草业学报 ›› 2022, Vol. 31 ›› Issue (12): 17-30.DOI: 10.11686/cyxb2021470
范晓敏1(), 井新1(), 肖博文1, 马小亮1, 贺金生1,2
收稿日期:
2021-12-14
修回日期:
2022-04-22
出版日期:
2022-12-20
发布日期:
2022-10-17
通讯作者:
井新
作者简介:
E-mail: jingx@lzu.edu.cn基金资助:
Xiao-min FAN1(), Xin JING1(), Bo-wen XIAO1, Xiao-liang MA1, Jin-sheng HE1,2
Received:
2021-12-14
Revised:
2022-04-22
Online:
2022-12-20
Published:
2022-10-17
Contact:
Xin JING
摘要:
明确生态系统服务时空变化及驱动因素是认识生态系统服务维持和提升的基础。高寒地区是生态系统服务供给的热点,同时也是气候变化的敏感、脆弱区。土地利用和气候变化在高寒生态系统服务时空变化中的作用尚缺少系统性研究。因此,本研究基于生态系统服务模型和广义线性模型,以青藏高原东北部的海南、海北州为案例,评估了2000-2015年7项生态系统服务及生态系统多服务性的时空变化,并分析各驱动因素的相对重要性及气候与土地利用变化的相互作用。结果表明:从2000到2015年,生态系统服务总体呈南部增加,北部减少的趋势。食物供给受土地利用变化影响最大(相对贡献=34%),净生态系统生产力(NEP)受温度变化的影响最大(相对贡献=77%),水质净化(氮保留、磷保留)、土壤保持、水源供给、水源涵养受降水变化的影响最大(相对贡献分别为63%、48%、74%、86%和75%),生态系统多服务性受降水变化影响最大。本研究中,除土壤保持外,气候(降水、温度)变化对其他生态系统服务及生态系统多服务性的作用随土地利用变化而变化(交互作用,P<0.001)。结果表明,实现生态系统服务可持续发展不仅要关注土地利用变化,同时应关注气候与土地利用变化的相互作用,优化生态系统服务的时空配置,以提升高寒地区生态系统的多服务性。
范晓敏, 井新, 肖博文, 马小亮, 贺金生. 气候和土地利用变化共同驱动青海海南、海北州生态系统服务的时空变化[J]. 草业学报, 2022, 31(12): 17-30.
Xiao-min FAN, Xin JING, Bo-wen XIAO, Xiao-liang MA, Jin-sheng HE. Climate and land-use change jointly determine the spatial-temporal changes of ecosystem services in Hainan and Haibei Tibetan Autonomous Prefectures, Qinghai Province[J]. Acta Prataculturae Sinica, 2022, 31(12): 17-30.
数据 Data | 缩写 Abbreviation | 分辨率 Resolution | 年份 Year | 数据来源 Data source |
---|---|---|---|---|
数字高程模型Digital elevation model | DEM | 30 m | - | 谷歌地球引擎Google Earth Engine (SRTM V3) |
植被归一化指数Normalized difference vegetation index | NDVI | 250 m | 2000,2015 | 谷歌地球引擎Google Earth Engine (MOD13Q1.006) |
叶面积指数Leaf area index | LAI | 500 m | 2000,2015 | 谷歌地球引擎Google Earth Engine (GEE) (MOD15A2H.006) |
净初级生产力Net primary production | NPP | 500 m | 2000,2015 | 美国国家航空航天局地球观测系统数据与信息中心NASA’s Earth Observing System Data and Information System (https://doi.org/10.5067/MODIS/MOD17A3HGF.006) |
土地利用Land-use | - | 1 km | 2000,2015 | 资源环境科学与数据中心Resource and Environment Science and Data Center (https://www.resdc.cn/Default.aspx) |
土壤数据Soil data | - | 1 km | - | 世界土壤数据库Harmonized World Soil Database (http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/) |
行政边界数据Administrative boundaries data | - | - | 2017 | 国家青藏高原科学数据中心National Tibetan Plateau/Third Pole Environment Data Center (http://data.tpdc.ac.cn/zh-hans/) |
降水Precipitation | Precip | - | 2000,2015 | 中国气象数据网China Meteorological Data Service Center (http://data.cma.cn) |
温度Temperature | Tem | - | 2000,2015 | 中国气象数据网China Meteorological Data Service Center (http://data.cma.cn) |
人口密度Population density | PD | 1 km | 2000,2015 | 世界人口数据库World Population Database (https://www.worldpop.org/project/categories?id=3) |
