草业学报 ›› 2024, Vol. 33 ›› Issue (4): 87-98.DOI: 10.11686/cyxb2023184
张译尹1(), 李雪颖1, 王斌1, 宋珂辰1, 兰剑1,2(), 胡海英1,2()
收稿日期:
2023-05-31
修回日期:
2023-06-15
出版日期:
2024-04-20
发布日期:
2024-01-15
通讯作者:
兰剑,胡海英
作者简介:
E-mail: ndlanjian@163.com基金资助:
Yi-yin ZHANG1(), Xue-ying LI1, Bin WANG1, Ke-chen SONG1, Jian LAN1,2(), Hai-ying HU1,2()
Received:
2023-05-31
Revised:
2023-06-15
Online:
2024-04-20
Published:
2024-01-15
Contact:
Jian LAN,Hai-ying HU
摘要:
为探讨小黑麦幼苗经过盐胁迫后水分利用效率和渗透调节系统的响应机制,选用10份不同种质小黑麦为对象,以土壤含盐量0.6%NaCl为胁迫组,正常浇水为对照组(CK),研究盐胁迫对小黑麦生长、水分利用特征、渗透调节物质含量的影响,以明确不同种质小黑麦苗期耐盐能力的强弱,为宁夏地区耐盐小黑麦品种评价提供理论依据。结果表明:盐胁迫抑制小黑麦的正常生长,促进其水分利用效率和渗透调节物质的积累与转移。在盐胁迫下,X-520的株高最高,X-516次之,SD的分蘖数和地上生物量最多;此外,SD、X-520和X-516的稳定碳同位素(δ13C)含量较高,分别为-27.33‰、-27.40‰和-27.39‰;SD的脯氨酸、可溶性蛋白和淀粉含量均为最高。相关分析表明,δ13C与相对含水量、有机渗透调节物质、根系钠离子、叶片钾离子间均显著正相关(P<0.05)。通过聚类分析得出,不同种质小黑麦耐盐能力强弱可分为3类,耐盐性较好(SD、X-520、X-516),耐盐性一般(JIN、J-46),耐盐性较差(T-5、HN、T-9、XJ、T-11);同时,经主成分综合评价(PCA)得出不同种质小黑麦的耐盐性高低顺序依次为SD>X-520>X-516>J-46>JIN>HN>T-11>T-9>T-5>XJ。因此,建议将SD、X-516和X-520作为宁夏盐碱地推广种植的育种材料。
张译尹, 李雪颖, 王斌, 宋珂辰, 兰剑, 胡海英. 盐胁迫对不同种质小黑麦幼苗水分利用效率和渗透调节的影响[J]. 草业学报, 2024, 33(4): 87-98.
Yi-yin ZHANG, Xue-ying LI, Bin WANG, Ke-chen SONG, Jian LAN, Hai-ying HU. Effects of salt stress on water use efficiency and osmotic adjustment of seedlings of different triticale strains[J]. Acta Prataculturae Sinica, 2024, 33(4): 87-98.
图1 盐胁迫对不同种质小黑麦生长性能的影响不同大写字母表示不同处理间在0.05水平差异显著(P<0.05);不同小写字母表示同一处理不同种质间在0.05水平差异显著(P<0.05),下同。Different capital letters indicate significant differences (P<0.05) between different treatments at the 0.05 level; Different lowercase letters indicate significant differences (P<0.05) among different germplasms of triticale at the 0.05 level, the same below.
Fig.1 Effect of salt stress on the growth performance of different germplasms of triticale
图5 小黑麦苗期耐盐性相关分析Ph: 株高Plant height; Nt: 分蘖数Number of tillers; SLA: 比叶面积Specific leaf area; R/S: 根冠比Root to shoot ratio; RWC: 相对含水量Relative water content; Wp: 水势Water potential; δ13C: 碳同位素Carbon isotopes; Pro: 脯氨酸Proline; Sp: 可溶性蛋白Soluble protein; Sta: 淀粉Starch; MDA: 丙二醛Malondialdehyde; Na+(l): 叶片钠离子Leaf sodium ion; Na+(r): 根系钠离子Root system sodium ion; K+(l): 叶片钾离子Leaf potassiumion; K+(r): 根系钾离子Potassiumion in the root system; 下同The same below; *: P<0.05.
