草业学报 ›› 2022, Vol. 31 ›› Issue (6): 127-138.DOI: 10.11686/cyxb2021367
• 研究论文 • 上一篇
苏世平(), 李毅(), 刘小娥, 种培芳, 单立山, 后有丽
收稿日期:
2021-10-09
修回日期:
2021-11-29
出版日期:
2022-06-20
发布日期:
2022-05-11
通讯作者:
李毅
作者简介:
E-mail: liyi@gsau.edu.cn基金资助:
Shi-ping SU(), Yi LI(), Xiao-e LIU, Pei-fang CHONG, Li-shan SHAN, You-li HOU
Received:
2021-10-09
Revised:
2021-11-29
Online:
2022-06-20
Published:
2022-05-11
Contact:
Yi LI
摘要:
红砂属于干旱半干旱荒漠区生态系统中重要的超抗旱树种,对维护荒漠区植物群落的稳定性具有重要的作用。近年来由于极端干旱气候的频发,导致以红砂为建群种的荒漠植物群落出现大面积死亡以及退化的趋势。因此,采用人工措施提高干旱荒漠区植物的抗旱能力显得尤为重要。通过对干旱胁迫中的红砂苗木喷施外源脯氨酸(Pro)以减缓干旱胁迫对其造成的伤害。研究设置5个Pro浓度,分别为50,100,150,200,250 mg·L-1,对红砂植株进行喷施处理,于处理前第0天(CK),处理后第1,3, 6和9天对叶片抗氧化酶系统、代谢调节系统、光合色素、光合性能进行测定,第9天对生长状况进行测定,以期揭示干旱胁迫下Pro的作用机理。结果表明,外源Pro处理红砂植株后,对其抗氧化酶系统、代谢调节系统、光合色素、光合性能以及生长状况均有显著影响。除叶绿素a/b(Chl a/b)在处理年份间差异不显著,可溶性糖含量在处理浓度间差异不显著外,其他指标在处理年份之间、处理浓度之间、处理后作用时间之间以及处理浓度与处理后作用时间交互作用之间均差异显著,其中以100 mg·L-1 Pro处理效果最佳。100 mg·L-1 Pro处理后第9天和CK相比,可溶性蛋白(SP)、脯氨酸(Pro)、过氧化氢酶(CAT)、过氧化物酶(POD)分别提高了4.48%、131.07%、30.66%、12.30%,可溶性糖(SS)、超氧化物歧化酶(SOD)分别下降了6.42%、1.95%;总叶绿素含量Chl(a+b)、叶绿素a含量(Chla)、叶绿素b含量(Chlb)分别较CK降低了5.81%、1.47%和22.22%;净光合速率(Pn)、气孔导度(GS)、蒸腾速率(Tr)、胞间二氧化碳浓度(Ci)以及水分利用效率(WUE)分别比CK降低了16.07%、10.00%、6.44%、7.68%和9.92%;红砂苗木的生长特性在处理后第9天,株高净生长量为2.48 cm,侧芽萌发数量为3.67个,侧芽净生长量为1.87 cm,地径净生长量为0.27 mm,比处理效果最差的250 mg·L-1处理分别高出0.68 cm,0.34个,0.32 cm,0.07 mm。因此,100 mg·L-1 Pro处理干旱胁迫中的红砂植株,能显著提高其抗旱性。
苏世平, 李毅, 刘小娥, 种培芳, 单立山, 后有丽. 外源脯氨酸对缓解红砂干旱胁迫的机理研究[J]. 草业学报, 2022, 31(6): 127-138.
Shi-ping SU, Yi LI, Xiao-e LIU, Pei-fang CHONG, Li-shan SHAN, You-li HOU. A study of the mechanism of drought stress alleviation by exogenous proline applied to Reaumuria soongorica[J]. Acta Prataculturae Sinica, 2022, 31(6): 127-138.
项目 Item | 株高净生长量 Net growth of height (cm) | 地径净生长量 Net growth of ground diameter (mm) | 侧芽萌发数 Number of lateral bud germination (No.) | 侧芽净生长量 Net growth of lateral bud (cm) |
---|---|---|---|---|
年份Year | ** | ** | ** | ** |
Y1 | 1.73b | 0.20b | 2.80b | 1.07b |
Y2 | 2.75a | 0.28a | 4.50a | 2.36a |
脯氨酸处理 Pro treatment (P) | ** | ** | NS | ** |
P1 | 2.43a | 0.26a | 3.17a | 1.65bc |
P2 | 2.48a | 0.27a | 3.67a | 1.87a |
P3 | 2.43a | 0.24ab | 3.50a | 1.73ab |
P4 | 2.05b | 0.22bc | 3.50a | 1.67bc |
P5 | 1.80c | 0.20c | 3.33a | 1.55c |
表1 外源脯氨酸处理对红砂植株生长性状的影响
Table 1 Effects of exogenous Pro treatment on growth traits of R. soongorica
项目 Item | 株高净生长量 Net growth of height (cm) | 地径净生长量 Net growth of ground diameter (mm) | 侧芽萌发数 Number of lateral bud germination (No.) | 侧芽净生长量 Net growth of lateral bud (cm) |
---|---|---|---|---|
年份Year | ** | ** | ** | ** |
Y1 | 1.73b | 0.20b | 2.80b | 1.07b |
Y2 | 2.75a | 0.28a | 4.50a | 2.36a |
脯氨酸处理 Pro treatment (P) | ** | ** | NS | ** |
P1 | 2.43a | 0.26a | 3.17a | 1.65bc |
P2 | 2.48a | 0.27a | 3.67a | 1.87a |
P3 | 2.43a | 0.24ab | 3.50a | 1.73ab |
P4 | 2.05b | 0.22bc | 3.50a | 1.67bc |
P5 | 1.80c | 0.20c | 3.33a | 1.55c |
项目 Item | 可溶性蛋白含量 Soluble protein content (SP, mg·g-1 FW) | 游离脯氨酸含量 Free proline content (Pro, μg·g-1 FW) | 可溶性糖含量 Soluble sugar content (SS, mg·g-1 FW) | 超氧化物歧化酶活性 Superoxide dismutase activity (SOD, U·g-1 FW) | 过氧化氢酶活性 Catalase activity (CAT, U·g-1 FW·min-1) | 过氧化物酶活性 Peroxidase activity (POD, U·g-1 FW·min-1) |
---|---|---|---|---|---|---|
年份Year | ** | ** | ** | ** | ** | ** |
Y1 | 6.76b | 540.41b | 5.14b | 2587.94b | 79.35b | 4.43b |
Y2 | 7.69a | 644.02a | 7.14a | 2887.40a | 98.29a | 5.36a |
D | ** | NS | ** | ** | ** | ** |
D0 | 7.50a | 499.42a | 7.09a | 2733.00b | 76.91b | 4.60bc |
D1 | 7.97a | 667.62a | 5.14b | 2925.20a | 94.56a | 5.50ab |
