构酶Chalcone isomerase | TGCACCACCGAGGAAATAGG | GGGTATGGCAGCAACAATGG |
| CHR1 | 查尔酮还原酶1 Chalcone reductase 1 | AGCTCTTGGGAACAAACGTG | AGCTAGCAGGGGACCAAATG |
| F3'H | 类黄酮3'-羟化酶Flavonoid 3'-hydroxylase | CGTCCAGCACCAAAGGGTAT | GCCATAGCTCGTGACCCAAA |
| CHS | 查尔酮合成酶Chalcone synthase | CCAGGTGGTCCTGCAATTCT | GAGGACACAAGCACTCGACA |
| CHS1A-like | 查尔酮合成酶1A-like Chalcone synthase 1A-like | TGTCACACATGCGTCTGAACT | CCTGCCACTGTCTTGGCAAT |
| CYP450 | 细胞色素P450 Cytochrome P450 | ACGCATTTTGCGCCAATGAT | TGGCCACCCAAGTTCTACAC |
| C4H | 反肉桂酸4单加氧酶Trans-cinnamate 4-monooxygenase | TGCGCACACACACAAAAGAG | CTCCACATGAGGGACCAACC |
| PYL | 脱落酸感受器Abscisic acid receptor | TGATGATGAACGCCACGTCA | TCCATGCGGAACATCAACCA |
| bZIP | bZIP转录因子bZIP transcription factor | TATGGTCCTAGTTTGGCGGC | ACAACACCAGCTCTCACCAA |
| Actin | 肌动蛋白Actin | TGTTCCCTGGCATTGCTGAT | CTTTCTCTCGGGTGGTGCAA |
样本 Sample | 原始读数 Raw reads | 原始数据量 Raw bases (Gb) | 干净读数 Clean reads | 干净数据量 Clean bases (Gb) | Q30 (%) | GC (%) | 总对比率 Total mapped (%) |
|---|---|---|---|---|---|---|---|
| r_0_1 | 25608576 | 7.68 | 24842810 | 7.45 | 95.58 | 42.49 | 70.68 |
| r_0_2 | 22654911 | 6.80 | 22160067 | 6.65 | 95.77 | 42.37 | 71.75 |
| r_0_3 | 23401444 | 7.02 | 22736208 | 6.82 | 95.45 | 42.27 | 70.54 |
| r_12_1 | 24325553 | 7.30 | 23233562 | 6.97 | 95.25 | 42.27 | 69.73 |
| r_12_2 | 23471096 | 7.04 | 22839301 | 6.85 | 95.95 | 40.19 | 65.84 |
| r_12_3 | 21972596 | 6.59 | 21124167 | 6.34 | 95.28 | 42.35 | 70.40 |
| r_48_1 | 22903659 | 6.87 | 21974443 | 6.59 | 95.51 | 41.66 | 69.90 |
| r_48_2 | 23716748 | 7.12 | 22832712 | 6.85 | 95.50 | 41.74 | 70.40 |
| r_48_3 | 23380813 | 7.01 | 22673020 | 6.80 | 95.88 | 41.64 | 70.86 |
| r_72_1 | 23445027 | 7.03 | 22237254 | 6.67 | 95.73 | 41.95 | 70.89 |
| r_72_2 | 23476556 | 7.04 | 22400966 | 6.72 | 95.93 | 41.81 | 71.57 |
| r_72_3 | 27057092 | 8.12 | 26181124 | 7.85 | 94.97 | 41.80 | 67.48 |
表2 各样品测序数据质控统计
Table 2 Quality control statistics of sequencing data for each sample
样本 Sample | 原始读数 Raw reads | 原始数据量 Raw bases (Gb) | 干净读数 Clean reads | 干净数据量 Clean bases (Gb) | Q30 (%) | GC (%) | 总对比率 Total mapped (%) |
|---|---|---|---|---|---|---|---|
| r_0_1 | 25608576 | 7.68 | 24842810 | 7.45 | 95.58 | 42.49 | 70.68 |
| r_0_2 | 22654911 | 6.80 | 22160067 | 6.65 | 95.77 | 42.37 | 71.75 |
| r_0_3 | 23401444 | 7.02 | 22736208 | 6.82 | 95.45 | 42.27 | 70.54 |
| r_12_1 | 24325553 | 7.30 | 23233562 | 6.97 | 95.25 | 42.27 | 69.73 |
| r_12_2 | 23471096 | 7.04 | 22839301 | 6.85 | 95.95 | 40.19 | 65.84 |
| r_12_3 | 21972596 | 6.59 | 21124167 | 6.34 | 95.28 | 42.35 | 70.40 |
| r_48_1 | 22903659 | 6.87 | 21974443 | 6.59 | 95.51 | 41.66 | 69.90 |
| r_48_2 | 23716748 | 7.12 | 22832712 | 6.85 | 95.50 | 41.74 | 70.40 |
| r_48_3 | 23380813 | 7.01 | 22673020 | 6.80 | 95.88 | 41.64 | 70.86 |
| r_72_1 | 23445027 | 7.03 | 22237254 | 6.67 | 95.73 | 41.95 | 70.89 |
| r_72_2 | 23476556 | 7.04 | 22400966 | 6.72 | 95.93 | 41.81 | 71.57 |
| r_72_3 | 27057092 | 8.12 | 26181124 | 7.85 | 94.97 | 41.80 | 67.48 |
| 项目Item | r_12 vs r_0 | r_48 vs r_0 | r_72 vs r_0 | r_48 vs r_12 | r_72 vs r_12 | r_72 vs r_48 |
|---|---|---|---|---|---|---|
| 上调 Up-regulated | 8027 | 10053 | 11042 | 11821 | 7633 | 4653 |
| 下调 Down-regulated | 38024 | 35600 | 31827 | 5515 | 3768 | 4345 |
| 总数 Total | 46051 | 45653 | 42869 | 17336 | 11401 | 8998 |
表3 6个比较组的差异表达基因数量
Table 3 Number of differentially expressed genes in six comparative groups
| 项目Item | r_12 vs r_0 | r_48 vs r_0 | r_72 vs r_0 | r_48 vs r_12 | r_72 vs r_12 | r_72 vs r_48 |
|---|---|---|---|---|---|---|