Fig.5 Correlation analysis of salt tolerance in seedling stage
项目 Item | 主成分PCA | |
---|---|---|
Ⅰ | Ⅱ | |
株高Plant height | 0.285 | -0.080 |
分蘖数Number of tillers | 0.761 | 0.141 |
比叶面积Specific leaf area | 0.296 | -0.008 |
根冠比Root to shoot ratio | -0.148 | 0.652 |
相对含水量Relative water content | 0.271 | -0.274 |
水势Water potential | 0.264 | -0.130 |
碳同位素Carbon isotopes | 0.294 | 0.035 |
脯氨酸Proline | 0.290 | 0.074 |
可溶性蛋白Soluble protein | 0.275 | 0.139 |
淀粉Starch | 0.266 | 0.178 |
丙二醛Malondialdehyde | -0.262 | -0.217 |
Na+ (叶片Leaf) | -0.287 | 0.020 |
Na+ (根系Root) | 0.264 | 0.002 |
K+ (叶片Leaf) | 0.233 | -0.214 |
K+ (根系Root) | 0.143 | 0.551 |
特征值Eigenvalue | 10.912 | 1.480 |
方差贡献率Variance contribution rate (%) | 72.744 | 9.865 |
累积贡献率Accumulative contribution rate (%) | 72.744 | 83.609 |
表1 各因子载荷值与主成分特征值及累计贡献率
Table 1 Feature vector of each factor, principal component (PC) eigenvalue and accumulative contribution rate
项目 Item | 主成分PCA | |
---|---|---|
Ⅰ | Ⅱ | |
株高Plant height | 0.285 | -0.080 |
分蘖数Number of tillers | 0.761 | 0.141 |
比叶面积Specific leaf area | 0.296 | -0.008 |
根冠比Root to shoot ratio | -0.148 | 0.652 |
相对含水量Relative water content | 0.271 | -0.274 |
水势Water potential | 0.264 | -0.130 |
碳同位素Carbon isotopes | 0.294 | 0.035 |
脯氨酸Proline | 0.290 | 0.074 |
可溶性蛋白Soluble protein | 0.275 | 0.139 |
淀粉Starch | 0.266 | 0.178 |
丙二醛Malondialdehyde | -0.262 | -0.217 |
Na+ (叶片Leaf) | -0.287 | 0.020 |
Na+ (根系Root) | 0.264 | 0.002 |
K+ (叶片Leaf) | 0.233 | -0.214 |
K+ (根系Root) | 0.143 | 0.551 |
特征值Eigenvalue | 10.912 | 1.480 |
方差贡献率Variance contribution rate (%) | 72.744 | 9.865 |
累积贡献率Accumulative contribution rate (%) | 72.744 | 83.609 |
材料Materials | Y1 | Y2 | Y | 排名Ranking |
---|---|---|---|---|
SD | 4.58 | 0.06 | 3.34 | 1 |
JIN | 0.64 | -0.61 | 0.41 | 4 |
J-46 | 0.72 | -2.10 | 0.32 | 5 |
X-520 | 4.02 | -0.41 | 2.89 | 3 |
X-516 | 3.89 | 2.09 | 3.03 | 2 |
T-5 | -3.47 | -0.79 | -2.61 | 8 |
T-9 | -3.75 | 0.48 | -2.68 | 10 |
XJ | -3.82 | 1.37 | -2.64 | 9 |
HN | -1.76 | 0.73 | -1.21 | 7 |
T-11 | -1.04 | -0.83 | -0.84 | 6 |
表2 不同种质小黑麦公因子值及综合排名
Table 2 Common factor values and comprehensive ranking of different germplasms of triticale
材料Materials | Y1 | Y2 | Y | 排名Ranking |
---|---|---|---|---|
SD | 4.58 | 0.06 | 3.34 | 1 |
JIN | 0.64 | -0.61 | 0.41 | 4 |
J-46 | 0.72 | -2.10 | 0.32 | 5 |
X-520 | 4.02 | -0.41 | 2.89 | 3 |
X-516 | 3.89 | 2.09 | 3.03 | 2 |
T-5 | -3.47 | -0.79 | -2.61 | 8 |
T-9 | -3.75 | 0.48 | -2.68 | 10 |
XJ | -3.82 | 1.37 | -2.64 | 9 |
HN | -1.76 | 0.73 | -1.21 | 7 |
T-11 | -1.04 | -0.83 | -0.84 | 6 |
图6 不同种质小黑麦耐盐性的聚类热图A: Pro; B: K+(l); C: RWC; D: δ13C; E: Wp; F: R/S; G: K+(r); H: Sta; I: Nt; J: Na+(l); K: MDA; L: Na+(r); M: Sp; N: SLA; O: Ph.