农产品、畜产品Farm and livestock products | - | - | 2000,2015 | 青海统计年鉴Qinghai Statistical Yearbook |
表1 数据详情及来源
Table 1 Data details and sources
数据 Data | 缩写 Abbreviation | 分辨率 Resolution | 年份 Year | 数据来源 Data source |
---|---|---|---|---|
数字高程模型Digital elevation model | DEM | 30 m | - | 谷歌地球引擎Google Earth Engine (SRTM V3) |
植被归一化指数Normalized difference vegetation index | NDVI | 250 m | 2000,2015 | 谷歌地球引擎Google Earth Engine (MOD13Q1.006) |
叶面积指数Leaf area index | LAI | 500 m | 2000,2015 | 谷歌地球引擎Google Earth Engine (GEE) (MOD15A2H.006) |
净初级生产力Net primary production | NPP | 500 m | 2000,2015 | 美国国家航空航天局地球观测系统数据与信息中心NASA’s Earth Observing System Data and Information System (https://doi.org/10.5067/MODIS/MOD17A3HGF.006) |
土地利用Land-use | - | 1 km | 2000,2015 | 资源环境科学与数据中心Resource and Environment Science and Data Center (https://www.resdc.cn/Default.aspx) |
土壤数据Soil data | - | 1 km | - | 世界土壤数据库Harmonized World Soil Database (http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/) |
行政边界数据Administrative boundaries data | - | - | 2017 | 国家青藏高原科学数据中心National Tibetan Plateau/Third Pole Environment Data Center (http://data.tpdc.ac.cn/zh-hans/) |
降水Precipitation | Precip | - | 2000,2015 | 中国气象数据网China Meteorological Data Service Center (http://data.cma.cn) |
温度Temperature | Tem | - | 2000,2015 | 中国气象数据网China Meteorological Data Service Center (http://data.cma.cn) |
人口密度Population density | PD | 1 km | 2000,2015 | 世界人口数据库World Population Database (https://www.worldpop.org/project/categories?id=3) |
农产品、畜产品Farm and livestock products | - | - | 2000,2015 | 青海统计年鉴Qinghai Statistical Yearbook |
年份 Year | 土地利用方式 Type of land-use | 2015 | 减少 Decrease | |||||||
---|---|---|---|---|---|---|---|---|---|---|
草地Grassland | 耕地 Cropland | 林地 Woodland | 水域 Water | 城乡用地 Built-up land | 未利用土地 Unused land | |||||
HC | MC | LC | ||||||||
2000 | HC | 9268 | 31 | 6 | 56 | 3 | 9 | 3 | 0 | 108 |
MC | 202 | 21173 | 35 | 37 | 0 | 14 | 22 | 0 | 310 | |
LC | 14 | 74 | 13172 | 21 | 0 | 11 | 30 | 7 | 157 | |
耕地Cropland | 6 | 2 | 0 | 2706 | 0 | 4 | 7 | 0 | 19 | |
林地Woodland | 7 | 0 | 2 | 5 | 8667 | 19 | 0 | 0 | 33 | |
水域Water | 1 | 0 | 0 | 0 | 0 | 5880 | 1 | 22 | 24 | |
城乡用地Built-up land | 0 | 0 | 0 | 0 | 0 | 0 | 137 | 0 | 0 | |
未利用土地Unused land | 7 | 12 | 27 | 2 | 0 | 67 | 7 | 16285 | 122 | |
增加Increase | 237 | 118 | 71 | 121 | 3 | 124 | 70 | 29 | ||
净增加Net increase | 129 | -192 | -86 | 102 | -30 | 100 | 70 | -93 |
表2 2000-2015年研究区土地利用转移矩阵
Table 2 The transfer matrix of land-use in the study area from 2000 to 2015 (area, km2)
年份 Year | 土地利用方式 Type of land-use | 2015 | 减少 Decrease | |||||||
---|---|---|---|---|---|---|---|---|---|---|
草地Grassland | 耕地 Cropland | 林地 Woodland | 水域 Water | 城乡用地 Built-up land | 未利用土地 Unused land | |||||
HC | MC | LC | ||||||||