| 上调 Up-regulated | 8027 | 10053 | 11042 | 11821 | 7633 | 4653 |
| 下调 Down-regulated | 38024 | 35600 | 31827 | 5515 | 3768 | 4345 |
| 总数 Total | 46051 | 45653 | 42869 | 17336 | 11401 | 8998 |
图2 6个比较组差异表达基因的韦恩分析r_0、r_12、r_48 和 r_72 分别代表鹰嘴紫云英NaCl胁迫处理0、12、48和72 h的4个时间点。下同。r_0, r_12, r_48 and r_72 represent four time points of A. cicer under NaCl stress at 0, 12, 48 and 72 hours, respectively. The same below.
Fig.2 Venn diagram of differentially expressed genes in six comparative groups
| GO条目GO term | 描述Description |
|---|---|
| GO:0003824 | 催化活性 Catalytic activity |
| GO:0043169 | 阳离子结合 Cation binding |
| GO:0046872 | 金属离子结合 Metal ion binding |
| GO:0005515 | 蛋白结合 Protein binding |
| GO:0043167 | 离子结合 Ion binding |
| GO:0016740 | 转移酶活性 Transferase activity |
| GO:0016491 | 氧化还原酶活性 Oxidoreductase activity |
| GO:00048037 | 辅因子结合 Cofactor binding |
| GO:00050662 | 辅酶结合 Coenzyme binding |
| GO:0006629 | 脂质代谢过程 Lipid metabolic process |
| GO:0016301 | 激酶活性 Kinase activity |
| GO:00166787 | 水解酶活性 Hydrolase activity |
| GO:008233 | 肽酶活性 Peptidase activity |
| GO:0008152 | 代谢过程 Metabolic process |
| GO:00043412 | 大分子修饰 Macromolecule modification |
| GO:0005198 | 结构分子活性 Structural molecule activity |
| GO:0003735 | 核糖体的结构成分Structural constituent of ribosome |
| GO:0022613 | 核糖核蛋白复合物生物发生Ribonucleoprotein complex biogenesis |
| GO:0042254 | 核糖体生物发生Ribosome biogenesis |
| GO:070011 | 肽酶活性,作用于L-氨基酸肽Peptidase activity, acting on L-amino acid peptides |
| GO:1901564 | 有机氮化合物代谢过程Organonitrogen compound metabolic process |
| GO:0019538 | 蛋白质代谢过程Protein metabolic process |
| GO:0071704 | 有机物代谢过程Organic substance metabolic process |
| GO:0005525 | GTP结合GTP binding |
| GO:00009058 | 生物合成过程Biosynthetic process |
| GO:1901576 | 有机物生物合成过程Organic substance biosynthetic process |
| GO:00020037 | 血红素结合Heme binding |
| GO:0046906 | 四吡咯结合Tetrapyrrole binding |
| GO:0005975 | 碳水化合物代谢过程Carbohydrate metabolic process |
| GO:0016684 | 氧化还原酶活性,作用于过氧化物作为受体Oxidoreductase activity, acting on peroxide as acceptor |
| GO:0004601 | 过氧化物酶活性Peroxidase activity |
| GO:0071555 | 细胞壁组织Cell wall organization |
| GO:0016798 | 水解酶活性,作用于糖基键Hydrolase activity, acting on glycosyl bonds |
| GO:0071554 | 细胞壁组织或生物发生Cell wall organization or biogenesis |
| GO:00045229 | 外部封装结构组织External encapsulating structure organization |
| GO:0004553 | 水解酶活性,水解O-糖基化合物Hydrolase activity, hydrolyzing O-glycosyl compounds |
| GO:0006073 | 细胞葡聚糖代谢过程Cellular glucan metabolic process |
| GO:00044042 | 葡聚糖代谢过程Glucan metabolic process |
| GO:0005199 | 细胞壁的结构成分Structural constituent of cell wall |
| GO:00009664 | 植物型细胞壁组织Plant-type cell wall organization |
| GO:0071669 | 植物型细胞壁组织或生物发生Plant-type cell wall organization or biogenesis |
| GO:00030312 | 外部封装结构External encapsulating structure |
| GO:0005618 | 细胞壁Cell wall |
| GO:0042546 | 细胞壁生物发生Cell wall biogenesis |
| GO:00006032 | 几丁质分解代谢过程Chitin catabolic process |
| GO:0046348 | 氨基糖分解代谢过程Amino sugar catabolic process |
| GO:004264 | 细胞多糖代谢过程Cellular polysaccharide metabolic process |
| GO:004262 | 细胞碳水化合物代谢过程Cellular carbohydrate metabolic process |
| GO:0005976 | 多糖代谢过程Polysaccharide metabolic process |
| GO:00044711 | 单体生物合成过程Single-organism biosynthetic process |
| GO:0005982 | 淀粉代谢过程Starch metabolic process |
| GO:0005985 | 蔗糖代谢过程Sucrose metabolic process |
| GO:0005984 | 二糖代谢过程Disaccharide metabolic process |
| GO:00044723 | 单体碳水化合物代谢过程Single-organism carbohydrate metabolic process |
表4 GO条目注释信息
Table 4 Annotational information of the GO term
| GO条目GO term | 描述Description |
|---|---|