Fig.6 Cluster heat map of different germplasms of triticale
1 | Muzyamba K, Phiri E, Kalala D, et al. Organic amendments effects on soil dry aggregate stability in Chipata, Zambia. African Journal of Agricultural Research, 2021, 17(2): 346-354. |
2 | Jing Y P, Li Y J, Lin Y L, et al. Comprehensive evaluation of physiological response and saline-alkali resistance of maize to Na2CO3 stress. Soil and Fertilizer Sciences in China, 2019, 5(8): 179-186. |
景宇鹏, 李跃进, 蔺亚莉, 等. 玉米耐Na2CO3胁迫的生理响应及耐盐碱性综合评价. 中国土壤与肥料, 2019, 5(8): 179-186. | |
3 | Li X Y. Evaluation and screening of salt tolerance of 25 triticale germplasm materials. Yinchuan: Ningxia University, 2022. |
李雪颖. 25份小黑麦种质材料耐盐性评价与筛选. 银川: 宁夏大学, 2022. | |
4 | Siezen R J, Bayjanov J R, Felis G E, et al. Genome-scale diversity and niche adaptation analysis of Lactococcus lactis by comparative genome hybridization using multi-strain arrays.Microbial Biotechnology, 2011, 4(3): 383-402. |
5 | Karbarz M M A G. Quantitative trait loci mapping of adult-plant resistance to powdery mildew in triticale. Annals of Applied Biology, 2010, 25(4): 615-622. |
6 | Tari I, Laskay G, Takács Z, et al. Response of sorghum to abiotic stresses: A review. Journal of Agronomy & Crop Science, 2013, 199(4): 264-274. |
7 | Chang D D, Wang X, Tian X H, et al. Studies on multiple intercropping effects and quality of autumn sown triticale and sweet sorghum in central Gansu Province. Acta Prataculturae Sinica, 2021, 30(11): 212-220. |
常丹丹, 王旭, 田新会, 等. 甘肃中部地区秋播小黑麦套作式复种甜高粱的效应及品质研究. 草业学报, 2021, 30(11): 212-220. | |
8 | Zhang R Q, Chen H, Wang R Q. Screening of salt-tolerant germplasm resources of triticale. Seeds, 2016, 35(10): 61-64. |
张荣庆, 陈慧, 王瑞清. 小黑麦耐盐种质资源的筛选. 种子, 2016, 35(10): 61-64. | |
9 | Lin C L, Li H W, Shi P C, et al. Using membership function values to evaluate the tolerance of triticale to compound salt stress at germination and seedling stages. Xinjiang Agricultural Sciences, 2012, 49(5): 808-814. |
林存亮, 李鸿文, 石培春, 等. 用隶属函数值评价小黑麦在萌发期及幼苗期对复合盐胁迫的耐性. 新疆农业科学, 2012, 49(5): 808-814. | |
10 | Rifat, Botany D O, Dhaka U O, et al. Effects of NaCl stress on accumulation of K+, Na+, Cl-, NO3 -, sugar and proline contents in the seedlings of Triticale-I. Bangladesh Journal of Botany, 2014, 42(2): 189-194. |
11 | Chinnusamy V, Jagendorf A, Zhu J K. Understanding and improving salt tolerance in plants. Crop Science, 2005, 45(2): 437-448. |
12 | Xie N, Zhao H M, Li Y, et al. Salt tolerance evaluation and physiological responses of forage rye and triticale at seedling growth stages. Acta Agrestia Sinica, 2016, 24(1): 84-92. |
谢楠, 赵海明, 李源, 等. 饲用黑麦、小黑麦品种苗期耐盐性评价及盐胁迫下的生理响应. 草地学报, 2016, 24(1): 84-92. | |
13 | Guo J X, Lu X Y, Tao Y F, et al. Analysis of metabolites and pathways of cotton under salt and alkali stresses. Acta Agronomica Sinica, 2022, 48(8): 2100-2114. |
