[1] Zhang D G.Study on rhododendron shrubland ecosystem in Eastern Qilian Mountains. Lanzhou: Gansu Education Press, 2003: 1-7. 张德罡. 东祁连山杜鹃灌丛生态系统研究. 兰州: 甘肃教育出版社, 2003: 1-7. [2] Nie X Q, Xiong F, Li C B, et al. Biomass allocation relationships in the grass layer in alpine shrubland ecosystems on the Tibetan Plateau. Acta Ecologica Sinica, 2018, 38(18): 6664-6669. 聂秀青, 熊丰, 李长斌, 等. 青藏高原高寒灌丛生态系统草本层生物量分配格局. 生态学报, 2018, 38(18): 6664-6669. [3] Liang S C, Yuan X X, Lu X M, et al. Soil physico-chemical properties and distribution characteristics in an aquatic-terrestrial ecotone of the Lijiang River, Southwest China. Acta Ecologica Sinica, 2019, 39(8): 2752-2761. 梁士楚, 苑晓霞, 卢晓明, 等. 漓江水陆交错带土壤理化性质及其分布特征. 生态学报, 2019, 39(8): 2752-2761. [4] Stella J C, Rodríguez-González P M, Dufour S, et al. Riparian vegetation research in mediterranean-climate regions: Common patterns, ecological processes, and considerations for management. Hydrobiologia, 2013, 719(1): 291-315. [5] Capon S J, Chambers L E, Ralph M N,et al. Riparian ecosystems in the 21st century: Hotspots for climate change adaptation? Eco-systems, 2013, 16(3): 1-23. [6] Li Y F, Chen L, Li X B, et al. Structural characteristics and ecological effects of a shrub-fertile island in a desert steppe. Pratacultural Science, 2018, 35(10): 2327-2335. 李月飞, 陈林, 李学斌, 等. 荒漠草原灌丛沃岛的结构特征和生态效应. 草业科学, 2018, 35(10): 2327-2335. [7] Hale R, Reich P, Daniel T, ,et al. Scales that matter: Guiding effective monitoring of soil properties in restored riparian zones. Geoderma, 2014, 228/229: 173-181. [8] Xu M C, Liu J Z, Chen Y J.Degradation characteristics of tamarix community in Yellow River delta wetland. Yellow River, 2015, 37(7): 85-89. 徐梦辰, 刘加珍, 陈永金. 黄河三角洲湿地柽柳群落退化特征分析. 人民黄河, 2015, 37(7): 85-89. [9] Sarmiento G, Pinillos M, Acevedo S D, et al. Effects of soil water regime and grazing on vegetation diversity and production in a hy-per-seasonal savanna in the Apure Llanos, Venezuela. Journal of Tropical Ecology, 2004, 20(2): 209-220. [10] Li H Y, Yao T, Zhang J G, et al. Relationship between soil bacterial community and environmental factors in the degraded alpine grassland of Eastern Qilian Mountains, China. Chinese Journal of Applied Ecology, 2018, 29(11): 3793-3801. 李海云, 姚拓, 张建贵, 等. 东祁连山退化高寒草地土壤细菌群落与土壤环境因子间的相互关系. 应用生态学报, 2018, 29(11): 3793-3801. [11] Meng F D, Wang S P, Bai L.The climate change and alpine grassland on the Tibetan Plateau. Guihaia, 2014, 34(2): 262-275. 孟凡栋, 汪诗平, 白玲. 青藏高原气候变化与高寒草地. 广西植物, 2014, 34(2): 262-275. [12] Gao N N, Chen J, Zhang P L, et al. Effects of grazing intensity on the spatial distribution of aboveground biomass of alpine kobresia meadow in Tibetan. Acta Agrestia Sinica, 2014, 22(2): 255-260. 高宁宁, 陈俊, 张鹏莉, 等. 放牧对西藏高寒嵩草草甸地上生物量空间分布的影响. 草地学报, 2014, 22(2): 255-260. [13] Zhang X Z, Yang Y P, Piao S L, et al. Ecological changes on the Qinghai-Tibet Plateau. Chinese Science Bulletin, 2015, 60(32): 3048-3056. 张宪洲, 杨永平, 朴世龙, 等. 青藏高原生态变化. 科学通报, 2015, 60(32): 3048-3056. [14] Zhang J G, Wang L D, Yao T, et al. Plant community structure and species diversity differences in alpine grassland in the Qilian Mountains with different levels of degradation. Acta Prataculturae Sinica, 2019, 28(5): 15-25. 张建贵, 王理德, 姚拓, 等. 祁连山高寒草地不同退化程度植物群落结构与物种多样性研究. 草业学报, 2019, 28(5): 15-25. [15] Wei Y L.Response of soil microbial biomass and community structure to grazing and fencing in shrub grassland in Eastern Qilian Mountains. Lanzhou: Gansu Agricultural University, 2018. 韦应莉. 东祁连山灌丛草地土壤微生物量及群落结构对放牧和围封的响应. 兰州: 甘肃农业大学, 2018. [16] Yang P.The study of spatial variety on soil physicochemical properties of in alpine grassland areas of Eastern Qilian Mountains. Lanzhou: Gansu Agricultural University, 2018. 杨鹏. 祁连山东段高寒草地土壤理化性质空间变化研究. 