2000 | HC | 9268 | 31 | 6 | 56 | 3 | 9 | 3 | 0 | 108 |
MC | 202 | 21173 | 35 | 37 | 0 | 14 | 22 | 0 | 310 | |
LC | 14 | 74 | 13172 | 21 | 0 | 11 | 30 | 7 | 157 | |
耕地Cropland | 6 | 2 | 0 | 2706 | 0 | 4 | 7 | 0 | 19 | |
林地Woodland | 7 | 0 | 2 | 5 | 8667 | 19 | 0 | 0 | 33 | |
水域Water | 1 | 0 | 0 | 0 | 0 | 5880 | 1 | 22 | 24 | |
城乡用地Built-up land | 0 | 0 | 0 | 0 | 0 | 0 | 137 | 0 | 0 | |
未利用土地Unused land | 7 | 12 | 27 | 2 | 0 | 67 | 7 | 16285 | 122 | |
增加Increase | 237 | 118 | 71 | 121 | 3 | 124 | 70 | 29 | ||
净增加Net increase | 129 | -192 | -86 | 102 | -30 | 100 | 70 | -93 |
因素 Factor | 食物供给 Food supply | 净生态系统生产力NEP | 氮保留 N retention | 磷保留 P retention | 土壤保持 Soil retention | 水源供给 Water yield | 水源涵养 Water retention | MESLI |
---|---|---|---|---|---|---|---|---|
降水Precipitation (P) | -0.140*** | -0.025*** | 0.461*** | 0.300*** | 0.526*** | 1.016*** | 0.535*** | 0.782*** |
温度Temperature (T) | 0.217*** | 0.394*** | 0.098*** | 0.110*** | 0.029*** | -0.383*** | -0.001 | 0.019*** |
人口密度Population density | 0.009*** | -0.013*** | -0.009*** | -0.008*** | 0.008*** | 0.008*** | -0.001 | -0.003** |
土地利用Land-use (L) | 0.161*** | 0.034*** | 0.157*** | 0.213*** | -0.003 | 0.040*** | 0.049*** | 0.104*** |
降水×土地利用P×L | -0.207*** | 0.042*** | -0.014*** | -0.077*** | -0.012*** | 0.050*** | 0.052*** | 0.042*** |
温度×土地利用T×L | 0.145*** | -0.024*** | -0.035*** | 0.035*** | -0.005 | -0.079*** | -0.044*** | -0.074*** |
表3 2000-2015年生态系统服务变化的影响因素
Table 3 Driving factors of ecosystem services in the period 2000-2015
因素 Factor | 食物供给 Food supply | 净生态系统生产力NEP | 氮保留 N retention | 磷保留 P retention | 土壤保持 Soil retention | 水源供给 Water yield | 水源涵养 Water retention | MESLI |
---|---|---|---|---|---|---|---|---|
降水Precipitation (P) | -0.140*** | -0.025*** | 0.461*** | 0.300*** | 0.526*** | 1.016*** | 0.535*** | 0.782*** |
温度Temperature (T) | 0.217*** | 0.394*** | 0.098*** | 0.110*** | 0.029*** | -0.383*** | -0.001 | 0.019*** |
人口密度Population density | 0.009*** | -0.013*** | -0.009*** | -0.008*** | 0.008*** | 0.008*** | -0.001 | -0.003** |
土地利用Land-use (L) | 0.161*** | 0.034*** | 0.157*** | 0.213*** | -0.003 | 0.040*** | 0.049*** | 0.104*** |
降水×土地利用P×L | -0.207*** | 0.042*** | -0.014*** | -0.077*** | -0.012*** | 0.050*** | 0.052*** | 0.042*** |
温度×土地利用T×L | 0.145*** | -0.024*** | -0.035*** | 0.035*** | -0.005 | -0.079*** | -0.044*** | -0.074*** |
图4 各因子对生态系统服务时空变化的相对重要性FS: 食物供给 Food supply; NEP: 净生态系统生产力Net ecosystem productivity; NR: 氮保留 N retention; PR: 磷保留P retention; SR: 土壤保持Soil retention;WY: 水源供给Water yield; WR: 水源涵养Water retention; MESLI: 多重生态系统服务景观指数Multiple ecosystem services landscape index; 各因子及生态系统服务均由绝对变化值进行标准化处理,参见方法1.5 The changes in absolute values of predictors and ecosystem services were standardized, see method 1.5.