D3 | 7.93a | 656.17a | 5.73b | 2727.01b | 104.97a | 5.90a |
D6 | 6.38b | 601.13a | 7.33a | 2757.78b | 91.52a | 4.61bc |
D9 | 6.34b | 536.73a | 5.42b | 2545.35c | 76.14b | 3.86c |
P | ** | ** | NS | * | ** | ** |
P1 | 7.39ab | 784.52a | 5.89ab | 2805.42a | 97.60ab | 4.97bc |
P2 | 6.15c | 436.35c | 6.78a | 2815.33a | 106.70a | 6.37a |
P3 | 7.99a | 788.67a | 5.43b | 2767.66a | 87.57bc | 5.29b |
P4 | 6.93c | 387.14c | 6.13ab | 2730.05a | 81.54cd | 4.19cd |
P5 | 7.67ab | 564.40b | 6.47ab | 2569.89b | 70.69d | 3.65d |
P×D | ||||||
P1×D0 | 9.15a | 897.69a | 8.74a | 2752.96b | 82.11b | 4.70bc |
P1×D1 | 8.37ab | 880.20a | 4.54b | 3002.83a | 93.95ab | 5.66ab |
P1×D3 | 7.18abc | 653.14c | 5.25b | 2845.83ab | 113.31a | 6.94a |
P1×D6 | 6.48bc | 737.23b | 5.85b | 2783.37ab | 112.35a | 4.12bc |
P1×D9 | 5.76c | 754.32b | 5.08b | 2642.11ab | 86.25b | 3.41c |
P2×D0 | 5.13c | 240.67c | 7.17ab | 2594.25b | 79.00b | 4.88b |
P2×D1 | 7.10a | 422.77b | 5.52b | 2939.56a | 107.25a | 6.65ab |
P2×D3 | 6.41ab | 437.40b | 5.39b | 2997.41a | 120.36a | 7.62a |
P2×D6 | 6.73a | 524.77a | 9.14a | 3001.84a | 123.66a | 7.21ab |
P2×D9 | 5.36bc | 556.12a | 6.71b | 2543.60b | 103.22a | 5.48ab |
P3×D0 | 7.26b | 609.30d | 5.68ab | 2727.48ab | 73.84b | 4.48c |
P3×D1 | 8.58a | 837.65b | 3.88b | 2981.58a | 90.75b | 6.08ab |
P3×D3 | 8.70a | 922.83a | 6.00ab | 2829.04ab | 107.88a | 7.20a |
P3×D6 | 8.11ab | 856.90ab | 7.19a | 2696.50b | 81.45b | 4.99bc |
P3×D9 | 7.29b | 716.65c | 4.42b | 2603.69b | 83.92b | 3.71c |
P4×D0 | 7.61a | 229.59c | 7.03ab | 2852.31ab | 79.78b | 4.30a |
P4×D1 | 7.43a | 303.23b | 4.38c | 2985.05a | 83.68b | 4.51a |
P4×D3 | 8.29a | 601.54a | 5.14bc | 2589.46b | 99.65a | 4.88a |
P4×D6 | 4.94b | 571.01a | 8.37a | 2733.60ab | 80.80b | 4.08a |
P4×D9 | 6.39ab | 230.31c | 5.72bc | 2489.82b | 63.78c | 3.17a |
P5×D0 | 8.38a | 519.87c | 6.82a | 2738.02a | 69.81bc | 4.65a |
P5×D1 | 8.40a | 894.27a | 7.38a | 2716.98a | 97.18a | 4.59a |
P5×D3 | 9.05a | 665.93b | 6.86a | 2373.33b | 83.65ab | 2.83b |
P5×D6 | 5.62c | 315.72e | 6.11ab | 2573.59ab | 59.32cd | 2.63b |
P5×D9 | 6.91b | 426.23d | 5.19b | 2447.55b | 43.51d | 3.52ab |
表2 Pro处理对抗氧化酶系统和渗透调节系统的影响
Table 2 Effects of exogenous Pro on antioxidant enzyme system and osmotic regulation system of R. soongorica
项目 Item | 可溶性蛋白含量 Soluble protein content (SP, mg·g-1 FW) | 游离脯氨酸含量 Free proline content (Pro, μg·g-1 FW) | 可溶性糖含量 Soluble sugar content (SS, mg·g-1 FW) | 超氧化物歧化酶活性 Superoxide dismutase activity (SOD, U·g-1 FW) | 过氧化氢酶活性 Catalase activity (CAT, U·g-1 FW·min-1) | 过氧化物酶活性 Peroxidase activity (POD, U·g-1 FW·min-1) |
---|---|---|---|---|---|---|
年份Year | ** | ** | ** | ** | ** | ** |
Y1 | 6.76b | 540.41b | 5.14b | 2587.94b | 79.35b | 4.43b |
Y2 | 7.69a | 644.02a | 7.14a | 2887.40a | 98.29a | 5.36a |
D | ** | NS | ** | ** | ** | ** |
D0 | 7.50a | 499.42a | 7.09a | 2733.00b | 76.91b | 4.60bc |
D1 | 7.97a | 667.62a | 5.14b | 2925.20a | 94.56a | 5.50ab |
D3 | 7.93a | 656.17a | 5.73b | 2727.01b | 104.97a | 5.90a |
D6 | 6.38b | 601.13a | 7.33a | 2757.78b | 91.52a | 4.61bc |
D9 | 6.34b | 536.73a | 5.42b | 2545.35c | 76.14b | 3.86c |
P | ** | ** | NS | * | ** | ** |
P1 | 7.39ab | 784.52a | 5.89ab | 2805.42a | 97.60ab | 4.97bc |
P2 | 6.15c | 436.35c | 6.78a | 2815.33a | 106.70a | 6.37a |
P3 | 7.99a | 788.67a | 5.43b | 2767.66a | 87.57bc | 5.29b |
P4 | 6.93c | 387.14c | 6.13ab | 2730.05a | 81.54cd | 4.19cd |
P5 | 7.67ab | 564.40b | 6.47ab | 2569.89b | 70.69d | 3.65d |
P×D | ||||||
P1×D0 | 9.15a | 897.69a | 8.74a | 2752.96b | 82.11b | 4.70bc |
