[1] Ti C P, Gao B, Luo Y X, et al. Dry deposition of N has a major impact on surface water quality in the Taihu Lake region in southeast China. Atmospheric Environment, 2018, 190: 1-9. [2] Wang W, Liu X J. Research progress on nitrogen deposition and grassland ecosystem response in Qinghai-Tibet Plateau. Journal of China Agricultural University, 2018, 23(5): 151-158. 王伟, 刘学军. 青藏高原氮沉降研究现状及草地生态系统响应研究进展. 中国农业大学学报, 2018, 23(5): 151-158. [3] Deng S P, Moore J M, Tabatabai M A. Characterization of active nitrogen pools in soils under different cropping systems. Biology and Fertility of Soils, 2000, 32(4): 302-309. [4] Rumpel C, Chabbi A. Plant-soil interactions control CNP coupling and decoupling processes in agroecosystems with perennial vegetation//Lemaire G, Carvalho P C D F, Kronberg S, et al. Agroecosystem diversity: Reconciling contemporary agriculture and environmental quality. San Diego: Elsevier Science Publishing Co Inc, 2019: 3-13. [5] Cheng B, Zhao Y J, Zhang W G, et al. The research advances and prospect of ecological stoichiometry. Acta Ecologica Sinica, 2010, 30(6): 1628-1637. 程滨, 赵永军, 张文广, 等. 生态化学计量学研究进展. 生态学报, 2010, 30(6): 1628-1637. [6] Du C J, Wang X D, Zhang M Y, et al. Effects of elevated CO2 on plant C-N-P stoichiometry in terrestrial ecosystems: A meta-analysis. Science of the Total Environment, 2019, 650: 697-708. [7] Ma A, He N, Yu G, et al. Carbon storage in Chinese grassland ecosystems: Influence of different integrative methods. Scientific Reports, 2016, 6(1): 21378. [8] Qi Y C, Peng Q, Dong Y S, et al. Responses of soil total organic carbon and dissolved organic carbon to simulated nitrogen deposition in temperate typical steppe in Inner Mongolia, China. Environmental Science, 2014, 35(8): 3073-3082. 齐玉春, 彭琴, 董云社, 等. 温带典型草原土壤总有机碳及溶解性有机碳对模拟氮沉降的响应. 环境科学, 2014, 35(8): 3073-3082. [9] Li P P, Wang B, Liu G B, et al. Effects of nitrogen addition on the population characteristics of Bothriochloa ischaemum and soil properties. Science of Soil and Water Conservation, 2017, 15(2): 35-42. 李盼盼, 王兵, 刘国彬, 等. 氮添加对白羊草种群及土壤特征的影响. 中国水土保持科学, 2017, 15(2): 35-42. [10] Mei L, Yang X, Cao H, et al. Arbuscular mycorrhizal fungi alter plant and soil C∶N∶P stoichiometries under warming and nitrogen input in a semiarid meadow of China. International Journal of Environmental Research and Public Health, 2019, 16(3): 397. [11] Huang J, Yu H, Liu J, et al. Phosphorus addition changes belowground biomass and C∶N∶P stoichiometry of two desert steppe plants under simulated N deposition. Scientific Reports, 2018, 8(1): 3400. [12] Zhang X L, Zhai P H, Hang J H. Advances in the influences of precipitation and nitrogen deposition change on the carbon cycle of grassland ecosystem. Acta Agrestia Sinica, 2018, 26(2): 284-288. 张晓琳, 翟鹏辉, 黄建辉. 降水和氮沉降对草地生态系统碳循环影响研究进展. 草地学报, 2018, 26(2): 284-288. [13] Ye C, Chen D, Hall S J, et al. Reconciling multiple impacts of nitrogen enrichment on soil carbon: Plant, microbial and geochemical controls. Ecology Letters, 2018, 21(8): 1162-1173. [14] Wang D, Pang H C, Li D, et al. Response of microbial C, N and respiration characteristics to sowing rates in alfalfa cultivation grasslands in Hulunber, Inner Mongolia. Acta Prataculturae Sinica, 2018, 27(3): 135-143. 王笛, 逄焕成, 李达, 等. 苜蓿栽培草地微生物C、N及呼吸特性对不同播种量的响应. 草业学报, 2018, 27(3): 135-143. [15] Wu J P, Han X H, Xu Y D, et al. Ecological stoichiometry of soil and soil microbial biomass C, N, P under grain-to-green program in Loess Hilly region. Acta Agrestia Sinica, 2016, 24(4): 783-792. 吴建平, 韩新辉, 许亚东, 等. 黄土丘陵区不同植被类型下土壤与微生物C、N、P化学计量特征研究. 