Fig.4 Relative importance of each predictors to the spatial-temporal changes of ecosystem services
1 | Costanza R, d’Arge R, de Groot R, et al. The value of the world’s ecosystem services and natural capital. Nature, 1997, 387: 253-260. |
2 | Millennium Ecosystem Assessment. Ecosystems and human well-being: Synthesis. Washington, DC: Island Press, 2005. |
3 | Jing X, He J S. Relationship between biodiversity, ecosystem multifunctionality and multiserviceability: Literature overview and research advances. Chinese Journal of Plant Ecology, 2021, 45(10): 1094-1111. |
井新, 贺金生. 生物多样性与生态系统多功能性和多服务性的关系: 回顾与展望. 植物生态学报, 2021, 45(10): 1094-1111. | |
4 | Díaz S, Settele J, Brondízio E S, et al. Pervasive human-driven decline of life on earth points to the need for transformative change. Science, 2019, 366(6471): eaax3100, DOI: 10.1126/science.aax3100. |
5 | Cavanagh R D, Melbourne-Thomas J, Grant S M, et al. Future risk for Southern Ocean ecosystem services under climate change. Frontiers in Marine Science, 2021, 7: 615214, DOI: 10.3389/fmars.2020.615214. |
6 | Doney S C, Ruckelshaus M, Duffy J E, et al. Climate change impacts on marine ecosystems. Annual Review of Marine Science, 2012, 4: 11-37. |
7 | Nolan C, Overpeck J T, Allen J R M, et al. Past and future global transformation of terrestrial ecosystems under climate change. Science, 2018, 361(6405): 920-923. |
8 | Foley J A, Defries R, Asner G P, et al. Global consequences of land use. Science, 2005, 309(5734): 570-574. |
9 | Polasky S, Nelson E, Pennington D, et al. The impact of land-use change on ecosystem services, biodiversity and returns to landowners: A case study in the state of Minnesota. Environmental & Resource Economics, 2011, 48(2): 219-242. |
10 | Su S L, Li D L, Hu Y N, et al. Spatially non-stationary response of ecosystem service value changes to urbanization in Shanghai, China. Ecological Indicators, 2014, 45: 332-339. |
11 | Wang S J, Liu Z T, Chen Y X, et al. Factors influencing ecosystem services in the Pearl River Delta, China: Spatiotemporal differentiation and varying importance. Resources Conservation and Recycling, 2021, 168: 105477, DOI: 10.1016/j.resconrec.2021.105477. |
12 | Zhang M Y, Wang K L, Liu H Y, et al. Effect of ecological engineering projects on ecosystem services in a karst region: A case study of northwest Guangxi, China. Journal of Cleaner Production, 2018, 183: 831-842. |
13 | Samal N R, Wollheim W M, Zuidema S, et al. A coupled terrestrial and aquatic biogeophysical model of the Upper Merrimack River watershed, New Hampshire, to inform ecosystem services evaluation and management under climate and land-cover change. Ecology and Society, 2017, 22(4): 18, DOI: 10.5751/ES-09662-220418. |
14 | Su C H, Dong M, Fu B J, et al. Scale effects of sediment retention, water yield, and net primary production: A case-study of the Chinese Loess Plateau. Land Degradation & Development, 2020, 31(11): 1408-1421. |
15 | Anderegg W R L, Kane J M, Anderegg L D L. Consequences of widespread tree mortality triggered by drought and temperature stress. Nature Climate Change, 2013, 3(1): 30-36. |