P1×D1 | 8.37ab | 880.20a | 4.54b | 3002.83a | 93.95ab | 5.66ab |
P1×D3 | 7.18abc | 653.14c | 5.25b | 2845.83ab | 113.31a | 6.94a |
P1×D6 | 6.48bc | 737.23b | 5.85b | 2783.37ab | 112.35a | 4.12bc |
P1×D9 | 5.76c | 754.32b | 5.08b | 2642.11ab | 86.25b | 3.41c |
P2×D0 | 5.13c | 240.67c | 7.17ab | 2594.25b | 79.00b | 4.88b |
P2×D1 | 7.10a | 422.77b | 5.52b | 2939.56a | 107.25a | 6.65ab |
P2×D3 | 6.41ab | 437.40b | 5.39b | 2997.41a | 120.36a | 7.62a |
P2×D6 | 6.73a | 524.77a | 9.14a | 3001.84a | 123.66a | 7.21ab |
P2×D9 | 5.36bc | 556.12a | 6.71b | 2543.60b | 103.22a | 5.48ab |
P3×D0 | 7.26b | 609.30d | 5.68ab | 2727.48ab | 73.84b | 4.48c |
P3×D1 | 8.58a | 837.65b | 3.88b | 2981.58a | 90.75b | 6.08ab |
P3×D3 | 8.70a | 922.83a | 6.00ab | 2829.04ab | 107.88a | 7.20a |
P3×D6 | 8.11ab | 856.90ab | 7.19a | 2696.50b | 81.45b | 4.99bc |
P3×D9 | 7.29b | 716.65c | 4.42b | 2603.69b | 83.92b | 3.71c |
P4×D0 | 7.61a | 229.59c | 7.03ab | 2852.31ab | 79.78b | 4.30a |
P4×D1 | 7.43a | 303.23b | 4.38c | 2985.05a | 83.68b | 4.51a |
P4×D3 | 8.29a | 601.54a | 5.14bc | 2589.46b | 99.65a | 4.88a |
P4×D6 | 4.94b | 571.01a | 8.37a | 2733.60ab | 80.80b | 4.08a |
P4×D9 | 6.39ab | 230.31c | 5.72bc | 2489.82b | 63.78c | 3.17a |
P5×D0 | 8.38a | 519.87c | 6.82a | 2738.02a | 69.81bc | 4.65a |
P5×D1 | 8.40a | 894.27a | 7.38a | 2716.98a | 97.18a | 4.59a |
P5×D3 | 9.05a | 665.93b | 6.86a | 2373.33b | 83.65ab | 2.83b |
P5×D6 | 5.62c | 315.72e | 6.11ab | 2573.59ab | 59.32cd | 2.63b |
P5×D9 | 6.91b | 426.23d | 5.19b | 2447.55b | 43.51d | 3.52ab |
项目 Item | 总叶绿素含量 Total chlorophyll content, Chl(a+b), (mg·g-1 FW) | 叶绿素a含量 Chlorophyll a content, Chla (mg·g-1 FW) | 叶绿素b含量 Chlorophyll b content, Chlb (mg·g-1 FW) | 叶绿素a/b Chlorophyll a/b, Chl a/b |
---|---|---|---|---|
年份Year | ** | ** | ** | NS |
Y1 | 0.79 | 0.64 | 0.15 | 4.40 |
Y2 | 0.89 | 0.72 | 0.17 | 4.41 |
D | ** | ** | ** | ** |
D0 | 0.87a | 0.69a | 0.18a | 3.80c |
D1 | 0.87a | 0.70a | 0.17a | 4.03c |
D3 | 0.86ab | 0.69a | 0.17ab | 4.23bc |
D6 | 0.84b | 0.68a | 0.15b | 4.58b |
D9 | 0.78c | 0.65b | 0.12b | 5.41a |
P | ** | ** | ** | ** |
P1 | 0.83b | 0.68ab | 0.15b | 4.59b |
P2 | 0.87ab | 0.69a | 0.18a | 3.94c |
P3 | 0.87a | 0.69a | 0.18a | 4.02bc |
P4 | 0.85ab | 0.69a | 0.16ab | 4.24bc |
P5 | 0.80c | 0.66b | 0.13c | 5.24a |
P×D | ||||
P1×D0 | 0.87ab | 0.68ab | 0.18a | 3.73c |
P1×D1 | 0.88a | 0.70a | 0.17a | 4.06bc |
P1×D3 | 0.84ab | 0.69a | 0.15ab | 4.53bc |
P1×D6 | 0.81bc | 0.67ab | 0.14b | 4.74b |
P1×D9 | 0.76c | 0.65b | 0.11c | 5.90a |
P2×D0 | 0.86b | 0.68b | 0.18a | 3.79b |
P2×D1 | 0.89ab | 0.70ab | 0.19a | 3.73b |
P2×D3 | 0.91a | 0.71a | 0.20a | 3.61b |
P2×D6 | 0.87ab | 0.69ab | 0.18a | 3.89b |
P2×D9 | 0.81c | 0.67b | 0.14b | 4.69a |
P3×D0 | 0.88a | 0.70a | 0.18a | 3.94b |
P3×D1 | 0.89a | 0.70a | 0.19a | 3.77b |
P3×D3 | 0.90a | 0.71a | 0.19a | 3.72b |
P3×D6 | 0.87a | 0.69ab | 0.18a | 3.85b |
P3×D9 | 0.81b | 0.67b | 0.14b | 4.83a |
P4×D0 | 0.88a | 0.69a | 0.19a | 3.74b |
P4×D1 | 0.86a | 0.69a | 0.18a | 3.94b |
P4×D3 | 0.86a | 0.69a | 0.17a | 3.99b |
P4×D6 | 0.85a | 0.69a | 0.16a | 4.25b |
P4×D9 | 0.79b | 0.67a | 0.13b | 5.30a |
P5×D0 | 0.88a | 0.70a | 0.18a | 3.80c |
P5×D1 | 0.84a | 0.69a | 0.15b | 4.66bc |
P5×D3 | 0.78b | 0.65a | 0.12bc | 5.28ab |
P5×D6 | 0.77b | 0.66a | 0.11c | 6.15a |
P5×D9 | 0.70c | 0.61b | 0.10c | 6.31a |
表3 Pro处理对红砂光合色素的影响
Table 3 Effects of exogenous Pro on photosynthetic pigments of R. soongorica
项目 Item | 总叶绿素含量 Total chlorophyll content, Chl(a+b), (mg·g-1 FW) | 叶绿素a含量 Chlorophyll a content, Chla (mg·g-1 FW) | 叶绿素b含量 Chlorophyll b content, Chlb (mg·g-1 FW) | 叶绿素a/b Chlorophyll a/b, Chl a/b |