草地学报, 2016, 24(4): 783-792. [16] Schleuss P M, Widdig M, Buschart A H, et al. Stoichiometric controls of soil carbon and nitrogen cycling after long-term nitrogen and phosphorus addition in a mesic grassland in South Africa. Soil Biology and Biochemistry, 2019, 135: 294-303. [17] Mehnaz K, Keitel C, Dijkstra F. Effects of carbon and phosphorus addition on microbial respiration, N2O emission, and gross nitrogen mineralization in a phosphorus-limited grassland soil. Biology and Fertility of Soils: Cooperating Journal of the International Society of Soil Science, 2018, 54(4): 481-493. [18] Lange M, Eisenhauer N, Sierra C A, et al. Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications, 2015, 6: 6707. [19] Zhang T A, Chen H Y H, Ruan H H. Global negative effects of nitrogen deposition on soil microbes. The International Society for Microbial Ecology Journal, 2018, 12(7): 1817-1825. [20] Wang S Q, Yu G R. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements. Acta Ecologica Sinica, 2008, 28(8): 3937-3947. 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征. 生态学报, 2008, 28(8): 3937-3947. [21] Liu H M, Li J, Wang L L, et al. Effects of nitrogen addition on the stoichiometric characteristics of plants and soil in the Stipa baicalensis grassland of Inner Mongolia, China. Acta Prataculturae Sinica, 2018, 27(7): 25-35. 刘红梅, 李洁, 王丽丽, 等. 氮添加对贝加尔针茅草原植物和土壤化学计量特征的影响. 草业学报, 2018, 27(7): 25-35. [22] Moran K K, Six J, Horwath W R, et al. Role of mineral-nitrogen in residue decomposition and stable soil organic matter formation. Soil Science Society of America Journal, 2005, 69(6): 1730-1736. [23] Guo H B, Wu J P, Yuan Y H, et al. Effects of N deposition on soil stoichiometric characteristics of Chinese fir plantation. Journal of Fujian Forestry Science and Technology, 2014, 41(1): 1-5. 郭虎波, 吴建平, 袁颖红, 等. 氮沉降对杉木人工林土壤化学计量特征的影响. 福建林业科技, 2014, 41(1): 1-5. [24] McDonnell T C, Belyazid S, Sullivan T J, et al. Modeled subalpine plant community response to climate change and atmospheric nitrogen deposition in Rocky Mountain National Park, USA. Environmental Pollution, 2014, 187: 55-64. [25] Chen D, Li J, Lan Z, et al. Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment. Functional Ecology, 2016, 30(4): 658-669. [26] Hagedorn F, Spinnler D, Siegwolf R. Increased N deposition retards mineralization of old soil organic matter. Soil Biology & Biochemistry, 2003, 35(12): 1683-1692. [27] Xiaogang L, Bin J, Jieting L, et al. Nitrogen fertilization decreases the decomposition of soil organic matter and plant residues in planted soils. Soil Biology and Biochemistry, 2017, 112: 47-55. [28] Yang J S, Liu J S, Yu J B, et al. Dynamics of dissolved organic carbon (DOC) leaching in meadow marsh soil and related affecting factors. Chinese Journal of Applied Ecology, 2006, 17(1): 113-117. 杨继松, 刘景双, 于君宝, 等. 草甸湿地土壤溶解有机碳淋溶动态及其影响因素. 应用生态学报, 2006, 17(1): 113-117. [29] Liu X H, Gong Y Q, Chen W F, et al. C, N and P stoichiometry of typical plants and soils in the Yellow River Delta Natural Reserve. Chinese Journal of Eco-Agriculture, 2018, 26(11): 1720-1729. 刘兴华, 公彦庆, 陈为峰, 等. 黄河三角洲自然保护区植被与土壤C、N、P 化学计量特征. 中国生态农业学报, 2018, 26(11): 1720-1729. [30] Xiang Y X, Chen S K, Pan P, et al. Stoichiometric traits of C, N and P of leaf-litter-soil system of Pinus massoniana forest. Journal of Forest and Environment, 2019, 39(2): 120-126. 向云西, 陈胜魁, 潘萍, 等. 马尾松叶片-凋落物-土壤的碳氮磷化学计量特征. 森林与环境学报, 2019, 39(2): 120-126. [31] Zhao Y, Wang G J, Chen C, et al. Relationship of N∶P stoichiometry of different organs and soil of Cunninghamia lanceolata in Huitong. Journal of Central South University of Forestry & Technology, 2016, 36(11): 73-79. 赵月, 王光军, 陈婵, 等. 杉木不同器官与土壤的N∶P生态化学计量相关性. 中南林业科技大学学报, 2016, 36(11): 73-79. [32] Koerselman W, Meuleman A F. The vegetation N∶P ratio: A new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 1996, 33(6): 1441-1450. [33] Huang J Y, Lai R S, Yu H L, et al. Responses of plant and soil C∶N∶P stoichiometry to N addition in a desert steppe of Ningxia, Northwest China. Chinese Journal of Ecology, 2013, 32(11): 2850-2856. 