16 | van Mantgem P J, Stephenson N L, Byrne J C, et al. Widespread increase of tree mortality rates in the western United States. Science, 2009, 323(5913): 521-524. |
17 | Zhu Z C, Piao S L, Myneni R B, et al. Greening of the earth and its drivers. Nature Climate Change, 2016, 6(8): 791-795. |
18 | Ding J Z, Li F, Yang G B, et al. The permafrost carbon inventory on the Tibetan Plateau: A new evaluation using deep sediment cores. Global Change Biology, 2016, 22(8): 2688-2701. |
19 | Xu X D, Lu C G, Shi X H, et al. World water tower: An atmospheric perspective. Geophysical Research Letters, 2008, 35(20): L20815, DOI: 10.1029/2008GL035867. |
20 | Li S C, Zhang Y L, Wang Z F, et al. Mapping human influence intensity in the Tibetan Plateau for conservation of ecological service functions. Ecosystem Services, 2018, 30: 276-286. |
21 | Li S C, Zhang H, Zhou X W, et al. Enhancing protected areas for biodiversity and ecosystem services in the Qinghai Tibet Plateau. Ecosystem Services, 2020, 43: 101090, DOI: 10.1016/j.ecoser.2020.101090. |
22 | He J S, Dong S K, Shang Z H, et al. Above-belowground interactions in alpine ecosystems on the roof of the world. Plant and Soil, 2021, 458(1/2): 1-6. |
23 | Villa F, Bagstad K J, Voigt B, et al. A methodology for adaptable and robust ecosystem services assessment. PLoS One, 2014, 9(3): e91001, DOI: 10.1371/journal.pone.0091001. |
24 | Sharp R, Tallis H T, Ricketts T, et al. InVEST 3.7.0 User’s Guide. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund, 2018. |
25 | Sherrouse B C, Clement J M, Semmens D J. A GIS application for assessing, mapping, and quantifying the social values of ecosystem services. Applied Geography, 2011, 31(2): 748-760. |
26 | Ouyang Z Y, Zheng H, Xiao Y, et al. Improvements in ecosystem services from investments in natural capital. Science, 2016, 352(6292): 1455-1459. |
27 | Wu W H, Peng J, Liu Y X, et al. Tradeoffs and synergies between ecosystem services in Ordos City. Progress in Geography, 2017, 36(12): 1571-1581. |
武文欢, 彭建, 刘焱序, 等. 鄂尔多斯市生态系统服务权衡与协同分析. 地理科学进展, 2017, 36(12): 1571-1581. | |
28 | Raich J W, Potter C S, Bhagawati D. Interannual variability in global soil respiration, 1980-94. Global Change Biology, 2002, 8(8): 800-812. |
29 | Bond-Lamberty B, Wang C K, Gower S T. A global relationship between the heterotrophic and autotrophic components of soil respiration? Global Change Biology, 2004, 10(10): 1756-1766. |
30 | Zhou X F, Yu F, Cao G Z, et al. Spatiotemporal features of carbon source-sink and its relationship with climate factors in Qinghai-Tibet Plateau grassland ecosystem during 2001-2015. Research of Soil and Water Conservation, 2019, 26(1): 76-81. |
周夏飞, 於方, 曹国志, 等. 2001-2015年青藏高原草地碳源/汇时空变化及其与气候因子的关系. 水土保持研究, 2019, 26(1): 76-81. | |
31 | Chaplin-Kramer R, Sharp R P, Weill C, et al. Global modeling of nature’s contributions to people. Science, 2019, 366(6462): 255-258. |
32 | Sharp R, Douglass J, Wolny S, et al. InVEST 3.10.2.post2065+invest.g67b325794 User’s Guide. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund, 2020. |
