草业学报 ›› 2022, Vol. 31 ›› Issue (10): 189-205.DOI: 10.11686/cyxb2022077
• 综合评述 • 上一篇
收稿日期:
2022-02-18
修回日期:
2022-04-18
出版日期:
2022-10-20
发布日期:
2022-09-14
通讯作者:
高丽,丁勇
作者简介:
E-mail: dingyong228@126.com基金资助:
Received:
2022-02-18
Revised:
2022-04-18
Online:
2022-10-20
Published:
2022-09-14
Contact:
Li GAO,Yong DING
摘要:
草地是地球上最重要的陆地生态系统之一,给人类带来诸如食物生产、调节气候、净化空气、涵养水源、防风、固沙等一系列的生态系统服务。受气候变化和人为因素的影响,全球接近一半的草地出现不同程度的退化,成为世界性生态环境问题之一。世界各地开展了大量的有关退化草地恢复的研究和实践工作,并且取得了巨大的进步。然而,在联合国生态系统恢复10年(2021-2030)启动之际,需要新一代的恢复研究和实践项目来应对全球的环境挑战。本研究对世界各地有关退化草地恢复研究和实践进行了总结,希望从已有的草地恢复工作中学习经验,在此基础上,找出未来退化草地恢复研究的主要方向,制定合理的退化草地恢复计划,进而为全球变化背景下的新的草地恢复研究和实践提供参考依据。
高丽, 丁勇. 世界退化草地恢复研究和实践进展[J]. 草业学报, 2022, 31(10): 189-205.
Li GAO, Yong DING. Progress in research and practice of restoration of degraded grassland around the world[J]. Acta Prataculturae Sinica, 2022, 31(10): 189-205.
1 | Bai Y F, Huang J H, Zheng S X, et al. Drivers and regulating mechanisms of grassland and desert ecosystem services. Chinese Journal of Plant Ecology, 2014, 38(2): 93-102. |
白永飞, 黄建辉, 郑淑霞, 等. 草地和荒漠生态系统服务功能的形成与调控机制. 植物生态学报, 2014, 38(2): 93-102. | |
2 | Finn J A, Kirwan L, Connolly J, et al. Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: A 3-year continental-scale field experiment. Journal of Applied Ecology, 2013, 50(2): 365-375. |
3 | Fang J Y, Bai Y F, Li L H, et al. Scientific basis and practical ways for sustainable development of China’s pasture regions. Chinese Science Bulletin, 2016, 61(2): 155-164. |
方精云, 白永飞, 李凌浩, 等. 我国草原牧区可持续发展的科学基础与实践. 科学通报, 2016, 61(2): 155-164. | |
4 | Li X L. Mechanisms underlying the dwarf phenotype of Leymus chinensis induced by long-term overgrazing. Beijing: Chinese Academy of Agricultural Sciences, 2016. |
李西良. 羊草对长期过度放牧的矮小化响应与作用机理. 北京: 中国农业科学院, 2016. | |
5 | Bakker J P, Berendse F. Constraints in the restoration of ecological diversity in grassland and heathland communities. Trends in Ecology & Evolution, 1999, 14(2): 63-68. |
6 | Steffen W, Richardson K, Rockstrom J, et al. Planetary boundaries: Guiding human development on a changing planet. Science, 2015, 347(6223): 1-10. |
7 | Torok P, Brudvig L A, Kollmann J, et al. The present and future of grassland restoration. Restoration Ecology, 2021, 29(S1): e13378. |
8 | Walther G R, Roques A, Hulme P E, et al. Alien species in a warmer world: Risks and opportunities. Trends in Ecology & Evolution, 2009, 24(12): 686-693. |
9 | Wang D L, Wang L, Xin X P, et al. Systematic restoration for degraded grasslands: Concept, mechanisms and approaches. Scientia Agricultura Sinica, 2020, 53(13): 2532-2540. |
王德利, 王岭, 辛晓平, 等. 退化草地的系统性恢复: 概念, 机制与途径. 中国农业科学, 2020, 53(13): 2532-2540. | |
10 | Jones H P, Jones P C, Barbier E B, et al. Restoration and repair of earth’s damaged ecosystems. Proceedings of the Royal Society B-Biological Sciences, 2018, 285(1873): 1-8. |
11 | Hampe A, Petit R J. Conserving biodiversity under climate change: The rear edge matters. Ecology Letters, 2005, 8(5): 461-467. |
12 | Thomas C D, Cameron A, Green R E, et al. Extinction risk from climate change. Nature, 2004, 427(6970): 145-148. |
13 | Wilsey B. Restoration in the face of changing climate: Importance of persistence, priority effects and species diversity. Restoration Ecology, 2020, 29(S1): 1-25. |
14 | Wesche K, Ambarl D, Kamp J, et al. The Palaearctic steppe biome: A new synthesis. Biodiversity and Conservation, 2016, 25(12): 2197-2231. |
15 | Dudley N, Eufemia L, Fleckenstein M, et al. Grasslands and savannahs in the UN decade on ecosystem restoration. Restoration Ecology, 2020, 28(6): 1313-1317. |
16 | Werner P A. Savanna ecology and management: Australian perspectives and intercontinental comparisons. Oxford: Blackwell Scientific Publications, 1991. |
17 | O’Connor T G. Long-term response of an herbaceous sward to reduced grazing pressure and rainfall variability in a semi-arid South African savanna. African Journal of Range & Forage Science, 2015, 32(4): 261-270. |
18 | Van Oudtshoorn F. Veld management: Principles and practices. Queenswood: Briza Publications, 2015. |
19 | Chen X, Hutley L B, Eamus D. Carbon balance of a tropical savanna of northern Australia. Oecologia, 2003, 137(3): 405-416. |
20 | Williams R J, Myers B A, Muller W J, et al. Leaf phenology of woody species in a North Australian tropical savanna. Ecology, 1997, 78(8): 2542-2558. |
21 | Tibcherani M, Aranda R, Mello R L. Time to go home: The temporal threshold in the regeneration of the ant community in the Brazilian savanna. Applied Soil Ecology, 2020, 150: 1-9. |
22 | Ratter J A, Ribeiro J F, Bridgewater S. The Brazilian Cerrado vegetation and threats to its biodiversity. Annals of Botany, 1997, 80(3): 223-230. |
23 | Da Silva J M C, Bates J M. Biogeographic patterns and conservation in the South American Cerrado: A tropical Savanna hotspot. Bioscience, 2002, 52(3): 225-233. |
24 | Mcculloch M, Fallon S, Wyndham T, et al. Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement. Nature, 2003, 421(6924): 727-730. |
25 | Peel M, Peel J, Manaka L. Grasses of the Kruger National Park and surrounding Bushveld. African Journal of Range & Forage Science, 2015, 32(3): 231-232. |
26 | Ditomaso J M, Masters R A, Peterson V F. Rangeland invasive plant management. Rangelands, 2010, 32(1): 43-47. |
27 | Pivello V R, Shida C N, Meirelles S T. Alien grasses in Brazilian savannas: A threat to the biodiversity. Biodiversity & Conservation, 1999, 8(9): 1281-1294. |
