[1] Yu J J, Fan N L, Li R, et al. Effects of elevated carbon dioxide concentration on the growth and antioxidant system in tall fescue under heat stress. Acta Prataculturae Sinica, 2017, 26(8): 113-122. 于景金, 范宁丽, 李冉, 等. 高浓度CO2对热胁迫条件下高羊茅生长和抗氧化系统的影响. 草业学报, 2017, 26(8): 113-122. [2] Wu X H, Lü C M, Feng J M.Protective effect of exogenous nitric oxide against oxidative damage in pumpkin seedlings under chilling stress. Acta Prataculturae Sinica, 2016, 25(12): 161-169. 吴旭红, 吕成敏, 冯晶旻. 外源一氧化氮(NO)对低温胁迫下南瓜幼苗氧化损伤的保护效应. 草业学报, 2016, 25(12): 161-169. [3] Liu H, Li D J, Deng Z.Advances in research of transcriptional regulatory network in response to cold stress in plants. China Agricultural Science, 2014, 47(18): 3523-3533. 刘辉, 李德军, 邓治. 植物应答低温胁迫的转录调控网络研究进展. 中国农业科学, 2014, 47(18): 3523-3533. [4] Liu Y X, Dong K H.Transcription factor CBF and its cold tolerance mechanism. Pratacultural Science, 2009, 26(5): 86-94. 刘艳香, 董宽虎. 转录因子CBF及其抗寒作用机制. 草业科学, 2009, 26(5): 86-94. [5] Wu C Q, Zhang X G, Liang G L, et al. Effects of CBF3 and COR15a on cold resistance of transgenic tobacco. Southwest China Journal of Agricultural Sciences, 2011, 24(6): 2077-2081. 吴纯清, 张兴国, 梁国鲁, 等. 拟南芥CBF3和COR15a基因对转基因烟草抗寒性的影响. 西南农业学报, 2011, 24(6): 2077-2081. [6] Zheng Y Q, Guo Y, Fang S J, et al. Constructing pre-core collection of Cynodon dactylon based on phenotypic data. Acta Prataculturae Sinica, 2014, 23(4): 49-60. 郑轶琦, 郭琰, 房淑娟, 等. 利用表型数据构建狗牙根初级核心种质. 草业学报, 2014, 23(4): 49-60. [7] Sun Z J, Li P Y, Jing Y J, et al. Physiological response of bermudagrass with different cold-resistance to freezing stress. Journal of Xinjiang Agricultural University, 2011, 34(1): 1-5. 孙宗玖, 李培英, 景艳杰, 等. 不同耐寒性狗牙根对冻害胁迫的生理响应. 新疆农业大学学报, 2011, 34(1): 1-5. [8] Zheng Y H, Liu J X, Chen S Y.The low temperature tolerance variation and its laws of Cynodon dactylon (L.) Pers. in China. Journal of Plant Resources and Environment, 2002, 11(2): 48-52. 郑玉红, 刘建秀, 陈树元. 中国狗牙根[Cynodon dactylon (L.)Pers.]耐寒性及其变化规律.植物资源与环境学报, 2002, 11(2): 48-52. [9] Xuan J P, Liu J X.Primary identification of the low temperature tolerance of Cynodon spp. excellent turfgrass cultivars. Journal of Plant Resources and Environment, 2003, 12(2): 28-32. 宣继萍, 刘建秀. 坪用狗牙根(Cynodon spp.)优良品种(选系)的抗寒性初步鉴定. 植物资源与环境学报, 2003, 12(2): 28-32. [10] Fan J B, Ren J, Zhu W X, et al. Antioxidant responses and gene expression in bermudagrass under cold stress. Journal of the American Society for Horticultural Sciences, 2014, 139(6): 399-705. [11] Shi H, Ye T T, Zhong B, et al. Comparative proteomic and metabolomic analyses reveal mechanisms of improved cold stress tolerance in bermudagrass [Cynodon dactylon (L.) Pers.] by exogenous calcium. Journal of Integrative Plant Biology, 2014, 56(11): 1064-1079. [12] Wang D, Xuan J P, Guo H L, et al. The dynamic changes of cold tolerance in different vegetative organs of three warm season turf grasses during the over wintering. Pratacultural Science, 2010, 27(3): 26-30. 王丹, 宣继萍, 郭海林, 等. 暖季型草坪草不同营养器官耐寒力的动态变化. 草业科学, 2010, 27(3): 26-30. [13] Yang Y, Lou Y H, Yang Z J, et al. Effect of low temperature on phytohormones and carbohydrates metabolism in bermudagrass. Acta Prataculturae Sinica, 2016, 25(2): 205-215. 杨勇, 娄燕宏, 杨知建, 等. 低温胁迫对狗牙根激素和碳水化合物代谢的影响. 