兰州: 甘肃农业大学, 2018. [17] Li W, Liu Y Z, Wang J L, et al. Six years of grazing exclusion is the optimum duration in the alpine meadow-steppe of the north-eastern Qinghai-Tibetan Plateau. Scientific Reports, 2018, 8(1): 17269. [18] Lu R.The micro-habitats characteristics of the sand land shrub patches and erosion control in the wind-water erosion crisscross region. Yangling: Northwest Agriculture & Forestry University, 2018. 路荣. 水蚀风蚀交错带沙地灌丛斑块微生境特征及侵蚀调控. 杨凌: 西北农林科技大学, 2018. [19] Wen L, Liu J L, Xi Y, et al. Analysis on soil physical properties of the old tress in Beijing. Research of Soil and Water Conservation, 2011, 18(5): 175-178. 文璐, 刘晶岚, 习妍, 等. 北京地区重要古树土壤物理性状分析. 水土保持研究, 2011, 18(5): 175-178. [20] Bao S D.Soil agro-chemistrical analysis. Beijing: China Agriculture Press, 2007: 39-114. 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2007: 39-114. [21] Borcard D, Gillet F, Legendre P.Numerical ecology. Beijing: Higher Education Press, 2014: 107-133. Borcard D, Gillet F, Legendre P. 数量生态学. 北京: 高等教育出版社, 2014: 107-133. [22] Li Y, Li P, Zhao Z, et al. Advances of the ecological environment effects of vegetation restoration and succession. Journal of Northwest A & F University (Natural Science Edition), 2007, (8): 155-159. 李艳, 李鹏, 赵忠, 等. 退耕地植被恢复演替的生态环境效应研究进展. 西北农林科技大学学报(自然科学版), 2007, (8): 155-159. [23] Zhao J M, Zhao J Z, Geng Y, et al. Soil properties of different alpine shrub grassland in eastern Qilian Mountains. Acta Agrestia Sinica, 2014, 22(5): 991-997. 赵锦梅, 赵晶忠, 耿妍, 等. 祁连山东段不同高寒灌丛草地土壤性状特征变化. 草地学报, 2014, 22(5): 991-997. [24] Dossa E L, Diedhiou S, Compton J E, et al. Spatial patterns of P fractions and chemical properties in soils of two native shrub com-munities in Senegal. Plant and Soil, 2010, 327(1/2): 185-198. [25] Wang Y X, Chen X J, Lou S N, et al. Woody-plant encroachment in grasslands: A review of mechanisms and aftereffects. Acta Prataculturae Sinica, 2018, 27(5): 219-227. 王迎新, 陈先江, 娄珊宁, 等. 草原灌丛化入侵: 过程、机制和效应. 草业学报, 2018, 27(5): 219-227. [26] Zhang Y D, Liu S R, Ma J M.Water holding capacity of surface cover and soil of alpine and sub-alpine shrub in Western Sichuan, China. Acta Ecologica Sinica, 2005, 26(9): 2775-2782. 张远东, 刘世荣, 马姜明. 川西高山和亚高山灌丛的地被物及土壤持水性能. 生态学报, 2005, 26(9): 2775-2782. [27] Li D L, Han L, Ruan H H, et al. Analysis of physical and chemical properties of soil along the banks of Qinhuai River. Journal of Nanjing Forestry University (Natural Science Edition), 2008, (4): 17-22. 李冬林, 韩丽, 阮宏华, 等. 秦淮河河岸带土壤理化性质分析. 南京林业大学学报(自然科学版), 2008, (4): 17-22. [28] Walker T W, Syers J K.The fate of phosphorus during pedogenesis. Geoderma, 1976, 15(1): 1-19. [29] Walbridge M R.Phosphorus biogeochemistry. Ecology, 2000, 81(5): 1474-1475. [30] Lin D Y.Edaphology. Beijing: China Forestry Press, 2002: 244-245. 林大仪. 土壤学. 北京:中国林业出版社, 2002: 244-245. [31] Wang S P, Zhou G S, Lü Y C, et al. Gradient distribution of soil carbon, nitrogen and phosphorus in northeast China sample belt (NECT) and its relationship with climate factors. Acta Phytoecologica Sinica, 2002, (5): 513-517. 王淑平, 周广胜, 吕育财, 等. 中国东北样带(NECT)土壤碳、氮、磷的梯度分布及其与气候因子的关系. 植物生态学报, 2002, (5): 513-517. [32] Ge X G, Xiao W F, Zeng L X, et al. Relationships between litter substrate quality and soil nutrients in different-aged Pinus massoniana stands. Acta Ecologica Sinica, 2012, 32(3): 852-862. 葛晓改, 肖文发, 曾立雄, 等. 不同林龄马尾松凋落物基质质量与土壤养分的关系. 生态学报, 2012, 32(3): 852-862. [33] He J L.Effects of Potentilla froticosa on soil vegetation characteristics and soil properties in alpine meadow of Tibetan Plateau. Lanzhou: Lanzhou University, 2017. 何俊龄. 金露梅对青藏高原高寒草甸植被特征和土壤性质的影响. 兰州: 兰州大学, 2017. [34] Wu Z Y, Lin W X, Chen Z F, et al. Phospholipid fatty acid analysis of soil microbes at different elevation of Wuyi Mountains. Scientia Silvae Sinicae, 2014, 50(7): 105-112. 吴则焰, 林文雄, 陈志芳, 等. 武夷山不同海拔植被带土壤微生物PLFA分析. 林业科学, 2014, 50(7): 105-112. [35] Hartley A M, House W A, Leadbeater B S C, et al. The use of microelectrodes to study the precipitation of calcite upon algal biofilms. Journal of Colloid and Interface Science, 1996, 183(2): 498-505. |