| GO:0003824 | 催化活性 Catalytic activity |
| GO:0043169 | 阳离子结合 Cation binding |
| GO:0046872 | 金属离子结合 Metal ion binding |
| GO:0005515 | 蛋白结合 Protein binding |
| GO:0043167 | 离子结合 Ion binding |
| GO:0016740 | 转移酶活性 Transferase activity |
| GO:0016491 | 氧化还原酶活性 Oxidoreductase activity |
| GO:00048037 | 辅因子结合 Cofactor binding |
| GO:00050662 | 辅酶结合 Coenzyme binding |
| GO:0006629 | 脂质代谢过程 Lipid metabolic process |
| GO:0016301 | 激酶活性 Kinase activity |
| GO:00166787 | 水解酶活性 Hydrolase activity |
| GO:008233 | 肽酶活性 Peptidase activity |
| GO:0008152 | 代谢过程 Metabolic process |
| GO:00043412 | 大分子修饰 Macromolecule modification |
| GO:0005198 | 结构分子活性 Structural molecule activity |
| GO:0003735 | 核糖体的结构成分Structural constituent of ribosome |
| GO:0022613 | 核糖核蛋白复合物生物发生Ribonucleoprotein complex biogenesis |
| GO:0042254 | 核糖体生物发生Ribosome biogenesis |
| GO:070011 | 肽酶活性,作用于L-氨基酸肽Peptidase activity, acting on L-amino acid peptides |
| GO:1901564 | 有机氮化合物代谢过程Organonitrogen compound metabolic process |
| GO:0019538 | 蛋白质代谢过程Protein metabolic process |
| GO:0071704 | 有机物代谢过程Organic substance metabolic process |
| GO:0005525 | GTP结合GTP binding |
| GO:00009058 | 生物合成过程Biosynthetic process |
| GO:1901576 | 有机物生物合成过程Organic substance biosynthetic process |
| GO:00020037 | 血红素结合Heme binding |
| GO:0046906 | 四吡咯结合Tetrapyrrole binding |
| GO:0005975 | 碳水化合物代谢过程Carbohydrate metabolic process |
| GO:0016684 | 氧化还原酶活性,作用于过氧化物作为受体Oxidoreductase activity, acting on peroxide as acceptor |
| GO:0004601 | 过氧化物酶活性Peroxidase activity |
| GO:0071555 | 细胞壁组织Cell wall organization |
| GO:0016798 | 水解酶活性,作用于糖基键Hydrolase activity, acting on glycosyl bonds |
| GO:0071554 | 细胞壁组织或生物发生Cell wall organization or biogenesis |
| GO:00045229 | 外部封装结构组织External encapsulating structure organization |
| GO:0004553 | 水解酶活性,水解O-糖基化合物Hydrolase activity, hydrolyzing O-glycosyl compounds |
| GO:0006073 | 细胞葡聚糖代谢过程Cellular glucan metabolic process |
| GO:00044042 | 葡聚糖代谢过程Glucan metabolic process |
| GO:0005199 | 细胞壁的结构成分Structural constituent of cell wall |
| GO:00009664 | 植物型细胞壁组织Plant-type cell wall organization |
| GO:0071669 | 植物型细胞壁组织或生物发生Plant-type cell wall organization or biogenesis |
| GO:00030312 | 外部封装结构External encapsulating structure |
| GO:0005618 | 细胞壁Cell wall |
| GO:0042546 | 细胞壁生物发生Cell wall biogenesis |
| GO:00006032 | 几丁质分解代谢过程Chitin catabolic process |
| GO:0046348 | 氨基糖分解代谢过程Amino sugar catabolic process |
| GO:004264 | 细胞多糖代谢过程Cellular polysaccharide metabolic process |
| GO:004262 | 细胞碳水化合物代谢过程Cellular carbohydrate metabolic process |
| GO:0005976 | 多糖代谢过程Polysaccharide metabolic process |
| GO:00044711 | 单体生物合成过程Single-organism biosynthetic process |
| GO:0005982 | 淀粉代谢过程Starch metabolic process |
| GO:0005985 | 蔗糖代谢过程Sucrose metabolic process |
| GO:0005984 | 二糖代谢过程Disaccharide metabolic process |
| GO:00044723 | 单体碳水化合物代谢过程Single-organism carbohydrate metabolic process |
图3 6个比较组的GO富集分析A: r_12 vs r_0; B: r_48 vs r_0; C: r_72 vs r_0; D: r_48 vs r_12; E: r_72 vs r_12; F: r_72 vs r_48; 下同The same below; 富集圆图中从外到内有4个圆环,第1个圆环显示了富集条目There are four loops in the enrichment circle diagram from outside to inside, the first loop displays the enriched term; 第2个圆环显示了该条目中背景基因的数量和P值The second loop displays the amount and P-value of that term in the background genes; 第3个圆环显示富集到该条目差异基因的数量The third loop displays the number of differentially expressed genes enriched in that term; 第4个圆环显示每个条目的丰富因子值,背景辅助线的每个圆圈表示0.1 The fourth loop displays the rich factor value for each term, with each circle of the background auxiliary line indicating 0.1.