草业学报, 2016, 25(2): 205-215. [14] Hu L X, Huang Z H, Liu S Q, et al. Growth response and gene expression in antioxidant-related enzymes in two bermudagrass genotypes differing in salt tolerance. Journal of American Society for Horticultural Science, 2012, 137(3): 134-143. [15] Hu Z R, Fan J B, Cheng K, et al. Effect of ethylene on photosystem II and antioxidant enzyme activity in bermudagrass under low temperature. Photosynthesis Research, 2016, 128(1): 59-72. [16] Mohabbati F, Paknejad F, Vazan S, et al. Protective effect of exogenous PGRs on chlorophyll fluorescence and membrane integrity of rice seedling under chilling stress. Research Journal of Applied Sciences Engineering & Technology, 2013, 5(1): 146-153. [17] Zhang X Z, Wang K H, Ervin E H, et al. Metabolic changes during cold acclimation and deacclimation in five bermudagrass varieties. I. Proline, total amino acid, protein, and dehydrin expression. Crop Science, 2010, 51(2): 838-846. [18] Silim S N, Ryan N, Kubien D S.Temperature responses of photosynthesis and respiration in Populus balsamifera L.: Acclimation versus adaptation. Photosynthesis Research, 2010, 104(1): 19-30. [19] Wu X X, Chen J L, Zha D S.Effects of low temperature stress on photosynthetic characteristics in leaves of egg plant seedlings. Acta Agriculturae Boreali-Sinica, 2008, 23(5): 185-189. 吴雪霞, 陈建林, 查丁石. 低温胁迫对茄子幼苗叶片光合特性的影响. 华北农学报, 2008, 23(5): 185-189. [20] Fan H F, Jiang W J, Guo S R.Effects of low temperature on growth and photosynthesis of tomato seedlings. Jiangsu Agricultural Science, 2005, 3: 89-91. 樊怀福, 蒋卫杰, 郭世荣. 低温对番茄幼苗植株生长和叶片光合作用的影响. 江苏农业科学, 2005, 3: 89-91. [21] Yang M, Wei L, Hu M, et al. Effect of low temperature stress on photosynthetic characteristics of maize seedling. Journal of Northeast Agricultural University, 2012, 43(1): 66-71. 杨猛, 魏玲, 胡萌, 等. 低温胁迫对玉米幼苗光合特性的影响. 东北农业大学学报, 2012, 43(1): 66-71. [22] Hou W, Sun A H, Yang F S, et al. Effect of low temperature and low light on photosynthesis and antioxidant enzyme activities in watermelon. Chinese Journal of Tropical Crops, 2015, 36(7): 1232-1237. 侯伟, 孙爱花, 杨福孙, 等. 低温弱光对西瓜幼苗光合作用和抗氧化酶活性的影响. 热带作物学报, 2015, 36(7): 1232-1237. [23] Ploschuk E L, Badoa L A, Salinasa M, et al. Photosynthesis and fluorescence responses of Jatropha curcas to chilling and freezing stress during early vegetative stages. Environment and Experimental Botany, 2014, 102: 18-26. [24] Takai T, Adachi S, Taguchi-Shiobara F, et al. A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate. Scientific Reports, 2013, 3: 2149. [25] Allen D J, Ort D R.Impacts of chilling temperatures on photosynthesis in warm climate plant. Trends in Plant Science, 2001, 6: 36-41. [26] Demmig-Adams B, Adams W W.Photoprotection and other responses of plants to high light stress. Annual Review of Plant Physiology and Plant Molecular Biology, 1992, 43(1): 599-626. [27] Chen J M, Yu X P, Cheng J A.The application of chlorophyll fluorescence kinetics in the study of physiological responses of plants to environmental stresses. Acta Agriculturae Zhejiangensis, 2006, 18(1): 51-55. 陈建明, 俞晓平, 程家安. 叶绿素荧光动力学及其在植物抗逆生理研究中的应用. 浙江农业学报, 2006, 18(1): 51-55. [28] Ai J, Wen W L, Yang D G, et al. Effect of low temperature and recovery on photosynthetic traits in maize. Journal of Maize Sciences, 2014, 22(5): 92-97. 艾佳, 温万里, 杨德光, 等. 低温胁迫及恢复对玉米光合特性的影响. 玉米科学, 2014, 22(5): 92-97. [29] He Y, Fu Q G, Zhu Z J.Effects of chilling under low irradiance on photosynthesis, chlorophyll fluorescence quenching and light allocation in pepper leaves. Acta Agriculturae Nucleatae Sinica, 2013, 27(4): 479-486. 何勇, 符庆功, 朱祝军. 低温弱光对辣椒叶片光合作用, 叶绿素荧光猝灭及光能分配的影响. 核农学报, 2013, 27(4): 479-486. [30] Fan Z C, Jia H Y, Guo H Y, et al. Physiological index of cold-resistant in squash. Acta Horticulturae Sinica, 1999, 26(5): 309-313. 樊治成, 贾洪玉, 郭洪芸, 等. 西葫芦耐冷性生理指标研究. 园艺学报, 1999, 26(5): 309-313. [31] Chen M, Tang Y L.Effect of low temperature stress on chlorophyll fluorescence characteristics of corn seedlings. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2012, 33(3): 20-24. 陈梅, 唐运来. 低温胁迫对玉米幼苗叶片叶绿素荧光参数的影响. 