---|---|---|---|---|
年份Year | ** | ** | ** | NS |
Y1 | 0.79 | 0.64 | 0.15 | 4.40 |
Y2 | 0.89 | 0.72 | 0.17 | 4.41 |
D | ** | ** | ** | ** |
D0 | 0.87a | 0.69a | 0.18a | 3.80c |
D1 | 0.87a | 0.70a | 0.17a | 4.03c |
D3 | 0.86ab | 0.69a | 0.17ab | 4.23bc |
D6 | 0.84b | 0.68a | 0.15b | 4.58b |
D9 | 0.78c | 0.65b | 0.12b | 5.41a |
P | ** | ** | ** | ** |
P1 | 0.83b | 0.68ab | 0.15b | 4.59b |
P2 | 0.87ab | 0.69a | 0.18a | 3.94c |
P3 | 0.87a | 0.69a | 0.18a | 4.02bc |
P4 | 0.85ab | 0.69a | 0.16ab | 4.24bc |
P5 | 0.80c | 0.66b | 0.13c | 5.24a |
P×D | ||||
P1×D0 | 0.87ab | 0.68ab | 0.18a | 3.73c |
P1×D1 | 0.88a | 0.70a | 0.17a | 4.06bc |
P1×D3 | 0.84ab | 0.69a | 0.15ab | 4.53bc |
P1×D6 | 0.81bc | 0.67ab | 0.14b | 4.74b |
P1×D9 | 0.76c | 0.65b | 0.11c | 5.90a |
P2×D0 | 0.86b | 0.68b | 0.18a | 3.79b |
P2×D1 | 0.89ab | 0.70ab | 0.19a | 3.73b |
P2×D3 | 0.91a | 0.71a | 0.20a | 3.61b |
P2×D6 | 0.87ab | 0.69ab | 0.18a | 3.89b |
P2×D9 | 0.81c | 0.67b | 0.14b | 4.69a |
P3×D0 | 0.88a | 0.70a | 0.18a | 3.94b |
P3×D1 | 0.89a | 0.70a | 0.19a | 3.77b |
P3×D3 | 0.90a | 0.71a | 0.19a | 3.72b |
P3×D6 | 0.87a | 0.69ab | 0.18a | 3.85b |
P3×D9 | 0.81b | 0.67b | 0.14b | 4.83a |
P4×D0 | 0.88a | 0.69a | 0.19a | 3.74b |
P4×D1 | 0.86a | 0.69a | 0.18a | 3.94b |
P4×D3 | 0.86a | 0.69a | 0.17a | 3.99b |
P4×D6 | 0.85a | 0.69a | 0.16a | 4.25b |
P4×D9 | 0.79b | 0.67a | 0.13b | 5.30a |
P5×D0 | 0.88a | 0.70a | 0.18a | 3.80c |
P5×D1 | 0.84a | 0.69a | 0.15b | 4.66bc |
P5×D3 | 0.78b | 0.65a | 0.12bc | 5.28ab |
P5×D6 | 0.77b | 0.66a | 0.11c | 6.15a |
P5×D9 | 0.70c | 0.61b | 0.10c | 6.31a |
项目 Item | 净光合速率 Net photosynthetic rate (Pn, μmol·m-2·s-1) | 气孔导度 Stomatal conductance (Gs, mol·m-2·s-1) | 蒸腾速率 Transpiration rate (Tr, mmol·m-2·s-1) | 胞间CO2浓度 Intercellular CO2 concentration (Ci, μmol·mol-1) | 水分利用效率 Water use efficiency (WUE, μmol CO2·mol-1 H2O) |
---|---|---|---|---|---|
年份Year | * | ** | ** | ** | ** |
Y1 | 2.829b | 0.042b | 1.437b | 168.314b | 1.816b |
Y2 | 3.011a | 0.052a | 1.618a | 186.466a | 1.997a |
D | ** | ** | ** | ** | ** |
D0 | 3.173a | 0.050a | 1.588a | 184.867a | 2.000a |
D1 | 3.233a | 0.050a | 1.567a | 187.333a | 2.062a |
D3 | 3.068a | 0.048ab | 1.545ab | 181.867a | 1.982a |
D6 | 2.743b | 0.045b | 1.495b | 169.800b | 1.831b |
D9 | 2.383c | 0.042c | 1.443c | 163.533b | 1.660c |
P | ** | ** | ** | ** | ** |
P1 | 2.885b | 0.046bc | 1.518bc | 178.533ab | 1.896a |
P2 | 3.218a | 0.050a | 1.586a | 188.400a | 2.027a |
P3 | 3.050ab | 0.049ab | 1.558ab | 181.400ab | 1.956a |
P4 | 2.897b | 0.046c | 1.515bc | 176.467b | 1.909a |
P5 | 2.549c | 0.044c | 1.462c | 162.600c | 1.746b |
P×D | |||||
P1×D0 | 3.160a | 0.049a | 1.587a | 184.000ab | 1.994a |
P1×D1 | 3.233a | 0.049a | 1.567a | 191.667a | 2.061a |
P1×D3 | 3.037ab | 0.046ab | 1.537ab | 178.000abc | 1.976a |
P1×D6 | 2.673bc | 0.045ab | 1.477ab | 174.667bc | 1.815ab |
P1×D9 | 2.323c | 0.042b | 1.423b | 164.333c | 1.633b |
P2×D0 | 3.193b | 0.050ab | 1.600a | 186.667abc | 1.995ab |
P2×D1 | 3.553a | 0.053a | 1.627a | 198.333ab | 2.187a |
P2×D3 | 3.467ab | 0.053a | 1.633a | 201.667a | 2.122a |
P2×D6 | 3.197b | 0.049ab | 1.573ab | 183.000bc | 2.034ab |
P2×D9 | 2.680c | 0.045b | 1.497b | 172.333c | 1.797b |
P3×D0 | 3.170ab | 0.050a | 1.590a | 182.667ab | 1.997ab |
P3×D1 | 3.417a | 0.052a | 1.603a | 192.667a | 2.137a |
P3×D3 | 3.270a | 0.051a | 1.587a | 192.000a | 2.063a |
P3×D6 | 2.903b | 0.048ab | 1.547ab | 171.667b | 1.878ab |
P3×D9 | 2.490c | 0.044b | 1.463b | 168.000b | 1.704b |