郭家鑫, 鲁晓宇, 陶一凡, 等. 棉花在盐碱胁迫下代谢产物及通路的分析. 作物学报, 2022, 48(8): 2100-2114. | |
14 | Wang Z Q, Li L Q, Liu Y C, et al. The formation conditions and distribution law of saline soil in Liaocheng, Shandong. Acta Pedologica Sinica, 1963, 11(4): 343-360. |
王遵亲, 黎立羣, 刘有昌, 等. 山东聊城盐渍土的形成条件及其分布规律. 土壤学报, 1963, 11(4): 343-360. | |
15 | Liu Y, Li P, Shen B, et al. Effect of drought stress on Bothriochloa ischaemum water-use efficiency based on stable carbon isotope. Acta Ecologica Sinica, 2017, 37(9): 3055-3064. |
刘莹, 李鹏, 沈冰, 等. 采用稳定碳同位素法分析白羊草在不同干旱胁迫下的水分利用效率. 生态学报, 2017, 37(9): 3055-3064. | |
16 | Ge T D, Wang D D, Zhu Z K, et al. Tracing technology of carbon isotope and its applications to studies of carbon cycling in terrestrial ecosystem. Chinese Journal of Plant Ecology, 2020, 44(4): 360-372. |
葛体达, 王东东, 祝贞科, 等. 碳同位素示踪技术及其在陆地生态系统碳循环研究中的应用与展望. 植物生态学报, 2020, 44(4): 360-372. | |
17 | Wei S J, Nong J X, Ma T J, et al. Improvement of water potential measurement in plant tissue with Chardakov method. Plant Physiology Journal, 2014, 50(12): 1899-1902. |
韦善君, 农钧琇, 马廷娟, 等. 小液流法测定植物组织水势的优化. 植物生理学报, 2014, 50(12): 1899-1902. | |
18 | Lu A Q, Zhang F J, Xu X, et al. Effects of salt stress on growth and physiological characteristics of Echinochloa frumentacea seedlings. Acta Prataculturae Sinica, 2021, 30(5): 84-93. |
陆安桥, 张峰举, 许兴, 等. 盐胁迫对湖南稷子苗期生长及生理特性的影响. 草业学报, 2021, 30(5): 84-93. | |
19 | Wang Z H, Wei Y Q, Zhao Y R, et al. A transcriptomic study of physiological responses to drought and salt stress in sweet sorghum seedlings. Acta Prataculturae Sinica, 2022, 31(3): 71-84. |
王志恒, 魏玉清, 赵延蓉, 等. 基于转录组学比较研究甜高粱幼苗响应干旱和盐胁迫的生理特征. 草业学报, 2022, 31(3): 71-84. | |
20 | Xu Y J, Zhao L F, Xing H F, et al. Effects of endophytic bacteria on proline and malondialdehyde in wheat seedlings under salt stress. Acta Ecologica Sinica, 2020, 40(11): 3726-3737. |
徐亚军, 赵龙飞, 邢鸿福, 等. 内生细菌对盐胁迫下小麦幼苗脯氨酸和丙二醛的影响. 生态学报, 2020, 40(11): 3726-3737. | |
21 | Wang B, Li M Y, Wang X P, et al. Combined ploughing and tilling to improve degraded alfalfa (Medicago sativa) stands in a semi-arid region. Acta Prataculturae Sinica, 2022, 31(1): 107-117. |
王斌, 李满有, 王欣盼, 等. 深松浅旋对半干旱区退化紫花苜蓿人工草地改良效果研究. 草业学报, 2022, 31(1): 107-117. | |
22 | Patras A, Brunton N P, Downey G, et al. Application of principal component and hierarchical cluster analysis to classify fruits and vegetables commonly consumed in Ireland based on in vitro antioxidant activity. Journal of Food Composition & Analysis, 2010, 24(2): 250-256. |
23 | Wei J N. Effects of silicon fertilizer on seedling growth and development of Kentucky bluegrass under salt stress. Lanzhou: Lanzhou University, 2016. |
魏佳宁. 盐胁迫下硅肥对草地早熟禾苗期生长发育的影响. 兰州: 兰州大学, 2016. | |