33 | Rao E M, Ouyang Z Y, Yu X X, et al. Spatial patterns and impacts of soil conservation service in China. Geomorphology, 2014, 207: 64-70. |
34 | Wang X L. Soil erosion of alpine grassland eocsystem on Tibetan Plateau Sanjiangyuan region. Lanzhou: Lanzhou University, 2016. |
王雪璐. 青藏高原三江源高寒草地生态系统土壤侵蚀研究. 兰州: 兰州大学, 2016. | |
35 | Yu X X, Zhou B, Lv X Z, et al. Evaluation of water conservation function in mountain forest areas of Beijing based on InVEST model. Scientia Silvae Sinicae, 2012, 48(10): 1-5. |
余新晓, 周彬, 吕锡芝, 等. 基于InVEST模型的北京山区森林水源涵养功能评估. 林业科学, 2012, 48(10): 1-5. | |
36 | Saxton K E, Rawls W J. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Science Society of America Journal, 2006, 70(5): 1569-1578. |
37 | Shen J S, Li S C, Liang Z, et al. Exploring the heterogeneity and nonlinearity of trade-offs and synergies among ecosystem services bundles in the Beijing-Tianjin-Hebei urban agglomeration. Ecosystem Services, 2020, 43: 101103, DOI: 10.1016/j.ecoser.2020.101103. |
38 | Grölmping U. Relative importance for linear regression in R: The package relaimpo. Journal of Statistical Software, 2006, 17(1): 1-27. |
39 | Li X Y, Ma Y J, Xu H Y, et al. Impact of land use and land cover change on environmental degradation in lake Qinghai watershed, northeast Qinghai-Tibet Plateau. Land Degradation & Development, 2009, 20(1): 69-83. |
40 | Liu Y Y, Ren H Y, Zheng C, et al. Untangling the effects of management measures, climate and land use cover change on grassland dynamics in the Qinghai-Tibet Plateau, China. Land Degradation & Development, 2021, 32(17): 4974-4987. |
41 | Liang B, Qi S, Li Z Y, et al. Dynamic change of lake area over the Tibetan Plateau and its response to climate change. Mountain Research, 2018, 36(2): 206-216. |
梁斌, 齐实, 李智勇, 等. 青藏高原湖泊面积动态变化及其对气候变化的响应. 山地学报, 2018, 36(2): 206-216. | |
42 | Zhang Y L, Liu L S, Wang Z F, et al. Spatial and temporal characteristics of land use and cover changes in the Tibetan Plateau. Chinese Science Bulletin, 2019, 64(27): 2865-2875. |
张镱锂, 刘林山, 王兆锋, 等. 青藏高原土地利用与覆被变化的时空特征. 科学通报, 2019, 64(27): 2865-2875. | |
43 | Wang X M, Liu X C, Long Y X, et al. Spatial-temporal changes and influencing factors of ecosystem services in Shaoguan City based on improved InVEST. Research of Soil and Water Conservation, 2020, 27(5): 381-388. |
王秀明, 刘谞承, 龙颖贤, 等. 基于改进的InVEST模型的韶关市生态系统服务功能时空变化特征及影响因素. 水土保持研究, 2020, 27(5): 381-388. | |
44 | Mooney H, Larigauderie A, Cesario M, et al. Biodiversity, climate change, and ecosystem services. Current Opinion in Environmental Sustainability, 2009, 1(1): 46-54. |
45 | Scholes R J. Climate change and ecosystem services. Wiley Interdisciplinary Reviews-Climate Change, 2016, 7(4): 537-550. |
46 | Fu B J, Zhang L W, Xu Z H, et al. Ecosystem services in changing land use. Journal of Soils and Sediments, 2015, 15(4): 833-843. |
47 | Koo H, Kleemann J, Fürst C. Land use scenario modeling based on local knowledge for the provision of ecosystem services in northern Ghana. Land, 2018, 7(2): 59, DOI: 10.3390/land7020059. |
48 | Yang Y X, Wang G Y, Pan X C. China food composition. Beijing: Peking University Medical Press, 2009. |