P4×D0 | 3.187a | 0.049a | 1.583a | 187.333a | 2.014a |
P4×D1 | 3.210a | 0.049a | 1.550ab | 185.667a | 2.070a |
P4×D3 | 3.027ab | 0.047ab | 1.537ab | 174.667a | 1.973a |
P4×D6 | 2.707bc | 0.044bc | 1.473ab | 168.000a | 1.836ab |
P4×D9 | 2.353c | 0.041c | 1.433b | 166.667a | 1.651b |
P5×D0 | 3.153a | 0.051a | 1.580a | 183.667a | 2.000a |
P5×D1 | 2.750b | 0.046b | 1.487ab | 168.333ab | 1.853ab |
P5×D3 | 2.540bc | 0.042bc | 1.433b | 163.000bc | 1.773abc |
P5×D6 | 2.233cd | 0.040c | 1.407b | 151.667bc | 1.590bc |
P5×D9 | 2.068d | 0.039c | 1.401b | 146.333c | 1.516c |
表4 Pro处理对红砂光合特性的影响
Table 4 Effects of exogenous Pro on photosynthetic characteristics of R. soongorica
项目 Item | 净光合速率 Net photosynthetic rate (Pn, μmol·m-2·s-1) | 气孔导度 Stomatal conductance (Gs, mol·m-2·s-1) | 蒸腾速率 Transpiration rate (Tr, mmol·m-2·s-1) | 胞间CO2浓度 Intercellular CO2 concentration (Ci, μmol·mol-1) | 水分利用效率 Water use efficiency (WUE, μmol CO2·mol-1 H2O) |
---|---|---|---|---|---|
年份Year | * | ** | ** | ** | ** |
Y1 | 2.829b | 0.042b | 1.437b | 168.314b | 1.816b |
Y2 | 3.011a | 0.052a | 1.618a | 186.466a | 1.997a |
D | ** | ** | ** | ** | ** |
D0 | 3.173a | 0.050a | 1.588a | 184.867a | 2.000a |
D1 | 3.233a | 0.050a | 1.567a | 187.333a | 2.062a |
D3 | 3.068a | 0.048ab | 1.545ab | 181.867a | 1.982a |
D6 | 2.743b | 0.045b | 1.495b | 169.800b | 1.831b |
D9 | 2.383c | 0.042c | 1.443c | 163.533b | 1.660c |
P | ** | ** | ** | ** | ** |
P1 | 2.885b | 0.046bc | 1.518bc | 178.533ab | 1.896a |
P2 | 3.218a | 0.050a | 1.586a | 188.400a | 2.027a |
P3 | 3.050ab | 0.049ab | 1.558ab | 181.400ab | 1.956a |
P4 | 2.897b | 0.046c | 1.515bc | 176.467b | 1.909a |
P5 | 2.549c | 0.044c | 1.462c | 162.600c | 1.746b |
P×D | |||||
P1×D0 | 3.160a | 0.049a | 1.587a | 184.000ab | 1.994a |
P1×D1 | 3.233a | 0.049a | 1.567a | 191.667a | 2.061a |
P1×D3 | 3.037ab | 0.046ab | 1.537ab | 178.000abc | 1.976a |
P1×D6 | 2.673bc | 0.045ab | 1.477ab | 174.667bc | 1.815ab |
P1×D9 | 2.323c | 0.042b | 1.423b | 164.333c | 1.633b |
P2×D0 | 3.193b | 0.050ab | 1.600a | 186.667abc | 1.995ab |
P2×D1 | 3.553a | 0.053a | 1.627a | 198.333ab | 2.187a |
P2×D3 | 3.467ab | 0.053a | 1.633a | 201.667a | 2.122a |
P2×D6 | 3.197b | 0.049ab | 1.573ab | 183.000bc | 2.034ab |
P2×D9 | 2.680c | 0.045b | 1.497b | 172.333c | 1.797b |
P3×D0 | 3.170ab | 0.050a | 1.590a | 182.667ab | 1.997ab |
P3×D1 | 3.417a | 0.052a | 1.603a | 192.667a | 2.137a |
P3×D3 | 3.270a | 0.051a | 1.587a | 192.000a | 2.063a |
P3×D6 | 2.903b | 0.048ab | 1.547ab | 171.667b | 1.878ab |
P3×D9 | 2.490c | 0.044b | 1.463b | 168.000b | 1.704b |
P4×D0 | 3.187a | 0.049a | 1.583a | 187.333a | 2.014a |
P4×D1 | 3.210a | 0.049a | 1.550ab | 185.667a | 2.070a |
P4×D3 | 3.027ab | 0.047ab | 1.537ab | 174.667a | 1.973a |
P4×D6 | 2.707bc | 0.044bc | 1.473ab | 168.000a | 1.836ab |
P4×D9 | 2.353c | 0.041c | 1.433b | 166.667a | 1.651b |
P5×D0 | 3.153a | 0.051a | 1.580a | 183.667a | 2.000a |
P5×D1 | 2.750b | 0.046b | 1.487ab | 168.333ab | 1.853ab |
P5×D3 | 2.540bc | 0.042bc | 1.433b | 163.000bc | 1.773abc |
P5×D6 | 2.233cd | 0.040c | 1.407b | 151.667bc | 1.590bc |
P5×D9 | 2.068d | 0.039c | 1.401b | 146.333c | 1.516c |
1 | Wang X Y. Functional research of abiotic stress-related LEA proteins WZY1-2 and WRAB18 in wheat (Triticum aestivum). Xianyang: Northwest Agriculture and Forestry University, 2017. |
王晓宇. 小麦非生物胁迫相关LEA蛋白WZY1-2与WRAB18的功能研究. 咸阳: 西北农林科技大学, 2017. | |
2 | Qiao Q, Qin X S, Xing F W, et al. Death causes and conservation strategies of the annual regenerated seeding of rare plant, Bretschneidera sinensis. Acta Ecologica Sinica, 2011, 31(16): 4709-4716. |