28 | Orr D M, O’reagain P J. Managing for rainfall variability: Impacts of grazing strategies on perennial grass dynamics in a dry tropical savanna. Rangeland Journal, 2011, 33(2): 209-220. |
29 | Whittaker S R J. The irreversible cattle-driven transformation of a seasonally flooded Australian savanna. Journal of Biogeography, 2003, 30(5): 783-802. |
30 | Haddad T M, Pilon N, Durigan G, et al. Restoration of the Brazilian savanna after pine silviculture: Pine clearcutting is effective but not enough. Forest Ecology and Management, 2021, 491: 1-13. |
31 | Reynolds C, Venter N, Cowie B W, et al. Mapping the socio-ecological impacts of invasive plants in South Africa: Are poorer households with high ecosystem service use most at risk? Ecosystem Services, 2020, 42: 1-10. |
32 | Ren H, Joon D, Peng S L. Ecosystem of savanna in Africa. Journal of Tropical and Subtropical Botany, 2002, 10(10): 381-390. |
任海, Joon D, 彭少麟. 非洲稀树草原生态系统概况. 热带亚热带植物学报, 2002, 10(10): 381-390. | |
33 | Strathie L W, Mcconnachie A J, Retief E. Initiation of biological control against Parthenium hysterophorus L. (Asteraceae) in South Africa. African Entomology, 2011, 19(2): 378-392. |
34 | Belgeri A, Navie S C, Vivian-Smith G, et al. Early recovery signs of an Australian grassland following the management of Parthenium hysterophorus L. Flora, 2014, 209(10): 587-596. |
35 | Dhileepan K, Strathie L. Parthenium hysterophorus L. (Asteraceae)//Muniappan R, Reddy G V P, Raman A. Biological control of tropical weeds using arthropods. Cambs: Cambridge University Press, 2009: 274-318. |
36 | Cowie B W, Venter N, Witkowski E T F, et al. Implications of elevated carbon dioxide on the susceptibility of the globally invasive weed, Parthenium hysterophorus, to glyphosate herbicide. Pest Management Science, 2020, 76(7): 2324-2332. |
37 | Cowie B W, Witkowski E T F, Byrne M J, et al. Physiological response of Parthenium hysterophorus to defoliation by the leaf-feeding beetle Zygogramma bicolorata. Biological Control, 2018, 117: 35-42. |
38 | Terblanche C, Nanni I, Kaplan H, et al. An approach to the development of a national strategy for controlling invasive alien plant species: The case of Parthenium hysterophorus in South Africa. Bothalia, 2016, 46(1): 1-11. |
39 | Tessema Z K, De Boer W F, Prins H H T. Changes in grass plant populations and temporal soil seed bank dynamics in a semi-arid African savanna: Implications for restoration. Journal of Environmental Management, 2016, 182: 166-175. |
40 | Kgosikoma O E, Mogotsi K. Understanding the causes of bush encroachment in Africa: The key to effective management of savanna grasslands. Tropical Grasslands-Forrajes Tropicales, 2013, 1(2): 215-219. |
41 | Van Auken O W. Causes and consequences of woody plant encroachment into western North American grasslands. Journal of Environmental Management, 2009, 90(10): 2931-2942. |
42 | Ward D. Do we understand the causes of bush encroachment in African savannas? African Journal of Range & Forage Science, 2005, 22(2): 101-105. |
43 | Squires V, Dengler J, Feng H, et al. Grasslands of the world: Diversity, management and conservation. Boca Raton: Chemical Rubber Company Press, 2018. |
44 | Woinarski J C Z. The illusion of nature: Perception and the reality of natural landscapes, as illustrated by vertebrate fauna in the Northern Territory, Australia. Ecological Management & Restoration, 2014, 15(1): 30-33. |
45 | Fisher D O, Johnson C N, Lawes M J, et al. The current decline of tropical marsupials in Australia: Is history repeating? Global Ecology and Biogeography, 2014, 23(2): 181-190. |
46 | Kutt A S, Woinarski J C Z. The effects of grazing and fire on vegetation and the vertebrate assemblage in a tropical savanna woodland in north-eastern Australia. Journal of Tropical Ecology, 2007, 23: 95-106. |
47 | Kemp J E, Kutt A S. Vegetation change 10 years after cattle removal in a savanna landscape. Rangeland Journal, 2020, 42(2): 73-84. |
48 | Beringer J, Hutley L B, Tapper N J, et al. Savanna fires and their impact on net ecosystem productivity in North Australia. Global Change Biology, 2007, 13(5): 990-1004. |
49 | D’odorico P, Laio F, Ridolfi L. A probabilistic analysis of fire-induced tree-grass coexistence in savannas. American Naturalist, 2006, 167(3): 79-87. |
50 | Russell-Smith J, Cook G D, Cooke P M, et al. Managing fire regimes in north Australian savannas: Applying Aboriginal approaches to contemporary global problems. Frontiers in Ecology and the Environment, 2013, 11: 55-63. |
51 | Erickson T E, Munoz-Rojas M, Kildisheva O A, et al. Benefits of adopting seed-based technologies for rehabilitation in the mining sector: A Pilbara perspective. Australian Journal of Botany, 2017, 65(8): 646-660. |
52 | Munoz-Rojas M, Roman J R, Roncero-Ramos B, et al. Cyanobacteria inoculation enhances carbon sequestration in soil substrates used in dryland restoration. Science of the Total Environment, 2018, 636: 1149-1154. |
53 | Munoz-Rojas M, Chilton A, Liyanage G S, et al. Effects of indigenous soil cyanobacteria on seed germination and seedling growth of arid species used in restoration. Plant and Soil, 2018, 429(1/2): 91-100. |
54 | Setterfield S A, Rossiter-Rachor N A, Hutley L B, et al. Turning up the heat: The impacts of Andropogon gayanus (gamba grass) invasion on fire behaviour in northern Australian savannas. Diversity and Distributions, 2010, 16(5): 854-861. |