Fig.3 GO enrichment analysis in six comparative groups
通路 Pathway | r_12 vs r_0 | r_48 vs r_0 | r_72 vs r_0 | r_48 vs r_12 | r_72 vs r_12 | r_72 vs r_48 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
数目 Count | P值 P-value | 数目 Count | P值 P-value | 数目 Count | P值 P-value | 数目 Count | P值 P-value | 数目 Count | P值 P-value | 数目 Count | P值 P-value | |
| 谷胱甘肽代谢Glutathione metabolism | 226 | 0.017998 | 203 | 0.230062 | 185 | 0.601430 | 88 | 0.107723 | 80 | 8.11×10-5 | 43 | 0.999999 |
| 苯丙素生物合成Phenylpropanoid biosynthesis | 181 | 0.029187 | 130 | 0.999747 | 150 | 0.996604 | 122 | 5.14×10-9 | 77 | 3.15×10-7 | 69 | 7.50×10-5 |
| 类黄酮生物合成Flavonoid biosynthesis | 50 | 0.044437 | 19 | 0.998379 | 32 | 0.996604 | 40 | 4.03×10-7 | 26 | 2.46×10-5 | 9 | 0.514547 |
| 异黄酮生物合成Isoflavonoid biosynthesis | 28 | 0.043979 | 29 | 0.029884 | 26 | 0.078672 | 9 | 0.323606 | 5 | 0.517800 | 9 | 0.041910 |
| 氮代谢Nitrogen metabolism | 69 | 0.076543 | 72 | 0.039353 | 61 | 0.260467 | 39 | 0.001606 | 37 | 1.91×10-6 | 20 | 0.057638 |
| 核糖体Ribosome | 1144 | 0.759257 | 1395 | 3.56×10-9 | 1397 | 2.89×10-10 | 447 | 0.797177 | 386 | 2.73×10-6 | 270 | 0.697308 |
| 糖酵解/糖异生Glycolysis/gluconeogenesis | 253 | 0.810499 | 274 | 0.390901 | 261 | 0.602382 | 139 | 0.002737 | 73 | 0.366838 | 270 | 0.697308 |
| 过氧化物酶体Peroxisome | 223 | 0.581605 | 223 | 0.571524 | 207 | 0.837838 | 68 | 0.990070 | 36 | 0.999167 | 38 | 0.988140 |
| 淀粉和蔗糖代谢Starch and sucrose metabolism | 222 | 0.196406 | 185 | 0.916342 | 233 | 0.048074 | 160 | 9.97×10-13 | 101 | 2.30×10-8 | 103 | 9.56×10-11 |
| 植物激素信号传导Plant hormone signal transduction | 175 | 0.201220 | 125 | 0.996328 | 134 | 0.970479 | 90 | 0.002681 | 76 | 4.14×10-6 | 55 | 0.009351 |
| 戊糖和葡萄糖醛酸相互转化Pentose and glucuronate interconversions | 85 | 0.282619 | 70 | 0.813382 | 69 | 0.818722 | 58 | 4.37×10-5 | 41 | 8.50×10-5 | 44 | 1.42×10-6 |
| 苯丙氨酸代谢Phenylalanine metabolism | 77 | 0.293092 | 78 | 0.255123 | 75 | 0.329733 | 42 | 0.014276 | 20 | 0.395872 | 28 | 0.011094 |
| 玉米素生物合成Zeatin biosynthesis | 22 | 0.432711 | 15 | 0.891593 | 12 | 0.970132 | 16 | 0.016634 | 16 | 0.000350 | 3 | 0.862414 |
| 氧化磷酸化Oxidative phosphorylation | 297 | 0.992129 | 331 | 0.763437 | 323 | 0.822461 | 121 | 0.920165 | 75 | 0.945121 | 85 | 0.402692 |
表5 6个比较组差异表达基因的KEGG通路分析
Table 5 KEGG pathway analysis of six comparative groups of differentially expressed genes
通路 Pathway | r_12 vs r_0 | r_48 vs r_0 | r_72 vs r_0 | r_48 vs r_12 | r_72 vs r_12 | r_72 vs r_48 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
数目 Count | P值 P-value | 数目 Count | P值 P-value | 数目 Count | P值 P-value | 数目 Count | P值 P-value | 数目 Count | P值 P-value | 数目 Count | P值 P-value | |
| 谷胱甘肽代谢Glutathione metabolism | 226 | 0.017998 | 203 | 0.230062 | 185 | 0.601430 | 88 | 0.107723 | 80 | 8.11×10-5 | 43 | 0.999999 |
| 苯丙素生物合成Phenylpropanoid biosynthesis | 181 | 0.029187 | 130 | 0.999747 | 150 | 0.996604 | 122 | 5.14×10-9 | 77 | 3.15×10-7 | 69 | 7.50×10-5 |