杨月欣, 王光亚, 潘兴昌. 中国食物成分表. 北京: 北京大学医学出版社, 2009. | |
49 | Zheng J L, Mao F J, Du H Q, et al. Spatiotemporal simulation of net ecosystem productivity and its response to climate change in subtropical forests. Forests, 2019, 10(8): 708, DOI: 10.3390/f10080708. |
50 | Zhou W, Yang H, Zhou L, et al. Dynamics of grassland carbon sequestration and its coupling relation with hydrothermal factor of Inner Mongolia. Ecological Indicators, 2018, 95: 1-11. |
51 | Chen H, Zhu Q A, Peng C H, et al. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Global Change Biology, 2013, 19(10): 2940-2955. |
52 | Chuai X W, Qi X X, Zhang X Y, et al. Land degradation monitoring using terrestrial ecosystem carbon sinks/sources and their response to climate change in China. Land Degradation & Development, 2018, 29(10): 3489-3502. |
53 | Peng C H, Zhou X L, Zhao S Q, et al. Quantifying the response of forest carbon balance to future climate change in Northeastern China: Model validation and prediction. Global and Planetary Change, 2009, 66(3/4): 179-194. |
54 | Bai Y, Ochuodho T O, Yang J. Impact of land use and climate change on water-related ecosystem services in Kentucky, USA. Ecological Indicators, 2019, 102: 51-64. |
55 | Dai E F, Yin L, Wang Y H, et al. Quantitative assessment of the relative impacts of land use and climate change on the key ecosystem services in the Hengduan Mountain region, China. Sustainability, 2020, 12(10): 4100, DOI: 10.3390/su12104100. |
56 | Guo M, Ma S, Wang L J, et al. Impacts of future climate change and different management scenarios on water-related ecosystem services: A case study in the Jianghuai ecological economic Zone, China. Ecological Indicators, 2021, 127: 107732, DOI: 10.1016/j.ecolind.2021.107732. |
57 | Yang K, Wu H, Qin J, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Global and Planetary Change, 2014, 112: 79-91. |
58 | Tao S L, Fang J Y, Ma S H, et al. Changes in China’s lakes: Climate and human impacts. National Science Review, 2020, 7(1): 132-140. |
59 | Wang J, Li Y R. Spatial pattern and influencing factors of urbanization development in China at county level: A quantitative analysis based on 2000 and 2010 census data. Acta Geographica Sinica, 2016, 71(4): 621-636. |
王婧, 李裕瑞. 中国县域城镇化发展格局及其影响因素—基于2000和2010年全国人口普查分县数据. 地理学报, 2016, 71(4): 621-636. | |
60 | Peng J, Tian L, Zhang Z M, et al. Distinguishing the impacts of land use and climate change on ecosystem services in a karst landscape in China. Ecosystem Services, 2020, 46: 101199, DOI: 10.1016/j.ecoser.2020.101199. |
61 | Su C H, Fu B J. Evolution of ecosystem services in the Chinese Loess Plateau under climatic and land use changes. Global and Planetary Change, 2013, 101: 119-128. |
62 | Oliver T H, Morecroft M D. Interactions between climate change and land use change on biodiversity: Attribution problems, risks, and opportunities. Wiley Interdisciplinary Reviews: Climate Change, 2014, 5(3): 317-335. |
63 | Chen H, Wu N, Yao S P, et al. High methane emissions from a littoral zone on the Qinghai-Tibetan Plateau. Atmospheric Environment, 2009, 43(32): 4995-5000. |