乔琦, 秦新生, 邢福武, 等. 珍稀植物伯乐树一年生更新幼苗的死亡原因和保育策略. 生态学报, 2011, 31(16): 4709-4716. | |
3 | Pan R C. Plant physiology. Beijing: Higher Education Press, 2012. |
潘瑞炽. 植物生理学. 北京: 高等教育出版社, 2012. | |
4 | Kyeong S Y, Ram B S, Su J J, et al. Effect of drought stress on chlorophyll fluorescence parameters, phytochemical contents, and antioxidant activities in lettuce seedlings. Horticulturae, 2021, 7(8): 238. |
5 | Allah W, Tanveer A, Ahmad Y T, et al. Mitigating drought stress in sunflower (Helianthus annuus L.) through exogenous application of β-aminobutyric acid. Journal of Soil Science and Plant Nutrition, 2021, 21(2): 936-948. |
6 | Babaei K, Moghaddam M, Farhadi N, et al. Morphological, physiological and phytochemical responses of Mexican marigold (Tagetes minuta L.) to drought stress. Scientia Horticulturae, 2021, 284: 110116. |
7 | Zhang Y Y, Wang J X, Ma X, et al. Effect of rewatering on chlorophyll content of Platycladus orientalis seedlings after drought. Journal of Southwest Forestry University (Natural Science), 2021, 41(5): 10-17. |
张玉玉, 王进鑫, 马戌, 等. 干旱后复水对侧柏幼苗叶绿素含量的影响.西南林业大学学报(自然科学), 2021, 41(5): 10-17. | |
8 | Niari N K, Najaphy A. Physiological and biochemical responses of durum wheat under mild terminal drought stress. Cellular and Molecular Biology, 2018, 64(4): 59-63. |
9 | Zhou W W, Wang Y, Du J. Influences of drought stress on the physical characteristics of Sedums species. Forest Research, 2009, 22(6): 829-834. |
周伟伟, 王雁, 杜静. 干旱胁迫对景天属植物生理生化特性的影响. 林业科学研究, 2009, 22(6): 829-834. | |
10 | Li X R, Zhao Y, Hui R, et al. Review on the research progress and trend of restoration ecology in arid areas of China. Progress in Geography, 2014, 33(11): 1435-1443. |
李新荣, 赵洋, 回嵘, 等. 中国干旱区恢复生态学研究进展及趋势评述. 地理科学进展, 2014, 33(11): 1435-1443. | |
11 | Abida P, Muhammad A A, Iqbal H, et al. Promotion of growth and physiological characteristics in water-stressed Triticum aestivum in relation to foliar-application of salicylic acid. Water, 2021, 13(9): 1316. |
12 | Allah W, Affan M, Ahmad Y T, et al. Foliar potassium sulfate application improved photosynthetic characteristics, water relations and seedling growth of drought-stressed maize. Atmosphere, 2021, 12(6): 663. |
13 | Amir G S, Afsaneh M, Ali N, et al. Application of brown algae (Sargassum angustifolium) extract for improvement of drought tolerance in canola (Brassica napus L.). Iranian Journal of Biotechnology, 2021, 19(1): 22-29. |
14 | Habib N, Qasim A, Ali S, et al. Use of nitric oxide and hydrogen peroxide for better yield of wheat (Triticum aestivum L.) under water deficit conditions: growth, osmoregulation, and antioxidative defense mechanism. Plants, 2020, 9(2): 285. |
15 | Zheng J L, Zhao L Y, Wu C W, et al. Exogenous proline reduces NaCl-induced damage by mediating ionic and osmotic adjustment and enhancing antioxidant defense in Eurya emarginata. Acta Physiologiae Plantarum, 2015, 37(9): 181. |
16 | Khampheng B, Shen L, Zhong S, et al. Improving the antioxidant system and its stress resistance to tobacco seeds and seeding by proline priming. Journal of Shanxi Agricultural Sciences, 2019, 47(1): 39-48. |
Khampheng B, 沈镭, 钟帅, 等. 脯氨酸引发提高烟草种子和幼苗抗逆性及其与抗氧化系统的关系. 山西农业科学, 2019, 47(1): 39-48. | |
17 | Sha H J. Effect of exogenous proline on the salt-tolerance of rice (Oryza sativa L.). Harbin: Northeast Agricultural University, 2013. |
沙汉景. 外源脯氨酸对盐胁迫下水稻耐盐性的影响. 哈尔滨: 东北农业大学, 2013. | |
18 | Zhang Y X, Li X K. Effects of Cd, Pb and their combined pollution on physiological indexes in leaf of the Hordeum vulgare seedling. Bulletin of Botanical Research, 2008, 28(1): 43-46, 53. |