55 | Rossiter-Rachor N A, Setterfield S A, Douglas M M, et al. Invasive Andropogon gayanus (gamba grass) is an ecosystem transformer of nitrogen relations in Australian savanna. Ecological Applications, 2009, 19(6): 1546-1560. |
56 | Luck L, Bellairs S M, Rossiter-Rachor N A. Residual herbicide treatments reduce Andropogon gayanus (gamba grass) recruitment for mine site restoration in northern Australia. Ecological Management & Restoration, 2019, 20(3): 214-221. |
57 | Dawes T Z. Reestablishment of ecological functioning by mulching and termite invasion in a degraded soil in an Australian savanna. Soil Biology & Biochemistry, 2010, 42(10): 1825-1834. |
58 | Cochrane T T, Azevedo L G D, Thomas D, et al. Land use and productive potential of American savannas//Tothill J C, Mott J C. Ecology and management of the world’s savannas. Canberra: Australian Academy of Science, 1985: 114-124. |
59 | Castro A A J F, Martins F R, Tamashiro J Y, et al. How rich is the flora of Brazilian cerrados. Annals of the Missouri Botanical Garden, 1999, 86(1): 192-224. |
60 | Kier G, Mutke J, Dinerstein E, et al. Global patterns of plant diversity and floristic knowledge. Journal of Biogeography, 2005, 32(7): 1107-1116. |
61 | Myers N, Mittermeier R A, Mittermeier C G, et al. Biodiversity hotspots for conservation priorities. Nature, 2000, 403(6772): 853-858. |
62 | Beuchle R, Grecchi R C, Shimabukuro Y E, et al. Land cover changes in the Brazilian Cerrado and Caatinga biomes from 1990 to 2010 based on a systematic remote sensing sampling approach. Applied Geography, 2015, 58: 116-127. |
63 | Overbeck G E, Velez-Martin E, Scarano F R, et al. Conservation in Brazil needs to include non-forest ecosystems. Diversity and Distributions, 2015, 21(12): 1455-1460. |
64 | Fernandes G W, Coelho M S, Machado R B, et al. Afforestation of savannas: An impending ecological disaster. Natureza & Conservacao, 2016, 14(2): 146-151. |
65 | Durigan G, De Siqueira M F, Franco G A D C. Threats to the cerrado remnants of the state of Sao Paulo, Brazil. Scientia Agricola, 2007, 64(4): 355-363. |
66 | Klink C A, Machado R B. Conservation of the Brazilian Cerrado. Conservation Biology, 2005, 19(3): 707-713. |
67 | Gorgone-Barbosa E, Pivello V R, Bautista S, et al. How can an invasive grass affect fire behavior in a tropical savanna? A community and individual plant level approach. Biological Invasions, 2015, 17(1): 423-431. |
68 | Hoffmann W A, Jaconis S, Mckinley K L, et al. Fuels or microclimate? Understanding the drivers of fire feedbacks at savanna-forest boundaries. Austral Ecology, 2012, 37(6): 634-643. |
69 | Hoffmann W A, Haridasan M. The invasive grass, Melinis minutiflora, inhibits tree regeneration in a Neotropical savanna. Austral Ecology, 2008, 33(1): 29-36. |
70 | Damasceno G, Souza L, Pivello V R, et al. Impact of invasive grasses on Cerrado under natural regeneration. Biological Invasions, 2018, 20(12): 3621-3629. |
71 | Lopes P G, Caldas Oliveira S C, Salles K A, et al. Allelopathy of a native shrub can help control invasive grasses at sites under ecological restoration in a Neotropical savanna. Plant Ecology & Diversity, 2018, 11(4): 527-538. |
72 | Assis G B, Pilon N A L, Siqueira M F, et al. Effectiveness and costs of invasive species control using different techniques to restore cerrado grasslands. Restoration Ecology, 2021, 29(S1): 1-33. |
73 | Passaretti R A, Pilon N A L, Durigan G. Weed control, large seeds and deep roots: Drivers of success in direct seeding for savanna restoration. Applied Vegetation Science, 2020, 23(3): 406-416. |
74 | Silva R R P, Vieira D L M. Direct seeding of 16 Brazilian savanna trees: Responses to seed burial, mulching and an invasive grass. Applied Vegetation Science, 2017, 20(3): 410-421. |
75 | Coutinho A G, Alves M, Sampaio A B, et al. Effects of initial functional-group composition on assembly trajectory in savanna restoration. Applied Vegetation Science, 2019, 22(1): 61-70. |
76 | Do Nascimento Amorim S P, Boechat C L, Luz Duarte L D S, et al. Grasses and legumes as cover crops affect microbial attributes in oxisoil in the Cerrado (savannah environment) in the Northeast region. Revista Caatinga, 2020, 33(1): 31-42. |
77 | Cava M G B, Pilon N A L, Ribeiro M C, et al. Abandoned pastures cannot spontaneously recover the attributes of old-growth savannas. Journal of Applied Ecology, 2018, 55(3): 1164-1172. |
78 | Starr C R, Correa R S, Filgueiras T D, et al. Plant colonization in a gravel mine revegetated with Stylosanthes spp. in a Neotropical savanna. Landscape and Ecological Engineering, 2013, 9(1): 189-201. |
79 | Ferreira M C, Walter B M T, Vieira D L M. Topsoil translocation for Brazilian savanna restoration: Propagation of herbs, shrubs, and trees. Restoration Ecology, 2015, 23(6): 723-728. |
80 | Correa R S, Do Carmo Balduino A P, Viana Teza C T, et al. Vegetation cover development resulting from different restoration approaches of exploited mines. Floresta E Ambiente, 2018, 25(4): 1-9. |
81 | Humphries T, Florentine S K, Dowling K, et al. Weed management for landscape scale restoration of global temperate grasslands. Land Degradation & Development, 2021, 32(3): 1090-1102. |
82 | Hassan R, Scholes R, Ash N. Ecosystems and human well-being: Current state and trends (Vol.1). Washington, D.C.: Island Press, 2005. |
83 | Hurka H, Friesen N, Bernhardt K G, et al. The Eurasian steppe belt: Status quo, origin and evolutionary history. Turczaninowia, 2019, 22(3): 5-71. |