64 | Zhang G Q, Xie H J, Kang S C, et al. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003-2009). Remote Sensing of Environment, 2011, 115(7): 1733-1742. |
65 | Bastviken D, Tranvik L J, Downing J A, et al. Freshwater methane emissions offset the continental carbon sink. Science, 2011, 331: 50. |
66 | Beaulieu J J, DelSontro T, Downing J A. Eutrophication will increase methane emissions from lakes and impoundments during the 21st century. Nature Communications, 2019, 10: 1375, DOI: 10.1038/s41467-019-09100-5. |
67 | Dale V H. The relationship between land-use change and climate change. Ecological Applications, 1997, 7(3): 753-769. |
68 | Schulte to Bühne H, Tobias J A, Durant S M, et al. Improving predictions of climate change-land use change interactions. Trends in Ecology & Evolution, 2021, 36(1): 29-38. |
69 | Mendelsohn R, Dinar A. Land use and climate change interactions. Annual Review of Resource Economics, 2009, 1: 309-332. |
70 | Liu D Q, Gong J, Zhang J X, et al. Spatiotemporal variation of soil conservation function and its influencing factors in Bailongjiang Watershed in Gansu Province. Research of Soil and Water Conservation, 2018, 25(4): 98-103. |
柳冬青, 巩杰, 张金茜, 等. 甘肃白龙江流域生态系统土壤保持功能时空变异及其影响因子. 水土保持研究, 2018, 25(4): 98-103. | |
71 | Novara A, Gristina L, Saladino S S, et al. Soil erosion assessment on tillage and alternative soil managements in a Sicilian vineyard. Soil & Tillage Research, 2011, 117: 140-147. |
72 | Wuepper D, Borrelli P, Finger R. Countries and the global rate of soil erosion. Nature Sustainability, 2020, 3(1): 51-55. |
73 | Peters M K, Hemp A, Appelhans T, et al. Climate-land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature, 2019, 568: 88-92. |
[1] | 蒋翔, 马建霞. 我国草地生态恢复对不同因素响应的Meta分析[J]. 草业学报, 2021, 30(2): 14-31. |
[2] | 郭文慧, 顾润源, 丁锋. 蒲公英和车前草在山东境内的春季物候特征及对气候变化的响应[J]. 草业学报, 2021, 30(12): 27-38. |
[3] | 林慧龙, 范迪, 冯琦胜, 梁天刚. 草地综合顺序分类法研究新热点:2008-2020年回顾与展望[J]. 草业学报, 2021, 30(10): 201-213. |
[4] | 郭强, 王玉琴, 鲍根生, 王宏生. 气象因子对高原鼢鼠种群数量的影响[J]. 草业学报, 2020, 29(8): 188-194. |
[5] | 马倩倩, 刘彤, 董合干, 王寒月, 赵文轩, 王瑞丽, 刘延, 陈乐. 气候变化下三裂叶豚草在新疆的潜在地理分布[J]. 草业学报, 2020, 29(12): 73-85. |
[6] | 姜晓群, 林哲艳, 时钰, 赵晋灵, 李昂. 美国公共放牧地管理政策演进的历史经验[J]. 草业学报, 2020, 29(11): 151-164. |
[7] | 张智起, 张立旭, 徐炜, 汪浩, 王金洲, 王娓, 贺金生. 气候变暖背景下土壤呼吸研究的几个重要问题[J]. 草业学报, 2019, 28(9): 164-173. |
[8] | 王多斌, 籍常婷, 林慧龙. 基于DNDC模型的高寒草甸土壤有机碳含量动态研究[J]. 草业学报, 2019, 28(12): 197-204. |
[9] | 王迎新, 陈先江, 娄珊宁, 胡安, 任劲飞, 胡俊奇, 张静, 侯扶江. 草原灌丛化入侵:过程、机制和效应[J]. 草业学报, 2018, 27(5): 219-227. |
[10] | 郭丁, 郭文斐, 赵建, 特木其勒图, 李旭东, 傅华, 骆亦其. 黄土高原草地和农田系统碳动态对降雨、温度和CO2浓度变化响应的模拟[J]. 草业学报, 2018, 27(2): 1-14. |
[11] | 耿元波, 王松, 胡雪荻. 高寒草甸草原净初级生产力对气候变化响应的模拟[J]. 草业学报, 2018, 27(1): 1-13. |
[12] | 王亚领, 李浩, 杨旋, 郭彦龙, 李维德. 基于MaxEnt模型和不同气候变化情景的单叶蔓荆潜在地理分布预测[J]. 草业学报, 2017, 26(7): 1-10. |
[13] | 张颖, 章超斌, 王钊齐, 杨悦, 张艳珍, 李建龙, 安如. 气候变化与人为活动对三江源草地生产力影响的定量研究[J]. 草业学报, 2017, 26(5): 1-14. |
[14] | 陈奕兆, 李建龙, 孙政国, 刚成诚. 欧亚大陆草原带1982-2008年间净初级生产力时空动态及其对气候变化响应研究[J]. 草业学报, 2017, 26(1): 1-12. |
[15] | 王松, 耿元波, 母悦. 典型草原净初级生产力对气候变化响应的模拟[J]. 草业学报, 2016, 25(12): 4-13. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||