张义贤, 李晓科. 镉、铅及其复合污染对大麦幼苗部分生理指标的影响. 植物研究, 2008, 28(1): 43-46, 53. | |
19 | Liang T B, Zhang J L, Tian L, et al. Effects of exogenous glycine betaine and proline on antioxidant metabolism of flue-cured tobacco under drought stress. Tobacco Science and Technology, 2013(2): 68-71. |
梁太波, 张景玲, 田雷, 等. 干旱胁迫下外源甜菜碱和脯氨酸对烤烟抗氧化代谢的影响. 烟草科技, 2013(2): 68-71. | |
20 | Ma W G, Cui H W, Li Y P, et al. Effects of seed priming with different agents on seed germination and seedling growth in tobacco (Nicotiana tobacum L.) under drought stress. Acta Agriculturae Zhejiangensis, 2012, 24(6): 949-956. |
马文广, 崔华威, 李永平, 等. 不同药剂引发处理对干旱胁迫下烟草种子发芽和幼苗生长的影响. 浙江农业学报, 2012, 24(6): 949-956. | |
21 | Su B B, Liu J, Li L L, et al. Effects of exogenous proline on antioxidant enzyme activity and photosynthetic characteristics of Pinellia ternate under high temperature stress. Journal of Southwest University (Natural Science Edition), 2015, 37(12): 34-39. |
苏贝贝, 刘佳, 李琳琳, 等. 外源脯氨酸对高温胁迫下半夏抗氧化酶活性及光合特性的影响. 西南大学学报(自然科学版), 2015, 37(12): 34-39. | |
22 | Ali N, Ghader H, Atousa V. Exogenous proline enhances salt tolerance in acclimated Aloe vera by modulating photosystem Ⅱ efficiency and antioxidant defense. South African Journal of Botany, 2020, doi:10.1016/j.sajb.2020.06.005. |
23 | Jia H J, Li Y, Yang C H, et al. Study on main water parameters and drought resistance of Reaumuria soongorica seedlings from six provenances. Journal of Arid Land Resources and Environment, 2016, 30(8): 182-187. |
贾海娟, 李毅, 杨彩红, 等. 6个种源红砂幼苗主要水分参数与抗旱性研究. 干旱区资源与环境, 2016, 30(8): 182-187. | |
24 | Liu Y B. Study on ecophysiological characteristics of desiccation-tolerant mechanism in desert resurrection plant Reaumuria soongorica. Lanzhou: Lanzhou University, 2006. |
刘玉冰. 荒漠复苏植物红砂抗旱机理的生理生态学特性研究. 兰州: 兰州大学, 2006. | |
25 | Pan J, Li R, Hu X W. Effect of water conditions on carbon isotope composition photosynthesis and branch growth of Reaumuria soongorica. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(6): 1190-1198. |
潘佳, 李荣, 胡小文. 水分条件对红砂叶片碳同位素组成与光合特性和分枝生长的影响. 西北植物学报, 2016, 36(6): 1190-1198. | |
26 | Chai W M, Li Y, Su S P, et al. Physiological characteristics of drought-resistant families of Nitraria tangutorum. Journal of Desert Research, 2017, 37(6): 1158-1170. |
柴文敏, 李毅, 苏世平, 等. 唐古特白刺(Nitraria tangutorum)抗旱优良家系的生理特性. 中国沙漠, 2017, 37(6): 1158-1170. | |
27 | Li H S. Principle and technology of plant physiological and biochemical experiments. Beijing: Higher Education Press, 2001: 134-170. |
李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2001: 134-170. | |
28 | Gao J F. Guidance of plant physiology experiments. Beijing: Higher Education Press, 2006. |
高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006. | |
29 | Taia A, Wael M S. Effect of deficit irrigation and growing seasons on plant water status, fruit yield and water use efficiency of squash under saline soil. Scientia Horticulturae, 2015, 186: 89-100. |
30 | Semida W M, Abdelkhalik A, Rady M O A, et al. Exogenously applied proline enhances growth and productivity of drought stressed onion by improving photosynthetic efficiency, water use efficiency and up-regulating osmoprotectants. Scientia Horticulturae, 2020, 272: 109580. |
31 | Tang Z C. Accumulation of proline in plants under adversity and its possible significance. Plant Physiology Communication, 1984(1): 15-21. |
汤章城. 逆境条件下植物脯氨酸的累积及其可能的意义. 植物生理学通讯, 1984(1): 15-21. | |