84 | Werger M, Staalduinen M. Eurasian steppes. Ecological problems and livelihoods in a changing world. Dordrecht: Springer, 2012. |
85 | Li B. The rangeland degradation in North China and its preventive strategy. Scientia Agricultura Sinica, 1997, 30(6): 2-10. |
李博. 中国北方草地退化及其防治对策. 中国农业科学, 1997, 30(6): 2-10. | |
86 | Bai Y F, Zhao Y J, Wang Y, et al. Assessment of ecosystem services and ecological regionalization of grasslands support establishment of ecological security barriers in Northern China. Bulletin of Chinese Academy of Sciences, 2020, 35(6): 675-689. |
白永飞, 赵玉金, 王扬, 等. 中国北方草地生态系统服务评估和功能区划助力生态安全屏障建设. 中国科学院院刊, 2020, 35(6): 675-689. | |
87 | Pan Q M, Xue J G, Tao J, et al. Current status of grassland degradation and measures for grassland restoration in northern China. Chinese Science Bulletin, 2018, 63(17): 1642-1650. |
潘庆民, 薛建国, 陶金, 等. 中国北方草原退化现状与恢复技术. 科学通报, 2018, 63(17): 1642-1650. | |
88 | National Development and Reform Commission, Ministry of Natural Resources of China. Master plan of major projects for the protection and restoration of important national ecosystems (2021-2035). https://www.ndrc.gov.cn/xxgk/zcfb/tz/202006/P020200611354032680531.pdf, 2020-06-03. |
国家发展改革委, 自然资源部. 全国重要生态系统保护和修复重大工程总体规划(2021-2035年). https://www.ndrc.gov.cn/xxgk/zcfb/tz/202006/P020200611354032680531.pdf, 2020-06-03. | |
89 | Liu Y, Pan Q, Liu H, et al. Plant responses following grazing removal at different stocking rates in an Inner Mongolia grassland ecosystem. Plant and Soil, 2011, 340(1/2): 199-213. |
90 | Sun J, Ma B, Lu X. Grazing enhances soil nutrient effects: Trade-offs between aboveground and belowground biomass in alpine grasslands of the Tibetan Plateau. Land Degradation & Development, 2018, 29(2): 337-348. |
91 | Zhang Y, Zhao W. Vegetation and soil property response of short-time fencing in temperate desert of the Hexi Corridor, northwestern China. Catena, 2015, 133: 43-51. |
92 | Tao L B, Yu S, Wang G H, et al. Effects of enclosure on characteristics and stability of vegetation community of desert steppe in sandy area of Eastern Ningxia. Chinese Journal of Grassland, 2018, 40(2): 67-74. |
陶利波, 于双, 王国会, 等. 封育对宁夏东部风沙区荒漠草原植物群落特征及其稳定性的影响. 中国草地学报, 2018, 40(2): 67-74. | |
93 | Wu J B, Wang X D. Effect of enclosure ages on community characters and biomass of the degraded alpine steppe at the Northern Tibet. Acta Agrestia Sinica, 2017, 25(2): 261-266. |
吴建波, 王小丹. 围封年限对藏北退化高寒草原植物群落特征和生物量的影响. 草地学报, 2017, 25(2): 261-266. | |
94 | Xiao J Y, Pu X P, Xu C L. Effects of grazing prohibition on restoration of degraded grassland. Pratacultural Science, 2015, 32(1): 138-145. |
肖金玉, 蒲小鹏, 徐长林. 禁牧对退化草地恢复的作用. 草业科学, 2015, 32(1): 138-145. | |
95 | Zheng C L, Cao Z L, Wang X, et al. Effects of enclosure on vegetations recovery in desertified grassland in Hulunbeir. Science of Soil and Water Conservation, 2005, 3(3): 78-81. |
郑翠玲, 曹子龙, 王贤, 等. 围栏封育在呼伦贝尔沙化草地植被恢复中的作用. 中国水土保持科学, 2005, 3(3): 78-81. | |
96 | Hu Y F, Peng J J, Yuan S, et al. Influence of ecological restoration on vegetation and soil microbiological properties in alpine-cold semi-humid desertified land. Ecological Engineering, 2016, 94: 88-94. |
97 | Yang L N, Baoyin T. Study on biomass of Leymus chinensis community after different improving measures. Chinese Journal of Grassland, 2010, 32(1): 86-91. |
杨丽娜, 宝音陶格涛. 不同改良措施下羊草群落生物量的研究. 中国草地学报, 2010, 32(1): 86-91. | |
98 | Kalhoro S A, Xu X, Ding K, et al. The effects of different land uses on soil hydraulic properties in the Loess Plateau, Northern China. Land Degradation & Development, 2018, 29(11): 3907-3916. |
99 | Shan G L, Chu X H, Tian Q S, et al. Research on the dynamic changes of soil properties of typical steppe in the restoring process. Acta Prataculturae Sinica, 2012, 21(4): 1-9. |
单贵莲, 初晓辉, 田青松, 等. 典型草原恢复演替过程中土壤性状动态变化研究. 草业学报, 2012, 21(4): 1-9. | |
100 | Shi X M, Li X G, Li C T, et al. Grazing exclusion decreases soil organic C storage at an alpine grassland of the Qinghai-Tibetan Plateau. Ecological Engineering, 2013, 57: 183-187. |
101 | Wang X, Yang X, Wang L, et al. A six-year grazing exclusion changed plant species diversity of a Stipa breviflora desert steppe community, northern China. PeerJ, 2018, 6(6): 1-18. |
102 | Wang Y, Sun Y, Wang Z, et al. Grazing management options for restoration of alpine grasslands on the Qinghai-Tibet Plateau. Ecosphere, 2018, 9(11): 1-17. |
103 | Yuan Z Q, Epstein H, Li G Y. Grazing exclusion did not affect soil properties in alpine meadows in the Tibetan permafrost region. Ecological Engineering, 2020, 147(23): 1-8. |
104 | Deng L, Kim D G, Peng C, et al. Controls of soil and aggregate-associated organic carbon variations following natural vegetation restoration on the Loess Plateau in China. Land Degradation & Development, 2018, 29(11): 3974-3984. |
105 | Tai X, Epstein H E, Li B. Effects of grazing exclusion on spring and autumn pastures in arid regions of China: Insights from field surveys and landsat images. Agriculture Ecosystems & Environment, 2021, 310: 1-11. |
106 | Bai Y F, Pan Q M, Xing Q. Fundamental theories and technologies for optimizing the production functions and ecological functions in grassland ecosystems. Chinese Science Bulletin, 2016, 61(2): 201-212. |
白永飞, 潘庆民, 邢旗. 草地生产与生态功能合理配置的理论基础与关键技术. 科学通报, 2016, 61(2): 201-212. | |
107 | Li Q F, Zhao G, Zheng M A, et al. Delay grazing a practical approach to grassland environment protection and sustainable animal production in grassland of Northern China. Acta Agrestia Sinica, 2005(S1): 53-56, 66. |