24 | Cheng M S, Zou H H, Huang X F, et al. Effects of drought and salt stress on growth and physiology of Phyllostachys edulis seedlings. Acta Agriculturae Universitatis Jiangxisis, 2021, 43(4): 842-852. |
程明圣, 邹欢欢, 黄孝风, 等. 干旱与盐胁迫对毛竹幼苗生长及生理的影响. 江西农业大学学报, 2021, 43(4): 842-852. | |
25 | Li R Q, Wang Y X, Sun Y L, et al. Effects of salt stress on the growth, physiology, and biochemistry of five Bromus inermis varieties. Acta Prataculturae Sinica, 2023, 32(1): 99-111. |
李瑞强, 王玉祥, 孙玉兰, 等. 盐胁迫对5份无芒雀麦苗期生长和生理生化的影响及综合性评价. 草业学报, 2023, 32(1): 99-111. | |
26 | Cao W H, Liu J, He X J, et al. Modulation of ethylene responses affects plant salt-stress responses. Plant Physiology, 2007, 143(2): 707-719. |
27 | Ur A, Lg A, Dlrtb C, et al. Persistent adventitious and basal root development during salt stress tolerance in Echinocactus platyacanthus (Cactaceae) seedlings. Journal of Arid Environments, 2021, 187(4): 104431.1-104431.5. |
28 | Li Y, Liu G B, Gao H W, et al. Comprehensive evaluation of salt tolerance of alfalfa germplasm and physiological response under salt stress. Acta Prataculturae Sinica, 2010, 19(4): 79-86. |
李源, 刘贵波, 高洪文, 等. 紫花苜蓿种质耐盐性综合评价及盐胁迫下的生理反应. 草业学报, 2010, 19(4): 79-86. | |
29 | Mi Y W, Wang G X, Gong C W, et al. Effects of salt stress on growth and physiology of Isatis indigotica seedlings. Acta Prataculturae Sinica, 2018, 27(6): 43-51. |
米永伟, 王国祥, 龚成文, 等. 盐胁迫对菘蓝幼苗生长和抗性生理的影响. 草业学报, 2018, 27(6): 43-51. | |
30 | Cao S K, Feng Q, Si J H, et al. Summary on the plant water use efficiency at leaf level. Acta Ecologica Sinica, 2009, 29(7): 3882-3892. |
曹生奎, 冯起, 司建华, 等. 植物叶片水分利用效率研究综述. 生态学报, 2009, 29(7): 3882-3892. | |
31 | Qu C M, Han X G, Su B, et al. The characteristics of foliar δ13C values of plants and plant water use efficiency indicated by δ13C values in two fragmented rainforests in Xishuangbanna, Yunnan. Acta Botanica Sinica, 2001, 43(2): 186-192. |
渠春梅, 韩兴国, 苏波, 等. 云南西双版纳片断化热带雨林植物叶片δ13C值的特点及其对水分利用效率的指示. 植物学报, 2001, 43(2): 186-192. | |
32 | Zhong H, Dong J, Dong K H. Effects of salt stress on proline accumulation and the activities of the key enzymes involved in proline metabolism in Medicago ruthenica seedlings. Acta Prataculturae Sinica, 2018, 27(4): 189-194. |
钟华, 董洁, 董宽虎. 盐胁迫对扁蓿豆幼苗脯氨酸积累及其代谢关键酶活性的影响. 草业学报, 2018, 27(4): 189-194. | |
33 | Yu S Y, Zhou Y F, Huang W, et al. Effects of drought,salt,and drought-salt combined stress on photosynthetic and physiological characteristics of Agropyron mongolicum. Acta Agrestia Sinica, 2021, 29(11): 2399-2406. |
余淑艳, 周燕飞, 黄薇, 等. 干旱、盐及旱盐复合胁迫对沙芦草光合和生理特性的影响. 草地学报, 2021, 29(11): 2399-2406. | |
34 | Liu A R, Zhang Y B, Zhong Z H, et al. Effects of salt stress on growth and osmotic adjustment substance accumulation of Coleus blumei. Acta Prataculturae Sinica, 2013, 22(2): 211-218. |
刘爱荣, 张远兵, 钟泽华, 等. 盐胁迫对彩叶草生长和渗透调节物质积累的影响. 草业学报, 2013, 22(2): 211-218. | |