32 | Wang W, Wu C W, Wang X, et al. Effects of exogenous proline on growth, antioxidant enzyme activity and osmotic adjustment substance accumulation in radish seedlings under salt stress. Acta Agriculturae Jiangxi, 2019, 31(3): 51-56. |
王玮, 吴传万, 王欣, 等. 外源脯氨酸对盐胁迫下萝卜幼苗生长、抗氧化酶活性及渗透调节物质积累的影响. 江西农业学报, 2019, 31(3): 51-56. | |
33 | Sha H J, Liu H L, Wang J G, et al. Effect of exogenous proline on growth of salt-stressed rice at tillering stage. Research of Agricultural Modernization, 2013, 34(2): 230-234. |
沙汉景, 刘化龙, 王敬国, 等. 外源脯氨酸对盐胁迫下水稻分蘖期生长的影响.农业现代化研究, 2013, 34(2): 230-234. | |
34 | Dong B, Lan L J, Huang Y F, et al. Effects of drought stress on photosynthetic pigments and chlorophyll fluorescence characteristics in leaves of Camellia oleifera. Non-wood Forest Research, 2020, 38(3): 16-25. |
董斌, 蓝来娇, 黄永芳, 等. 干旱胁迫对油茶叶片叶绿素含量和叶绿素荧光参数的影响. 经济林研究, 2020, 38(3): 16-25. | |
35 | Luo Z Q, Wang H, Chen M, et al. Effects of drought stress on physiological and biochemical characteristics of four Camellia oleifera varieties seedlings. Non-wood Forest Research, 2019, 37(2): 104-113. |
罗梓琼, 王慧, 陈铭, 等. 干旱胁迫对4个油茶品种苗木生理生化指标的影响. 经济林研究, 2019, 37(2): 104-113. | |
36 | Wang P R, Zhang F T, Gao J X, et al. An overview of chlorophyll biosynthesis in higher plants. Acta Botanica Boreali-Occidentalia, 2009, 29(3): 629-636. |
王平荣, 张帆涛, 高家旭, 等. 高等植物叶绿素生物合成的研究进展. 西北植物学报, 2009, 29(3): 629-636. | |
37 | Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 1982, 33(1): 317-345. |
38 | Yang B X, Gong T, Ma Y F, et al. Effects of salicvlic acid on the growth and photosynthesis characters of purple majesty (Pennisetum glaucum) during temperature stress. Journal of Southwest China Normal University (Natural Science Edition), 2012, 37(2): 66-71. |
杨丙贤, 龚婷, 马永甫, 等. 水杨酸对温度胁迫下紫御谷幼苗生长及光合特性的影响. 西南师范大学学报(自然科学版), 2012, 37(2): 66-71. | |
39 | Yan Z M, Sun J, Guo S R. Effects of exogenous proline on seedling growth, photosynthesis and photosynthetic fluorescence characteristics in leaves of melon under salt stress. Jiangsu Journal of Agricultural Sciences, 2013, 29(5): 1125-1130. |
颜志明, 孙锦, 郭世荣. 外源脯氨酸对盐胁迫下甜瓜幼苗生长、光合作用和光合荧光参数的影响. 江苏农业学报, 2013, 29(5): 1125-1130. |
[1] | 金祎婷, 刘文辉, 刘凯强, 梁国玲, 贾志锋. 全生育期干旱胁迫对‘青燕1号’燕麦叶绿素荧光参数的影响[J]. 草业学报, 2022, 31(6): 112-126. |
[2] | 蒋嘉瑜, 连学, 唐希明, 刘任涛, 张安宁. 干旱与半干旱区红砂枯落物分解初期节肢动物群落结构特征[J]. 草业学报, 2022, 31(5): 156-168. |
[3] | 王志恒, 魏玉清, 赵延蓉, 王悦娟. 基于转录组学比较研究甜高粱幼苗响应干旱和盐胁迫的生理特征[J]. 草业学报, 2022, 31(3): 71-84. |
[4] | 高鹏飞, 张静, 范卫芳, 高冰, 郝宏娟, 吴建慧. 干旱胁迫对光叉委陵菜根系特征、结构和生理特性的影响[J]. 草业学报, 2022, 31(2): 203-212. |
[5] | 魏娜, 李艳鹏, 马艺桐, 刘文献. 全基因组水平紫花苜蓿TCP基因家族的鉴定及其在干旱胁迫下表达模式分析[J]. 草业学报, 2022, 31(1): 118-130. |
[6] | 赵颖, 辛夏青, 魏小红. 一氧化氮对干旱胁迫下紫花苜蓿氮代谢的影响[J]. 草业学报, 2021, 30(9): 86-96. |
[7] | 臧真凤, 白婕, 刘丛, 昝看卓, 龙明秀, 何树斌. 紫花苜蓿形态和生理指标响应干旱胁迫的品种特异性[J]. 草业学报, 2021, 30(6): 73-81. |
[8] | 罗巧玉, 王彦龙, 陈志, 马永贵, 任启梅, 马玉寿. 水分逆境对发草脯氨酸及其代谢途径的影响[J]. 草业学报, 2021, 30(5): 75-83. |
[9] | 陆安桥, 张峰举, 许兴, 王学琴, 姚姗. 盐胁迫对湖南稷子苗期生长及生理特性的影响[J]. 草业学报, 2021, 30(5): 84-93. |
[10] | 王龙, 樊婕, 魏畅, 李鸽子, 张静静, 焦秋娟, 陈果, 孙娈姿, 柳海涛. 外源抗坏血酸对铜胁迫菊苣幼苗生长的缓解效应[J]. 草业学报, 2021, 30(4): 150-159. |
[11] | 候怡谣, 李霄, 龙瑞才, 杨青川, 康俊梅, 郭长虹. 过量表达紫花苜蓿MsHB7基因对拟南芥耐旱性的影响[J]. 草业学报, 2021, 30(4): 170-179. |
[12] | 陈雅琦, 苏楷淇, 陈泰祥, 李春杰. 混合盐碱胁迫对醉马草种子萌发及幼苗生理特性的影响[J]. 草业学报, 2021, 30(3): 137-157. |
[13] | 刘凯强, 刘文辉, 贾志锋, 梁国玲, 马祥. 干旱胁迫对‘青燕1号’燕麦产量及干物质积累与分配的影响[J]. 草业学报, 2021, 30(3): 177-188. |
[14] | 李冬, 申洪涛, 王艳芳, 王悦华, 王丽君, 赵世民, 刘领. 外源褪黑素对干旱胁迫下烟草幼苗光合碳同化和内源激素的影响[J]. 草业学报, 2021, 30(1): 130-139. |
[15] | 黄海霞, 杨琦琦, 崔鹏, 陆刚, 韩国君. 裸果木幼苗根系形态和生理特征对水分胁迫的响应[J]. 草业学报, 2021, 30(1): 197-207. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||