李青丰, 赵钢, 郑蒙安, 等. 春季休牧对草原和家畜生产力的影响. 草地学报, 2005(S1): 53-56, 66. | |
108 | Ma Y S, Li S X, Wang Y L, et al. Effect of rest-grazing in the greenup period on degraded vegetation in alpine meadow. Acta Agrestia Sinica, 2017, 25(2): 290-295. |
马玉寿, 李世雄, 王彦龙, 等. 返青期休牧对退化高寒草甸植被的影响. 草地学报, 2017, 25(2): 290-295. | |
109 | Zhao G, Cao Z L, Li Q F. A freliminary study of the effects of deferred spring grazing on the pasture vegetation. Acta Agrestia Sinica, 2003(2): 183-188. |
赵钢, 曹子龙, 李青丰. 春季禁牧对内蒙古草原植被的影响. 草地学报, 2003(2): 183-188. | |
110 | Zhu L B, Zeng Z H, Zhao B P, et al. Effect of spring rest-grazing on steppe vegetation. Acta Agrestia Sinica, 2008(3): 278-282. |
朱立博, 曾昭海, 赵宝平, 等. 春季休牧对草地植被的影响. 草地学报, 2008(3): 278-282. | |
111 | Gu W R. Effects of seasonal delaying grazing on vegetation and soil under different grazing intensities. Urumqi: Xinjiang Agricultural University, 2013. |
古伟容. 不同放牧强度下季节性休牧对草地植被及土壤的影响. 乌鲁木齐: 新疆农业大学, 2013. | |
112 | Tao J S. Study on the effection about plant community characteristics among different time of rest-grazing on Leymus chinensis pasture. Lanzhou: Gansu Agricultural University, 2009. |
陶金山. 不同休牧时期对羊草草原群落特征影响的研究. 兰州: 甘肃农业大学, 2009. | |
113 | Zhang G R, Li W Q, Zhang F W, et al. Responses of key ecological attributes to multi-path restoration measures of degraded alpine meadows. Acta Ecologica Sinica, 2020, 40(18): 6293-6303. |
张光茹, 李文清, 张法伟, 等. 退化高寒草甸关键生态属性对多途径恢复措施的响应特征. 生态学报, 2020, 40(18): 6293-6303. | |
114 | Bai G, Bao Y, Du G, et al. Arbuscular mycorrhizal fungi associated with vegetation and soil parameters under rest grazing management in a desert steppe ecosystem. Mycorrhiza, 2013, 23(4): 289-301. |
115 | Li G, Wang M J, Zhang F C, et al. Effects of grazing rest in different seasons on soil properties of Calamagrostis angustifolia meadow in the Sanjiang plain. Heilongjiang Animal Science and Veterinary Medicine, 2013(1): 77-80. |
李钢, 王明君, 张风承, 等. 不同季节休牧对三江平原小叶章草甸土壤性状的影响. 黑龙江畜牧兽医, 2013(1): 77-80. | |
116 | Li Y J, Song X L, Xiu W M, et al. Effects of spring rest grazing on organic carbon storage in Leymus chinensis steppe in Inner Mongolia, China. Journal of Agro-Environment Science, 2013, 32(11): 2221-2230. |
李玉洁, 宋晓龙, 修伟明, 等. 春季休牧对内蒙古羊草草原有机碳储量的影响. 农业环境科学学报, 2013, 32(11): 2221-2230. | |
117 | Zhang Z Q, Jiang M D, Feng T J. An integrated analysis of rotational grazing and continuous grazing experiments in arid and semi-arid grasslands in northern China. Pratacultural Science, 2020, 37(11): 2366-2373. |
张智起, 姜明栋, 冯天骄. 划区轮牧还是连续放牧?—基于中国北方干旱半干旱草地放牧试验的整合分析. 草业科学, 2020, 37(11): 2366-2373. | |
118 | Ren J Z. Grazing, the basic form of grassland ecosystem and its transformation. Journal of Natural Resources, 2012, 27(8): 1259-1275. |
任继周. 放牧, 草原生态系统存在的基本方式—兼论放牧的转型. 自然资源学报, 2012, 27(8): 1259-1275. | |
119 | Wei Z J, Wu R T, Dabu X, et al. The influence of different grazing systems on soil physical and chemical properties in desert steppe. Grassland of China, 2005(5): 6-10. |
卫智军, 乌日图, 达布希拉图, 等. 荒漠草原不同放牧制度对土壤理化性质的影响. 中国草地, 2005(5): 6-10. | |
120 | Baoyin T, Li F Y. Can shallow plowing and harrowing facilitate restoration of Leymus chinensis grassland? Results from a 24-year monitoring program. Rangeland Ecology & Management, 2009, 62(4): 314-320. |
121 | Baoyin T, Liu M L. The study on biomass composition dynamics of community in degenerated steppe of Leymus chinensis after shallow ploughing. Journal of Natural Resources, 2003(5): 544-551. |
宝音陶格涛, 刘美玲. 退化羊草草原在浅耕翻处理后植物群落生物量组成动态研究. 自然资源学报, 2003(5): 544-551. | |
122 | Zong N, Shi P L, Jiang J, et al. Effects of shallow plowing on soil and plant community of degraded alpine meadow in Tibetan plateau. Pratacultural Science, 2014, 31(1): 8-14. |
宗宁, 石培礼, 蒋婧, 等. 浅耕对西藏高原退化草甸土壤和植物群落特征的影响. 草业科学, 2014, 31(1): 8-14. | |
123 | Qu W J, Song N P, Chen L, et al. Responses of two types of desertification grasslands in desert steppe to shallow ploughing. Research of Soil and Water Conservation, 2014, 21(1): 85-89, 94. |
曲文杰, 宋乃平, 陈林, 等. 荒漠草原两种沙化草地对浅耕翻的响应. 水土保持研究, 2014, 21(1): 85-89, 94. | |
124 | Zhang H S, Shao X Q, Liu G H, et al. Effects of enclosing and shallow ploughing as improvement technologies on the vegetation restoration of degraded Leymus chinensis (Trin.) Tzvel. meadow grassland. Acta Agrestia Sinica, 2010, 18(3): 339-344, 351. |
张洪生, 邵新庆, 刘贵河, 等. 围封、浅耕翻改良技术对退化羊草草地植被恢复的影响. 草地学报, 2010, 18(3): 339-344, 351. | |
125 | Shao Y Q, Liu Z L, Jia Z B, et al. Effect of different control measures on the soil cultured microorganisms flora in degraded grassland. Chinese Journal of Grassland, 2011, 33(5): 77-81. |
邵玉琴, 刘钟龄, 贾志斌, 等. 不同治理措施对退化草原土壤可培养微生物区系的影响. 中国草地学报, 2011, 33(5): 77-81. | |
126 | Sun G, Wu N, Luo P. Characteristics of soil nitrogen and carbon of pastures under different management in Northwestern Sichuan. Acta Phytoecologica Sinica, 2005(2): 304-310. |
孙庚, 吴宁, 罗鹏. 不同管理措施对川西北草地土壤氮和碳特征的影响. 植物生态学报, 2005(2): 304-310. | |
127 | Ma Z G, Wang Y Q. Rangeland improvement and sustainable utilization in Northern China. Hohhot: Inner Mongolia University Press, 2013. |
马志广, 王育青. 中国北方草原改良与可持续利用. 呼和浩特: 内蒙古大学出版社, 2013. | |
128 | Chen M. Technology of improvement of degraded grassland in Northern China. China Animal Husbandry Bulletin, 1999(6): 29. |
陈敏. 北方退化草地改良技术. 中国牧业通讯, 1999(6): 29. | |
129 | Zhang Y J, Zhou J Q, Yang G W, et al. Theory and application of no-tillage reseeding in degraded grasslands. Chinese Science Bulletin, 2020, 65(16): 1546-1555. |