| 类黄酮生物合成Flavonoid biosynthesis | 50 | 0.044437 | 19 | 0.998379 | 32 | 0.996604 | 40 | 4.03×10-7 | 26 | 2.46×10-5 | 9 | 0.514547 |
| 异黄酮生物合成Isoflavonoid biosynthesis | 28 | 0.043979 | 29 | 0.029884 | 26 | 0.078672 | 9 | 0.323606 | 5 | 0.517800 | 9 | 0.041910 |
| 氮代谢Nitrogen metabolism | 69 | 0.076543 | 72 | 0.039353 | 61 | 0.260467 | 39 | 0.001606 | 37 | 1.91×10-6 | 20 | 0.057638 |
| 核糖体Ribosome | 1144 | 0.759257 | 1395 | 3.56×10-9 | 1397 | 2.89×10-10 | 447 | 0.797177 | 386 | 2.73×10-6 | 270 | 0.697308 |
| 糖酵解/糖异生Glycolysis/gluconeogenesis | 253 | 0.810499 | 274 | 0.390901 | 261 | 0.602382 | 139 | 0.002737 | 73 | 0.366838 | 270 | 0.697308 |
| 过氧化物酶体Peroxisome | 223 | 0.581605 | 223 | 0.571524 | 207 | 0.837838 | 68 | 0.990070 | 36 | 0.999167 | 38 | 0.988140 |
| 淀粉和蔗糖代谢Starch and sucrose metabolism | 222 | 0.196406 | 185 | 0.916342 | 233 | 0.048074 | 160 | 9.97×10-13 | 101 | 2.30×10-8 | 103 | 9.56×10-11 |
| 植物激素信号传导Plant hormone signal transduction | 175 | 0.201220 | 125 | 0.996328 | 134 | 0.970479 | 90 | 0.002681 | 76 | 4.14×10-6 | 55 | 0.009351 |
| 戊糖和葡萄糖醛酸相互转化Pentose and glucuronate interconversions | 85 | 0.282619 | 70 | 0.813382 | 69 | 0.818722 | 58 | 4.37×10-5 | 41 | 8.50×10-5 | 44 | 1.42×10-6 |
| 苯丙氨酸代谢Phenylalanine metabolism | 77 | 0.293092 | 78 | 0.255123 | 75 | 0.329733 | 42 | 0.014276 | 20 | 0.395872 | 28 | 0.011094 |
| 玉米素生物合成Zeatin biosynthesis | 22 | 0.432711 | 15 | 0.891593 | 12 | 0.970132 | 16 | 0.016634 | 16 | 0.000350 | 3 | 0.862414 |
| 氧化磷酸化Oxidative phosphorylation | 297 | 0.992129 | 331 | 0.763437 | 323 | 0.822461 | 121 | 0.920165 | 75 | 0.945121 | 85 | 0.402692 |
图5 差异表达基因聚类和模式分析A:基于倍数变化的差异表达基因的聚类分析Clustering analysis of differentially expressed genes based on the fold change value; B:基于FPKM在4个时间点的基因表达模式分析Gene expression patterns analysis based on the FPKM at four time points; 左上角数字为文件名称,左下角数字为基因数目The number in the upper left corner represents the profile name, while the number in the lower left corner represents the number of genes.
Fig.5 Clustering and pattern analysis of differentially expressed genes
图6 显著富集Profiles的KEGG富集分析A、B和C: 显著富集Profile 2、0、8的KEGG富集分析KEGG enrichment analyses significantly enriched in Profile 2, 0, and 8, respectively.
Fig.6 Enrichment analysis of KEGG of significantly enriched profiles
图8 苯丙素生物合成通路中差异表达基因热图彩色圆圈显示了不同比较组中与苯丙素生物合成相关的关键基因的表达热图The colored circles show the heatmap of expression of key gene associated with phenylpropanoid biosynthesis in different comparison groups; PAL: 苯丙氨酸裂解酶Phenylalanine ammonia-lyase; C4H: 反肉桂酸4-单加氧酶Trans-cinnamate 4-monooxygenase; COMT: 咖啡酸3-氧甲基转移酶Caffeic acid 3-omethyltransferase; 4CL: 4-香豆酸辅酶A连接酶4-coumarate-CoA ligase; CCR:肉桂酰辅酶A还原酶Cinnamoyl-CoA reductase; HCT: 莽草酸羟基肉桂酰转移酶Shikimate O-hydroxycinnamoyltransferase; F5H: 阿魏酸-5-羟化酶Ferulate-5-hydroxylase; CSE: 咖啡酰莽草酸酯酶Caffeoyl shikimate esterase.