黄菊莹, 赖荣生, 余海龙, 等. N添加对宁夏荒漠草原植物和土壤C∶N∶P生态化学计量特征的影响. 生态学杂志, 2013, 32(11): 2850-2856. [34] Li R R, Lu Y, Wang Y M, et al. Effects of N addition on C, N and P stoichiometry and soil enzyme activities in Cupressus lusitanica Mill. plantation. Chinese Journal of Ecology, 2019, 38(2): 384-393. 李瑞瑞, 卢艺, 王益明, 等. 氮添加对墨西哥柏人工林土壤碳氮磷化学计量特征及酶活性的影响. 生态学杂志, 2019, 38(2): 384-393. [35] Luo W, Huang Y X, Guo W, et al. Research progress of nitrogen deposition effect on soil microorganism in boreal forest. Chinese Agricultural Science Bulletin, 2017, 33(28): 111-116. 罗维, 黄雅曦, 国微, 等. 氮沉降对北方森林土壤微生物的影响研究进展. 中国农学通报, 2017, 33(28): 111-116. [36] Yang L L, Aotegen B Y, Li Q F, et al. Effects of alfalfa root exudates on insoluble phosphorus in soil. Pratacultural Science, 2015, 32(8): 1216-1221. 杨利宁, 敖特根·白银, 李秋凤, 等. 苜蓿根系分泌物对土壤中难溶性磷的影响. 草业科学, 2015, 32(8): 1216-1221. [37] Yu J D, Yin D Y, Wu J M, et al. A review of adaptation mechanism of trees under low phosphorus stress. World Forestry Research, 2017, 30(1): 18-23. 于姣妲, 殷丹阳, 吴佳美, 等. 林木低磷胁迫适应机制研究进展. 世界林业研究, 2017, 30(1): 18-23. [38] Tran H T, Hurley B A, Plaxton W C. Feeding hungry plants: The role of purple acid phosphatases in phosphate nutrition. Plant Science, 2010, 179(1/2): 14-27. [39] Wei S Z, Zhao Q, Liao M Q, et al. Effects of simulated nitrogen deposition on microbial biomass during litter decomposition in a natural evergreen broad-leaved forest in the rainy area of West China. Acta Ecologica Sinica, 2018, 38(22): 8001-8007. 魏圣钊, 赵倩, 廖泯权, 等. 模拟氮沉降对华西雨屏区天然常绿阔叶林凋落叶分解过程微生物生物量的影响. 生态学报, 2018, 38(22): 8001-8007. [40] Chen C R, Condron L M, Davis M R, et al. Seasonal changes in soil phosphorus and associated microbial properties under adjacent grassland and forest in New Zealand. Forest Ecology and Management, 2003, 177(1/2/3): 539-557. [41] Griffiths B S, Spilles A, Bonkowski M. C∶N∶P stoichiometry and nutrient limitation of the soil microbial biomass in a grazed grassland site under experimental P limitation or excess. Ecological Processes, 2012, 1(1): 1-11. [42] Li L J, Zeng D H, Yu Z Y, et al. Soil microbial properties under N and P additions in a semi-arid, sandy grassland. Biology and Fertility of Soils, 2010, 46(6): 653-658. [43] Wang H, Mo J M, Lu X K, et al. Effects of elevated nitrogen deposition on soil microbial biomass carbon in the main subtropical forests of southern China. Acta Ecologica Sinica, 2008, 28(2): 470-478. 王晖, 莫江明, 鲁显楷, 等. 南亚热带森林土壤微生物量碳对氮沉降的响应. 生态学报, 2008, 28(2): 470-478. [44] Wardle D A, Gundale M J, Jäderlund A, et al. Decoupled long-term effects of nutrient enrichment on aboveground and belowground properties in subalpine tundra. Ecology, 2013, 94(4): 904-919. [45] Cole L, Buckland S M, Bardgett R D. Influence of disturbance and nitrogen addition on plant and soil animal diversity in grassland. Soil Biology & Biochemistry, 2008, 40(2): 505-514. [46] Zhang Y H, Han X, He N P, et al. Increase in ammonia volatilization from soil in response to N deposition in Inner Mongolia grasslands. Atmospheric Environment, 2014, 84: 156-162. [47] Shen F F, Wu J P, Fan H B, et al. Litterfall ecological stoichiometry and soil available nutrients under long-term nitrogen deposition in a Chinese fir plantation. Acta Ecologica Sinica, 2018, 38(20): 7477-7487. 沈芳芳, 吴建平, 樊后保, 等. 杉木人工林凋落物生态化学计量与土壤有效养分对长期模拟氮沉降的响应. 生态学报, 2018, 38(20): 7477-7487. [48] Niu S, Yang H, Zhang Z, et al. Non-additive effects of water and nitrogen addition on ecosystem carbon exchange in a temperate steppe. Ecosystems, 2009, 12(6): 915-926. [49] Yue K, Fornara D A, Yang W, et al. Influence of multiple global change drivers on terrestrial carbon storage: Additive effects are common. Ecology Letters, 2017, 20(5): 663-672. |