张英俊, 周冀琼, 杨高文, 等. 退化草原植被免耕补播修复理论与实践. 科学通报, 2020, 65(16): 1546-1555. | |
130 | Liu H J, Chen Y W, Sun G F, et al. Effects of different organic-inorganic fertilizer combination ratios on rice yield and nutrient loss with surface runoff. Chinese Journal of Ecology, 2017, 36(2): 405-412. |
刘红江, 陈虞雯, 孙国峰, 等. 有机肥-无机肥不同配施比例对水稻产量和农田养分流失的影响. 生态学杂志, 2017, 36(2): 405-412. | |
131 | Yang Q, Wang W, Zeng H. Effects of nitrogen addition on the plant diversity and biomass of degraded grasslands of Nei Mongol, China. Acta Phytoecologica Sinica, 2018, 42(4): 430-441. |
杨倩, 王娓, 曾辉. 氮添加对内蒙古退化草地植物群落多样性和生物量的影响. 植物生态学报, 2018, 42(4): 430-441. | |
132 | Song J X, Lei X, Ye M Q, et al. Effects of bioorganic fertilizer on community diversity and production performance of degraded grassland. Acta Agrestia Sinica, 2019, 27(5): 1355-1363. |
宋君祥, 雷雄, 叶明清, 等. 生物有机肥对川西北退化草地群落结构和生产性能的影响. 草地学报, 2019, 27(5): 1355-1363. | |
133 | Jiang X, Ma J X. The impact of different factors on the outcomes of grassland ecological restoration to in China: A Meta-analysis. Acta Prataculturae Sinica, 2021, 30(2): 14-31. |
蒋翔, 马建霞. 我国草地生态恢复对不同因素响应的Meta分析. 草业学报, 2021, 30(2): 14-31. | |
134 | Albert A J, Kelemen A, Valko O, et al. Secondary succession in sandy old-fields: A promising example of spontaneous grassland recovery. Applied Vegetation Science, 2014, 17(2): 214-224. |
135 | Prach K, Fajmon K, Jongepierova I, et al. Landscape context in colonization of restored dry grasslands by target species. Applied Vegetation Science, 2015, 18(2): 181-189. |
136 | Ruprecht E. Successfully recovered grassland: A promising example from Romanian old-fields. Restoration Ecology, 2006, 14(3): 473-480. |
137 | Toeroek P, Vida E, Deak B, et al. Grassland restoration on former croplands in Europe: An assessment of applicability of techniques and costs. Biodiversity and Conservation, 2011, 20(11): 2311-2332. |
138 | Lengyel S, Varga K, Kosztyi B, et al. Grassland restoration to conserve landscape-level biodiversity: A synthesis of early results from a large-scale project. Applied Vegetation Science, 2012, 15(2): 264-276. |
139 | Baumann M, Kamp J, Poetzschner F, et al. Declining human pressure and opportunities for rewilding in the steppes of Eurasia. Diversity and Distributions, 2020, 26(9): 1058-1070. |
140 | Kamp J, Urazaliev R, Donald P F, et al. Post-Soviet agricultural change predicts future declines after recent recovery in Eurasian steppe bird populations. Biological Conservation, 2011, 144(11): 2607-2614. |
141 | Kurganova I, De Gerenyu V L, Kuzyakov Y. Large-scale carbon sequestration in post-agrogenic ecosystems in Russia and Kazakhstan. Catena, 2015, 133: 461-466. |
142 | Pazur R, Prishchepov A V, Myachina K, et al. Restoring steppe landscapes: Patterns, drivers and implications in Russia’s steppes. Landscape Ecology, 2021, 36(2): 407-425. |
143 | Parks Canada Agency. Parks Canada’s conservation and restoration program: Recovering species at risk in Grasslands National Park 2018. https://www.pc.gc.ca/en/agence-agency/bib-lib/rapports-reports/core-2018/pra-terr/pra3, 2018-06-07. |
144 | Wedin W F, Fales S, Berry W. Grassland quietness and strength for a new American agriculture. Madison: American Society of Agronomy, 2009. |
145 | Hruska T, Toledo D, Sierra-Corona R, et al. Social-ecological dynamics of change and restoration attempts in the Chihuahuan desert grasslands of Janos Biosphere Reserve, Mexico. Plant Ecology, 2017, 218(1): 67-80. |
146 | List R, Pacheco J, Ponce E, et al. The Janos Biosphere Reserve Northern Mexico. International Journal of Wilderness, 2010, 16(2): 35-41. |
147 | Ponce-Guevara E, Davidson A, Sierra-Corona R, et al. Interactive effects of black-tailed prairie dogs and cattle on shrub encroachment in a desert grassland ecosystem. PLoS One, 2016, 11(5): 1-11. |
148 | Sierra-Corona R, Davidson A, Fredrickson E L, et al. Black-tailed prairie dogs, cattle, and the conservation of North America’s arid grasslands. PLoS One, 2015, 10(3): 1-15. |
149 | Parks Canada Agency. A natural priority-A report on Parks Canada’s conservation and restoration program. https://www.pc.gc.ca/en/agence-agency/bib-lib/rapports-reports/core-2018, 2019-05-02. |
150 | Parks Canada Agency. Parks Canada’s conservation and restoration program: Restoring grasslands in Waterton Lakes National Park. https://www.pc.gc.ca/en/agence-agency/bib-lib/rapports-reports/core-2018/ouest-west/ouest-west4, 2018-08-28. |
151 | Parks Canada Agency. Waterton Lakes National Park of Canada draft management plan, 2021. https://www.pc.gc.ca/en/pn-np/ab/waterton/info/index/participation/ebauche-plan, 2021-09-27. |
152 | Miller C F. The evolving understanding of grassland restoration seeding protocols. Ecological Restoration, 2013, 31(2): 127-129. |
153 | Medan D, Torretta J P, Hodara K, et al. Effects of agriculture expansion and intensification on the vertebrate and invertebrate diversity in the pampas of Argentina. Biodiversity and Conservation, 2011, 20(13): 3077-3100. |
154 | Viglizzo E F, Lertora F, Pordomingo A J, et al. Ecological lessons and applications from one century of low external-input farming in the pampas of Argentina. Agriculture Ecosystems & Environment, 2001, 83(1/2): 65-81. |
155 | Villamil C B. Grassland restoration in the Pampas region//Leadlay E. Building a sustainable future: The role of botanic gardens. Proceedings of the 3rd Global Botanic Gardens Congress, Wuhan, China, 16-20 April, 2007. Richmond: Botanic Gardens Conservation International, 2007. |