Fig.8 Heatmap of the differentially expressed genes within the phenylpropanoid biosynthesis pathway
图9 类黄酮生物合成通路中差异表达基因热图彩色圆圈显示了不同比较组中与类黄酮生物合成相关的关键基因的表达热图The colored circles show the heatmap of expression of key gene associated with flavonoid biosynthesis in different comparison groups; CHS: 查尔酮合酶Chalcone synthase;CHI: 查尔酮异构酶Chalcone isomerase; CHR: 查尔酮还原酶Chalcone reductase; FLS: 黄酮醇合成酶Flavonol synthase; HCT: 莽草酸羟基肉桂酰转移酶Shikimate O-hydroxycinnamoyltransferase; F3'5'H: 类黄酮3', 5'-羟化酶Flavonoid 3', 5'-hydroxylase.
Fig.9 Heatmap of the differentially expressed genes within the flavonoid biosynthesis pathway
| 1 | Fan C. Genetic mechanisms of salt stress responses in halophytes. Plant Signaling and Behavior, 2020, 15(1): e1704528. |
| 2 | Chele K H, Tinte M M, Piater L A, et al. Soil salinity, a serious environmental issue and plant responses: A metabolomics perspective. Molecular Diversity Preservation International, 2021, 11(11): 724. |
| 3 | Flowers T J, Colmer T D. Plant salt tolerance: adaptations in halophytes. Annals of Botany, 2015, 115(3): 327-331. |
| 4 | Liu J X, Zhang H L, Zou R S, et al. Research progress in Na+antiport and physiological growth mechanisms of different halophytes adapted to salt stress. Biotechnology Bulletin, 2023, 39(1): 59-71. |
| 刘佳欣, 张会龙, 邹荣松, 等. 不同类型盐生植物适应盐胁迫的生理生长机制及Na+逆向转运研究进展. 生物技术通报, 2023, 39(1): 59-71. | |
| 5 | Fu L, Liu J Z, Tao B X, et al. Adaptive mechanism of halophytes to saline soil environment: a review. Jiangsu Agricultural Sciences, 2021, 49(15): 32-39. |
| 付丽, 刘加珍, 陶宝先, 等. 盐生植物对盐渍土壤环境的适应机制研究综述. 江苏农业科学, 2021, 49(15): 32-39. | |
| 6 | Liang X Y, Li J F, Yang Y Q, et al. Designing salt stress-resilient crops: Current progress and future challenges. Journal of Integrative Plant Biology, 2024, 66(3): 303-329. |
| 7 | Chen C X, Shang X L, Sun M Y, et al. Comparative transcriptome analysis of two sweet sorghum genotypes with different salt tolerance abilities to reveal the mechanism of salt tolerance. International Journal of Molecular Sciences, 2022, 23(4): 2272-2281. |
| 8 | Li H Y, Chen X Q, Niu F J, et al. Time-course transcriptome analysis in wheat root in response to high salinity. Journal of Plant Genetic Resources, 2022, 23(2): 592-630. |
| 李红燕, 陈向前, 牛凤娟, 等. 小麦根系响应高盐胁迫的时序转录组分析. 植物遗传资源学报, 2022, 23(2): 592-630. | |
| 9 | Deng C H, Zhang Z B, Yan G R, et al. Salt-responsive transcriptome analysis of triticale reveals candidate genes involved in the key metabolic pathway in response to salt stress. Scientific Reports, 2020, 10(1): 20669. |
| 10 | Frosi G, Ferreira-Neto J R C, Bezerra-Neto J P, et al. Transcriptome of Cenostigma pyramidale roots, a woody legume, under different salt stress times. Physiologlia Plantarum, 2021, 173(4): 1463-1480. |
| 11 | Fang X, Mo J J, Zhou H K, et al. Comparative transcriptome analysis of gene responses of salt-tolerant and salt-sensitive rice cultivars to salt stress. Scientific Reports, 2023, 13(1): 19065. |
| 12 | Li R X, Fu R, Li M, et al. Transcriptome profiling reveals multiple regulatory pathways of Tamarix chinensis in response to salt stress. Plant Cell Reports, 2023, 42(11): 1809-1824. |
| 13 | Shi H F, Guo Z F. Advances in research on germplasm resources and genetic breeding of Astragalus sinicus. Pratacultural Science, 2020, 37(12): 2507-2519. |
| 施海帆, 郭振飞. 紫云英种质资源与遗传育种研究进展. 草业科学, 2020, 37(12): 2507-2519. | |
| 14 | Issah G, Schoenau J J, Lardner H A, et al. Nitrogen fixation and resource partitioning in alfalfa (Medicago sativa L.), cicer milkvetch (Astragalus cicer L.) and sainfoin (Onobrychis viciifolia Scop.) using 15N enrichment under controlled environment conditions. Agronomy, 2020, 10(9): 1438-1452. |