35 | Zhang Y J, Guo R, Zhang Z H, et al. Effect of cold plasma treatment on salt resistance of Poa pratensis seedlings. Acta Agrestia Sinica, 2022, 30(9): 2365-2374. |
张玉娟, 郭睿, 张兆恒, 等. 冷等离子体处理对草地早熟禾幼苗抗盐性的影响. 草地学报, 2022, 30(9): 2365-2374. | |
36 | Tang X L, Mu X M, Shao H B, et al. Global plant-responding mechanisms to salt stress: Physiological and molecular levels and implications in biotechnology. Critical Reviews in Biotechnology, 2015, 35(4): 425-437. |
37 | Wang X Z, Li Q H, Wu F Z. Study on the characteristics of absorption, distribution and selective transport of Na+ and K+ in tomato plants under salt stress. Scientia Agricultura Sinica, 2010, 43(7): 1423-1432. |
王学征, 李秋红, 吴凤芝. NaCl胁迫下栽培型番茄Na+、K+吸收、分配和转运特性. 中国农业科学, 2010, 43(7): 1423-1432. | |
38 | Li P F, Bai W B, Yang Z C. Effects of NaCl stress on ion absorption, transport and growth of tall fescue. Scientia Agricultura Sinica, 2005, 7(27): 1458-1465. |
李品芳, 白文波, 杨志成. NaCl胁迫对苇状羊茅离子吸收与运输及其生长的影响. 中国农业科学, 2005, 7(27): 1458-1465. | |
39 | Zhang H N, Li M J, Guo X L, et al. Effects of K+absorption inhibitors on K+/Na+ ratios and activities of plasma membrane proteins under salt stress in Triticum aestivum L. Acta Agriculturae Boreali-Sinica, 2017, 32(5): 154-162. |
张华宁, 李孟军, 郭秀林, 等. 盐胁迫下不同K+吸收抑制剂对小麦根系K+/Na+比和质膜相关蛋白活性的影响. 华北农学报, 2017, 32(5): 154-162. |
[1] | 郭文婷, 王国华, 缑倩倩. 钠盐胁迫对藜科一年生草本植物种子萌发和幼苗生长的影响[J]. 草业学报, 2023, 32(3): 128-141. |
[2] | 张洁, 程凯, 王迎春. 长叶红砂钙依赖蛋白激酶RtCDPK16的非生物胁迫应答分析[J]. 草业学报, 2023, 32(2): 97-109. |
[3] | 卫宏健, 贺文员, 王越, 唐明, 陈辉. 丛枝菌根真菌与褪黑素对多年生黑麦草耐热性的影响[J]. 草业学报, 2023, 32(12): 126-138. |
[4] | 孟晨, 鲁雪莉, 王菊英, 魏云冲, 张成省, 李义强, 徐宗昌. 不同类型盐胁迫对小黑麦种子萌发的影响[J]. 草业学报, 2023, 32(12): 171-180. |
[5] | 陆姣云, 田宏, 张鹤山, 熊军波, 刘洋, 王振南. H2O2浸种对盐胁迫下紫花苜蓿种子萌发和幼苗生长的影响[J]. 草业学报, 2023, 32(10): 141-152. |
[6] | 王珊珊, 谷海涛, 谢慧芳, 何绍冬, 甘长波, 卫小勇, 孔广超. 113份饲草型六倍体小黑麦种质饲草产量与品质性状的评价[J]. 草业学报, 2023, 32(1): 192-202. |
[7] | 孙晓梵, 张一龙, 李培英, 孙宗玖. 不同施氮量对干旱下狗牙根抗氧化酶活性及渗透调节物质含量的影响[J]. 草业学报, 2022, 31(6): 69-78. |
[8] | 柳福智, 张迎芳, 陈垣. 外源海藻糖对NaHCO3胁迫下甘草幼苗生长调节及总黄酮含量的影响[J]. 草业学报, 2021, 30(7): 148-156. |
[9] | 常丹丹, 王旭, 田新会, 杜文华. 甘肃中部地区秋播小黑麦套作式复种甜高粱的效应及品质研究[J]. 草业学报, 2021, 30(11): 212-220. |
[10] | 田甜, 王海江, 王金刚, 朱永琪, 史晓艳, 李维弟, 李文瑞玉. 盐胁迫下施加氮素对饲用油菜有机渗透调节物质积累的影响[J]. 草业学报, 2021, 30(10): 125-136. |
[11] | 郭欢, 潘雅清, 包爱科. NaCl在四翅滨藜适应渗透胁迫中的作用[J]. 草业学报, 2020, 29(7): 112-121. |
[12] | 李柯, 周庄煜, 李四菊, 姚浩铮, 周莹, 缪雨静, 唐晓清, 王康才. 荆芥的生长、渗透调节和抗氧化能力对干旱胁迫的响应[J]. 草业学报, 2020, 29(5): 150-158. |
[13] | 游永亮, 李源, 赵海明, 武瑞鑫, 刘贵波. 海河平原区施氮磷肥对饲用小黑麦生产性能及营养品质的影响[J]. 草业学报, 2020, 29(3): 137-146. |
[14] | 任昱鑫, 代寒凌, 田新会, 杜文华. 添加剂对甘肃省高寒牧区不同刈割期小黑麦青贮饲料营养品质和青贮品质的影响[J]. 草业学报, 2020, 29(3): 197-206. |
[15] | 贾茵, 向元芬, 王琳璐, 赵健, 刘才磊, 潘远智. 盐胁迫对小报春生长及生理特性的影响[J]. 草业学报, 2020, 29(10): 119-128. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||