156 | Villalobos A, Zalba S M. Continuous feral horse grazing and grazing exclusion in mountain pampean grasslands in Argentina. Acta Oecologica-International Journal of Ecology, 2010, 36(5): 514-519. |
157 | Tognetti P M, Chaneton E J. Invasive exotic grasses and seed arrival limit native species establishment in an old-field grassland succession. Biological Invasions, 2012, 14(12): 2531-2544. |
158 | Tognetti P M, Chaneton E J, Omacini M, et al. Exotic vs. native plant dominance over 20 years of old-field succession on set-aside farmland in Argentina. Biological Conservation, 2010, 143(11): 2494-2503. |
159 | Puthod G, Loydi A, Garcia A, et al. Enhancement of palatable perennial grasses by disturbance and seed addition in degraded native grasslands of the dry pampas in Central Argentina. Arid Land Research and Management, 2020, 34(4): 445-459. |
160 | Fairbanks D, Thompson M W, Vink D E, et al. The South African land-cover characteristics database: A synopsis of the landscape. South African Journal of Science, 2000, 96(2): 69-82. |
161 | Mucina L, Rutherford M C. The vegetation of South Africa, Lesotho and Swaziland. Pretoria: South African National Biodiversity Institute, 2006. |
162 | Dupreez C C, Dutoit M E. Effect of cultivation on the nitrogen fertility of selected agro-ecosystems in South Africa. Fertilizer Research, 1995, 42(1/2/3): 27-32. |
163 | Lobe I, Amelung W, Du Preez C C. Losses of carbon and nitrogen with prolonged arable cropping from sandy soils of the South African Highveld. European Journal of Soil Science, 2001, 52(1): 93-101. |
164 | Bredenkamp G J, Brown L R. A reappraisal of Acocks’ Bankenveld: Origin and diversity of vegetation types. South African Journal of Botany, 2003, 69(1): 7-26. |
165 | Taljaard D J. The evaluation of different technologies to restore old cultivated lands. Potchefstroom: North West University, 2008. |
166 | Hessing M B, Johnson C D. Early secondary succession following restoration and reseeding treatments in Northern Arizona. Journal of Range Management, 1982, 35(5): 667-669. |
167 | Van Oudtshoorn F, Brown L, Kellner K. The effect of reseeding methods on secondary succession during cropland restoration in the Highveld region of South Africa. African Journal of Range & Forage Science, 2011, 28(1): 1-8. |
168 | Preger A C, Koesters R, Du Preez C C, et al. Carbon sequestration in secondary pasture soils: A chronosequence study in the South African Highveld. European Journal of Soil Science, 2010, 61(4): 551-562. |
169 | Koesters R, Preger A C, Du Preez C C, et al. Re-aggregation dynamics of degraded cropland soils with prolonged secondary pasture management in the South African Highveld. Geoderma, 2013, 192: 173-181. |
170 | Lauer F, Koesters R, Du Preez C C, et al. Microbial residues as indicators of soil restoration in South African secondary pastures. Soil Biology & Biochemistry, 2011, 43(4): 787-794. |
171 | Baer S G, Bach E M, Meyer C K, et al. Belowground ecosystem recovery during grassland restoration: South African highveld compared to US tallgrass prairie. Ecosystems, 2015,18(3): 390-403. |
172 | Scott D A, Bach E M, Du Preez C C, et al. Mechanisms influencing physically sequestered soil carbon in temperate restored grasslands in South Africa and North America. Biogeochemistry, 2021, 156(1): 131-143. |
173 | Bardgett R D, Bullock J M, Lavorel S, et al. Combatting global grassland degradation. Nature Reviews Earth & Environment, 2021, 2(10): 720-735. |
174 | Ding H M. UN General Assembly announces UN Decade of Ecosystem Restoration resolution. http://www.greentimes.com/green/news/gjhz/wsdt/content/2019-03/14/content_415721.htm, 2019-03-14. |
丁洪美. 联合国大会宣布“联合国生态系统恢复十年”决议. http://www.greentimes.com/green/news/gjhz/wsdt/content/2019-03/14/content_415721.htm, 2019-03-14. | |
175 | Buisson E, Fidelis A, Overbeck G E, et al. A research agenda for the restoration of tropical and subtropical grasslands and savannas. Restoration Ecology, 2021, 29(S1): e13292. |
176 | Temperton V M, Buchmann N, Buisson E, et al. Step back from the forest and step up to the Bonn challenge: How a broad ecological perspective can promote successful landscape restoration. Restoration Ecology, 2019, 27(4): 705-719. |
177 | Baer S G, Adams T, Scott D A, et al. Soil heterogeneity increases plant diversity after 20 years of manipulation during grassland restoration. Ecological Applications, 2020, 30(1): 1-15. |
178 | Leahy M J, Buback S, Maginel C. Twenty years of tallgrass prairie reconstruction and restoration at Pawnee Prairie Natural Area, Missouri. Natural Areas Journal, 2020, 40(1): 62-71. |
179 | Stover H J, Henry H A L. Legacy effects of soil homogenization on tallgrass prairie restoration: Toward resolved understanding of the relationship between soil heterogeneity and plant species diversity. Restoration Ecology, 2020, 28(1): 93-103. |
180 | Shang Z H, Dong S K, Zhou H K, et al. Synthesis-review for research cases of grassland ecological restoration: Years, effect and method. Acta Ecologica Sinica, 2017, 37(24): 8148-8160. |
尚占环, 董世魁, 周华坤, 等. 退化草地生态恢复研究案例综合分析: 年限、效果和方法. 生态学报, 2017, 37(24): 8148-8160. | |
181 | He N, Wu L, Wang Y, et al. Changes in carbon and nitrogen in soil particle-size fractions along a grassland restoration chronosequence in northern China. Geoderma, 2009, 150(3/4): 302-308. |