| 15 | Pitcher L R, MacAdam J W, Ward R E, et al. Beef steer performance on irrigated monoculture legume pastures compared with grass- and concentrate-fed steers. Animals (Basel), 2022, 12(8): 1017-1032. |
| 16 | Hou W J, Ma X, Zhang Z Y, et al. Effects of mixed saline-alkali stress on seed germination and physiological characteristics of Astragalus cicer. Grassland and Turf, 2020, 40(3): 90-98. |
| 侯文静, 马祥, 张志莹, 等. 混合盐碱胁迫对鹰嘴紫云英种子萌发及幼苗生理特性的影响. 草原与草坪, 2020, 40(3): 90-98. | |
| 17 | Yang Y Y, Mao G L, Ma D M, et al. Germination characteristics of four forage seeds under different concentrations of NaCl or NaHCO3 stress. Acta Agrestia Sinica, 2022, 30(3): 637-645. |
| 杨迎月, 毛桂莲, 麻冬梅, 等. 四种牧草种子在不同浓度NaCl或NaHCO3胁迫下的萌发特性. 草地学报, 2022, 30(3): 637-645. | |
| 18 | Wang J H. The root system development of cicer milk vetch in the first year of growth. Pratacultural Science, 1990(1): 53-60. |
| 王建华. 鹰嘴紫云英生长第一年根系发育动态的研究. 草业科学, 1990(1): 53-60. | |
| 19 | Wang H Q, Zhao X Y, Xuan W, et al. Rice roots avoid asymmetric heavy metal and salinity stress via an RBOH-ROS-auxin signaling cascade. Molecular Plant, 2023, 16(10): 1678-1694. |
| 20 | Zhang J Q. Molecular mechanism of apomixis embryogenesis of wild Kentucky bluegrass in Gansu province. Lanzhou: Gansu Agricultural University, 2023. |
| 张金青. 甘肃野生草地早熟禾无融合生殖胚发生的分子遗传机理研究. 兰州: 甘肃农业大学, 2023. | |
| 21 | Grabherr M G, Haas B J, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 2011, 29(7): 644-652. |
| 22 | Davidson N M, Oshlack A. Corset: enabling differential gene expression analysis for de novo assembled transcriptomes. Genome Biology, 2014, 15(7): 410-424. |
| 23 | Li B, Dewey C N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 2011, 12(1): 323-339. |
| 24 | Love M I, Huber W G, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 2014, 15(12): 550-571. |
| 25 | Ernst J, Bar-Joseph Z. STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics, 2006, 7(1): 191-202. |
| 26 | Chen F Q, Fang P, Zeng W J, et al. Comparing transcriptome expression profiles to reveal the mechanisms of salt tolerance and exogenous glycine betaine mitigation in maize seedlings. PLoS One, 2020, 15(5): e0233616. |
| 27 | Livak K, Schmittgen T. Analysis of relative gene expression data using real-time quantitative PCR and the 2- ∆∆ Ct method. Methods, 2001, 25(4): 402-408. |
| 28 | Zhang X J, Yao Y, Li X T, et al. Transcriptomic analysis identifies novel genes and pathways for salt stress responses in Suaeda salsa leaves. Scientific Reports, 2020, 10(1): 4236. |
| 29 | Jia C P, Guo B, Wang B K, et al. Integrated metabolomic and transcriptomic analysis reveals the role of phenylpropanoid biosynthesis pathway in tomato roots during salt stress. Frontiers in Plant Science, 2022, 13(12): 1023696. |
| 30 | Nefissi O R, Arasappan D, Abid G, et al. Transcriptomic analysis of salt-stress-responsive genes in barley roots and leaves. International Journal of Molecular Sciences, 2021, 22(15): 8155-8172. |
| 31 | Baillo E H, Kimotho R N, Zhang Z B, et al. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes, 2019, 10(10): 771-794. |
| 32 | Inukai S, Kock K H, Bulyk M L. Transcription factor-DNA binding: Beyond binding site motifs. Current Opinion in Genetics & Development, 2017, 43(4): 110-119. |
| 33 | Han G L, Yuan F, Guo J R, et al. AtSIZ1 improves salt tolerance by maintaining ionic homeostasis and osmotic balance in Arabidopsis. Plant Science, 2019, 285(8): 55-67. |
| 34 | Li Y, Chu Z N, Luo J Y, et al. The C2H2 zinc-finger protein SlZF3 regulates AsA synthesis and salt tolerance by interacting with CSN5B. Plant Biotechnology Journal, 2018, 16(6): 1201-1213. |
| 35 | Sun B G, Zhao Y J, Shi S Y, et al. TaZFP1, a C2H2 type-ZFP gene of T. aestivum, mediates salt stress tolerance of plants by modulating diverse stress-defensive physiological processes. Plant Physiology and Biochemistry, 2019, 136: 127-142. |