内蒙古农业大学学报(自然科学版), 2012, 33(3): 20-24. [32] Carrasco R M, Rodriguez J S, Perez P.Changes in chlorophyll fluorescence during the course of photoperiod and in response to drought in Casuarina equisetifolia forst. Photosynthetica, 2002, 40: 363-368. [33] Mo Y H, Guo Z F, Xie J H.Effect of temperature stress on chlorophyll fluorescence parameters and photosynthetic rates of Stylosanthes guianensis. Acta Prataculturae Sinica, 2011, 20(1): 96-101. 莫亿伟, 郭振飞, 谢江辉. 温度胁迫对柱花草叶绿素荧光参数和光合速率的影响. 草业学报, 2011, 20(1): 96-101. [34] Zhang M Q, Chen R K, Lü J L, et al. Effects of low temperature stress on the chlorophyll a fluorescence induction kinetics in the seedling of sugarcane. Journal of Fujian Agricultural University (Natural Science Edition), 1999, 28(1): 1-7. 张木清, 陈如凯, 吕建林, 等. 甘蔗苗期低温胁迫对叶绿素a荧光诱导动力学的影响. 福建农林大学学报(自然科学版), 1999, 28(1): 1-7. [35] Xu X J, Huang W Z, He Y.Changes of chlorophyll fluorescence parameters and correlations between variety tolerance in pumpkin. Acta Agriculturae Nucleatae Sinica, 2015, 29(11): 2231-2238. 许小江, 黄伟忠, 何勇. 低温弱光下南瓜叶绿素荧光参数等变化及其与品种耐性的关系. 核农学报, 2015, 29(11): 2231-2238. [36] Li Q H, Xu H, Zhou L, et al. Effect of low temperature stress on chlorophyll fluorescence characteristics in leaf of two cultivar of Camellia sinensis. Journal of Plant Resource and Environment, 2015, 24(2): 26-31. 李庆会, 徐辉, 周琳, 等. 低温胁迫对2个茶树品种叶片叶绿素荧光特性的影响. 植物资源与环境学报, 2015, 24(2): 26-31. [37] Hu R S, Zeng Z, Dia X H, et al. Response of leaf photosynthetic characteristics of two different tolerant tobacco cultivars at seedling stage to low temperature stress. Chinese Agricultural Science Bulletin, 2013, 29(34): 71-75. 胡日生, 曾中, 戴杏华, 等. 不同耐性烟草品种苗期叶片光合特性对低温胁迫的响应. 中国农学通报, 2013, 29(34): 71-75. [38] Desikin R, Mackerness S, Hancock J, et al. Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiology, 2001, 127(1): 159-172. [39] Polle A.Dissecting the superoxide dismutase-ascorbate peroxidase glutathione pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiology, 2001, 126(1): 445-462. [40] Zhou Y H, Yu J Q, Qian Q Q, et al. Effects of chilling and low light on cucumber seedlings growth and their antioxidative enzyme activities. Chinese Journal of Applied Ecology, 2003, 14(6): 921-924. 周艳虹, 喻景权, 钱琼秋, 等. 低温弱光对黄瓜幼苗生长及抗氧化酶活性的影响. 应用生态学报, 2003, 14(6): 921-924. [41] Peng J G, Sun Y H, Shi R H, et al. Effect of ten degree low temperature on physiological indicators in seedling of water melon. Anhui Agricultural Science Bulletin, 2006, 12(10): 42-45. 彭金光, 孙玉宏, 师瑞红, 等. 10 ℃低温对西瓜幼苗耐性生理指标的影响. 安徽农学通报, 2006, 12(10): 42-45. [42] Back K H, Skinner D Z.Alteration of antioxidant enzyme gene expression during cold ac climation of near-isogonics wheat lines. Plant Science, 2003, 165: 1221-1227. [43] Xu T J, Dong Z Q, Lan H L, et al. Effects of PASP-KT-NAA on photosynthesis and antioxidant enzyme activities of maize seedlings under low temperature stress. Acta Agronomica Sinica, 2012, 38(2): 352-359. 徐田军, 董志强, 兰宏亮, 等. 低温胁迫下聚糠萘合剂对玉米幼苗光合作用和抗氧化酶活性的影响. 作物学报, 2012, 38(2): 352-359. [44] Xiong Y, Fi S Z.Functional and phylogenetic analysis of a DREB/CBF-like gene in perennial ryegrass (Lolium perenne L.). Planta, 2006, 224(4): 878-888. [45] Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction path way s in drought and low temperature responsive gene expression in Arabidopsis. Plant Cell, 1998, 10: 1391-1406. [46] Huang B, Jin L G, Liu J Y.Molecular cloning and functional characterization of a DREB1 /CBF-like gene (GhDREB1L) from cotton. Science China (C Life Science), 2007, 50(1): 7-14. [47] Thomashow M F.Plant cold acclimation, freezing tolerance genes and regulatory mechanisms. Annual Review Plant Physiology Plant Molecular Biology, 1999, 50: 571-599. |