182 | Liu W, Wei J, Cheng J, et al. Profile distribution of soil inorganic carbon along a chronosequence of grassland restoration on a 22-year scale in the Chinese Loess Plateau. Catena, 2014, 121: 321-329. |
183 | Wu X, Li Z, Fu B, et al. Restoration of ecosystem carbon and nitrogen storage and microbial biomass after grazing exclusion in semi-arid grasslands of Inner Mongolia. Ecological Engineering, 2014, 73: 395-403. |
184 | Jiang S J, Feng T J, Liu G H, et al. A bibliometric analysis of the application of grassland ecological restoration technology. Pratacultural Science, 2020, 37(4): 685-702. |
蒋胜竞, 冯天骄, 刘国华, 等. 草地生态修复技术应用的文献计量分析. 草业科学, 2020, 37(4): 685-702. | |
185 | Kollmann J, Meyer S T, Bateman R, et al. Integrating ecosystem functions into restoration ecology recent advances and future directions. Restoration Ecology, 2016, 24(6): 722-730. |
186 | Wright J, Symstad A, Bullock J M, et al. Restoring biodiversity and ecosystem function: Will an integrated approach improve results?//Naeem E B S, Bunker D E, Hector A, et al. Biodiversity, ecosystem functioning and human wellbeing. New York: Oxford University Press, 2009: 167-177. |
187 | Young T P, Petersen D A, Clary J J. The ecology of restoration: Historical links, emerging issues and unexplored realms. Ecology Letters, 2005, 8(6): 662-673. |
188 | Van Andel J, Aronson J. Restoration ecology: The new frontier 2nd edition. Oxford: Blackwell Publishing, 2012. |
189 | Majer J D. Animals in the restoration process-progressing the trends. Restoration Ecology, 2009, 17(3): 315-319. |
190 | Ruiz-Jaen M C, Aide T M. Restoration success: How is it being measured? Restoration Ecology, 2005, 13(3): 569-577. |
191 | Society for Ecological Restoration International Science, Policy Working Group. The SER International Primer on Ecological Restoration. https://cdn.ymaws.com/www.ser.org/resource/resmgr/custompages/publications/SER_Primer/ser_primer.pdf, 2004. |
192 | Choi Y D, Temperton V M, Allen E B, et al. Ecological restoration for future sustainability in a changing environment. Ecoscience, 2008, 15(1): 53-64. |
193 | Ehrenfeld J G. Defining the limits of restoration: The need for realistic goals. Restoration Ecology, 2000, 8(1): 2-9. |
194 | Walden E, Lindborg R. Facing the future for grassland restoration—What about the farmers? Journal of Environmental Management, 2018, 227: 305-312. |
195 | Wang S K, Zuo X A, Zhao X Y, et al. Responses of soil fungal community to the sandy grassland restoration in Horqin Sandy Land, northern China. Environmental Monitoring and Assessment, 2016, 188(21): 1-13. |
196 | Yuan J, Ouyang Z, Zheng H, et al. Effects of different grassland restoration approaches on soil properties in the southeastern Horqin sandy land, northern China. Applied Soil Ecology, 2012, 61(S1): 34-39. |
197 | Valko O, Deak B, Torok P, et al. Dynamics in vegetation and seed bank composition highlight the importance of post-restoration management in sown grasslands. Restoration Ecology, 2021, 29(S1): e13192. |
198 | Archer S R, Andersen E M, Predick K I, et al. Woody plant encroachment: Causes and consequences//Briske D D. Rangeland Systems: Processes, Management and Challenges. New York: Springer, 2017: 25-84. |
199 | Zhang G L, Biradar C M, Xiao X M, et al. Exacerbated grassland degradation and desertification in Central Asia during 2000-2014. Ecological Applications, 2018, 28(2): 442-456. |
200 | Briggs J M, Knapp A K, Blair J M, et al. An ecosystem in transition. Causes and consequences of the conversion of mesic grassland to shrubland. Bioscience, 2005, 55(3): 243-254. |
201 | Peters D P C, Yao J, Sala O E, et al. Directional climate change and potential reversal of desertification in arid and semiarid ecosystems. Global Change Biology, 2012, 18(1): 151-163. |
202 | Kane K, Debinski D M, Anderson C, et al. Using regional climate projections to guide grassland community restoration in the face of climate change. Frontiers in Plant Science, 2017, 8: 1-11. |
[1] | 杨策, 张玉雪, 张鹤, 郑春燕, 朱峰. 牧草混播生态系统功能研究进展[J]. 草业学报, 2022, 31(9): 206-219. |
[2] | 韩枫, 张志涛, 张鑫, 王建浩, 王浩. 美国公共牧草地法治管理进程的经验借鉴与若干启示[J]. 草业学报, 2022, 31(9): 220-232. |
[3] | 厉方桢, 钟华平, 欧阳克蕙, 赵小敏, 李愈哲. 基于机器学习的阿勒泰地区草地地下生物量估测与数字制图[J]. 草业学报, 2022, 31(8): 13-23. |
[4] | 彭艳, 孙晶远, 马素洁, 王向涛, 魏学红, 孙磊. 藏北不同退化阶段高寒草甸植物群落特征与土壤养分特性[J]. 草业学报, 2022, 31(8): 49-60. |
[5] | 赵翊含, 侯蒙京, 冯琦胜, 高宏元, 梁天刚, 贺金生, 钱大文. 基于Landsat 8和随机森林的青海门源天然草地地上生物量遥感估算[J]. 草业学报, 2022, 31(7): 1-14. |
[6] | 王瑞泾, 冯琦胜, 金哲人, 刘洁, 赵玉婷, 葛静, 梁天刚. 青藏高原退化草地的恢复潜势研究[J]. 草业学报, 2022, 31(6): 11-22. |
[7] | 沈江龙, 陈吉军, 阿布都瓦里 ·伊玛木, 杨坤, 郭雅婷, 郑江华. 新疆荒漠草地亮柔伪步甲虫害与草地变化关系研究—以昌吉州南山草场为例[J]. 草业学报, 2022, 31(6): 163-177. |
[8] | 陆姣云, 张鹤山, 田宏, 熊军波, 刘洋. 氮沉降影响草地生态系统土壤氮循环过程的研究进展[J]. 草业学报, 2022, 31(6): 221-234. |
[9] | 张晓宁, 李晓丹, 年丽丽, 杨莹博, 刘学录. 基于文献计量的草地生态系统水源涵养功能研究现状[J]. 草业学报, 2022, 31(6): 35-49. |
[10] | 秦格霞, 吴静, 李纯斌, 沈帅杰, 李怀海, 杨道涵, 焦美榕, 祁琦. 不同草地类型WOFOST模型参数敏感性分析[J]. 草业学报, 2022, 31(5): 13-25. |
[11] | 金有顺, 侯扶江. 放牧家畜养分消化率的测定[J]. 草业学报, 2022, 31(5): 200-212. |
[12] | 王亚妮, 胡宜刚, 王增如, 李以康, 张振华, 周华坤. 沙化和人工植被重建对高寒草地土壤细菌群落特征的影响[J]. 草业学报, 2022, 31(5): 26-39. |
[13] | 刘咏梅, 董幸枝, 龙永清, 朱志梅, 王雷, 盖星华, 赵樊, 李京忠. 退化高寒草甸狼毒群落分类特征及其环境影响因子[J]. 草业学报, 2022, 31(4): 1-11. |
[14] | 秦格霞, 吴静, 李纯斌, 吉珍霞, 邱政超, 李颖. 基于机器学习算法的天祝藏族自治县草地地上生物量反演[J]. 草业学报, 2022, 31(4): 177-188. |
[15] | 张彩荷, 李纯斌, 吴静. 基于草原综合顺序分类法的中国山地草地亚类分类研究[J]. 草业学报, 2022, 31(3): 16-25. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||