| 36 | Teng K, Tan P H, Guo W E, et al. Heterologous expression of a novel Zoysia japonica C2H2 zinc finger gene, ZjZFN1,improved salt tolerance in Arabidopsis. Frontiers in Plant Science, 2018, 9: 1159-1172. |
| 37 | Liu C X, Xu X Y, Kan J L, et al. Genome-wide analysis of the C3H zinc finger family reveals its functions in salt stress responses of Pyrus betulaefolia. PeerJ, 2020, 8: e9328. |
| 38 | Fraser C M, Chapple C. The phenylpropanoid pathway in Arabidopsis. The Arabidopsis Book, 2011, 9: e0152. |
| 39 | Li Y, Kim J I, Pysh L, et al. Four isoforms of Arabidopsis 4-coumarate: CoA ligase have overlapping yet distinct roles in phenylpropanoid metabolism. Plant Physiology, 2015, 169(4): 2409-2421. |
| 40 | Besseau S, Hoffmann L, Geoffroy P, et al. Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. Plant Cell, 2007, 19(1): 148-162. |
| 41 | Xie M, Zhang J, Tschaplinski T J, et al. Regulation of lignin biosynthesis and its role in growth-defense tradeoffs. Frontiers in Plant Science, 2018, 9(1): 1427-1436. |
| 42 | Chen K Q, Song M R, Guo Y N, et al. MdMYB46 could enhance salt and osmotic stress tolerance in apple by directly activating stress-responsive signals. Plant Biotechnology Journal, 2019, 17(12): 2341-2355. |
| 43 | Liu W X, Feng Y, Yu S H, et al. The flavonoid biosynthesis network in plants. International Journal of Molecular Sciences, 2021, 22(23): 12824-12842. |
| 44 | Yu Z M, Dong W, Teixeira D S J A, et al. Ectopic expression of DoFLS1 from Dendrobium officinale enhances flavonol accumulation and abiotic stress tolerance in Arabidopsis thaliana. Protoplasma, 2021, 258(4): 803-815. |
| 45 | Xu W J, Dubos C, Lepiniec L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends in Plant Science, 2015, 20(3): 176-185. |
| 46 | Pratyusha D S, Sarada D V L. MYB transcription factors-master regulators of phenylpropanoid biosynthesis and diverse developmental and stress responses. Plant Cell Reports, 2022, 41(12): 2245-2260. |
| 47 | Dong N Q, Lin H X. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. Journal of Integrative Plant Biology, 2021, 63(1): 180-209. |
| [1] | 李浩晶, 张丹珂, 李海润, 曹静, 徐国伟. 施氮对不同食味品质水稻根系生长及分泌有机酸的影响[J]. 草业学报, 2025, 34(2): 163-173. |
| [2] | 宋晋辉, 韩云杰, 张继宗, 王志辉, 张立峰, 李会彬. 栗钙土田菜用架芸豆根系的建成[J]. 草业学报, 2025, 34(1): 118-134. |
| [3] | 李媛, 孟思宇, 冯晓云, 鲍根生. 内生真菌对根寄生逆境下紫花针茅根系形态的影响[J]. 草业学报, 2025, 34(1): 135-150. |
| [4] | 杜文盼, 赵桂琴, 柴继宽, 杨莉, 张建贵, 史怡超, 张官禄. 根系分隔方式对燕麦/豌豆间作地上生物量、土壤养分及根系性状的影响[J]. 草业学报, 2024, 33(8): 25-36. |
| [5] | 李硕, 李培英, 孙宗玖, 李雯. 基于转录组测序的狗牙根抗旱根系关键代谢途径分析[J]. 草业学报, 2024, 33(4): 186-198. |
| [6] | 鲍根生, 李媛, 冯晓云, 张鹏, 孟思宇. 高寒区氮添加和间作种植互作对燕麦和豌豆根系构型影响的研究[J]. 草业学报, 2024, 33(3): 73-84. |
| [7] | 汪雪, 刘晓静, 王静, 吴勇, 童长春. 连续间作下的紫花苜蓿/燕麦根系与碳氮代谢特性研究[J]. 草业学报, 2024, 33(3): 85-96. |
| [8] | 曾兵, 尚盼盼, 沈秉娜, 王胤晨, 屈明好, 袁扬, 毕磊, 杨兴云, 李文文, 周晓丽, 郑玉倩, 郭文强, 冯彦龙, 曾兵. 淹水胁迫下鸭茅根系基因差异表达及相关通路分析[J]. 草业学报, 2024, 33(2): 93-111. |
| [9] | 余静菠, 张慧丽, 李进, 关皓, 周青平, 陈仕勇. 38份饲用燕麦品种苗期磷利用效率综合评价[J]. 草业学报, 2024, 33(11): 161-171. |
| [10] | 刘芳, 王佩佩, 曹玉莹, 刘俊娥, 周正朝. 黄土高原典型草本植物根系分布特征及其对土壤理化性质的影响研究[J]. 草业学报, 2024, 33(10): 1-13. |
| [11] | 姜瑛, 张辉红, 魏畅, 徐正阳, 赵颖, 刘芳, 李鸽子, 张雪海, 柳海涛. 外源褪黑素对干旱胁迫下玉米幼苗根系发育及生理生化特性的影响[J]. 草业学报, 2023, 32(9): 143-159. |
| [12] | 魏艳, 刘有斌, 刘枭宏, 谌芸, 颜哲豪, 都艺芝. 紫色土区拉巴豆和紫花苜蓿根-土复合体抗剪性能研究[J]. 草业学报, 2023, 32(8): 82-90. |
| [13] | 杨瑞杰, 何淑勤, 周树峰, 杨晶月, 金钰宪, 郑子成. 杂交粱草生长期土壤抗冲性变化特征及其根系调控效应[J]. 草业学报, 2023, 32(7): 149-159. |
| [14] | 廖小琴, 王长庭, 刘丹, 唐国, 毛军. 氮磷配施对高寒草甸植物根系特征的影响[J]. 草业学报, 2023, 32(7): 160-174. |
| [15] | 张浩, 胡海英, 李惠霞, 贺海明, 马霜, 马风华, 宋柯辰. 荒漠草原优势植物牛枝子对干旱胁迫的生理响应与转录组分析[J]. 草业学报, 2023, 32(7): 188-205. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||