草业学报 ›› 2022, Vol. 31 ›› Issue (8): 35-48.DOI: 10.11686/cyxb2021289
牛伟玲1,2(), 陈辉2, 侯慧新1, 郭晨睿1, 马娇林3, 武建双1()
收稿日期:
2021-07-27
修回日期:
2021-09-13
出版日期:
2022-08-20
发布日期:
2022-07-01
通讯作者:
武建双
作者简介:
E-mail: wujianshuang@caas.cn基金资助:
Wei-ling NIU1,2(), Hui CHEN2, Hui-xin HOU1, Chen-rui GUO1, Jiao-lin MA3, Jian-shuang WU1()
Received:
2021-07-27
Revised:
2021-09-13
Online:
2022-08-20
Published:
2022-07-01
Contact:
Jian-shuang WU
摘要:
在气候变化和过度放牧影响下,高寒草地退化日趋严重。当前,围栏封育作为退化草地生态恢复的主要措施之一,其对植物功能性状和生理过程影响的研究相对较少。以藏西北荒漠草原植物为对象,选取植物叶片碳(LCC)和氮含量(LNC)及稳定同位素组成(δ13C和δ15N)来表征植物水分利用效率(WUE)和氮素利用效率(NUE),以期探明围栏封育对高寒荒漠草原植物WUE和NUE的相对影响。结果表明:1)高寒荒漠草原不同功能群植物间LCC、LNC、δ13C和δ15N存在差异;2)在植物群落和功能群水平上,围栏封育对LCC、LNC、δ13C和δ15N均无显著影响;3)土壤含水量和pH值是影响荒漠植物叶片δ13C的主要因子,表明植物内在WUE主要受土壤因素的调控。生长季气温是影响叶片δ15N的主导因子,表明气候条件是影响藏西北荒漠草原生态系统氮循环的主导因素;4)荒漠草原植物WUE和NUE之间无明显权衡关系。综上所述,短期围栏封育并不会显著改变藏西北荒漠草原植物WUE和NUE;且荒漠草原生态系统碳氮循环主要受当地环境因素影响。因此,建议在脆弱高寒荒漠生态学研究中加强关于植物生理和功能性状对环境变化响应过程的研究,从而更好地理解群落构建和演替以及养分循环机制。
牛伟玲, 陈辉, 侯慧新, 郭晨睿, 马娇林, 武建双. 10年禁牧未改变藏西北高寒荒漠植物水氮利用效率[J]. 草业学报, 2022, 31(8): 35-48.
Wei-ling NIU, Hui CHEN, Hui-xin HOU, Chen-rui GUO, Jiao-lin MA, Jian-shuang WU. Ten-year livestock exclusion did not affect water and nitrogen use efficiency of alpine desert-steppe plants in Northwest Tibet[J]. Acta Prataculturae Sinica, 2022, 31(8): 35-48.
样地 Site | 经度 Longitude (E) | 纬度 Latitude (N) | 海拔 Altitude (m) | GST (℃) | GSP (mm) | MAT (℃) | MAP (mm) |
---|---|---|---|---|---|---|---|
DS-1 | 84.83° | 31.99° | 4609 | 10.8 | 360 | 2.1 | 393 |
DS-2 | 82.91° | 32.38° | 4476 | 11.5 | 290 | 2.5 | 334 |
DS-3 | 81.91° | 32.04° | 4604 | 11.3 | 228 | 2.2 | 267 |
样地 Site | AGB (g·m-2) | SR (No.·m-2) | SWC (%) | SOC (g·kg-1) | NO3--N (mg·kg-1) | NH4+-N (mg·kg-1) | 土壤pH Soil pH |
DS-1 | 26.52 | 5.9 | 13 | 0.81 | 8.05 | 17.78 | 8.51 |
DS-2 | 20.41 | 4.4 | 15 | 0.87 | 3.66 | 25.41 | 8.67 |
DS-3 | 22.85 | 5.2 | 7 | 0.37 | 1.64 | 15.16 | 8.75 |
表1 采样点信息
Table 1 Sampling location information
样地 Site | 经度 Longitude (E) | 纬度 Latitude (N) | 海拔 Altitude (m) | GST (℃) | GSP (mm) | MAT (℃) | MAP (mm) |
---|---|---|---|---|---|---|---|
DS-1 | 84.83° | 31.99° | 4609 | 10.8 | 360 | 2.1 | 393 |
DS-2 | 82.91° | 32.38° | 4476 | 11.5 | 290 | 2.5 | 334 |
DS-3 | 81.91° | 32.04° | 4604 | 11.3 | 228 | 2.2 | 267 |
样地 Site | AGB (g·m-2) | SR (No.·m-2) | SWC (%) | SOC (g·kg-1) | NO3--N (mg·kg-1) | NH4+-N (mg·kg-1) | 土壤pH Soil pH |
DS-1 | 26.52 | 5.9 | 13 | 0.81 | 8.05 | 17.78 | 8.51 |
DS-2 | 20.41 | 4.4 | 15 | 0.87 | 3.66 | 25.41 | 8.67 |
DS-3 | 22.85 | 5.2 | 7 | 0.37 | 1.64 | 15.16 | 8.75 |
功能群 PFGs | 物种 Species | δ13C (‰) | δ15N (‰) | 叶碳含量 LCC (%) | 叶氮含量 LNC (%) | 地上生物量 AGB (g·m-2) |
---|---|---|---|---|---|---|
豆科 Legumes | 轮叶棘豆Oxytropis chiliophylla | -27.50±0.36 | -0.93±0.35 | 41.87±2.25 | 2.71±0.14 | 3.11±1.88 |
小垫黄芪Astragalus pulvinatus | -26.82±0.08 | -0.58±0.39 | 42.36±1.36 | 2.95±0.15 | 0.98±0.36 | |
杂类草 Forbs | 半卧狗娃花Heteropappus semiprostratus | -27.86±0.00 | 1.16±0.00 | 35.15±0.00 | 2.28±0.00 | 1.36±0.00 |
半球齿缘草Eritrichium hemisphaericum | -27.83±0.35 | 1.76±0.43 | 39.74±0.17 | 1.74±0.04 | 0.25±0.05 | |
青藏大戟Euphorbia altotibetica | -24.91±0.00 | 2.27±0.00 | 45.51±0.00 | 2.13±0.00 | 0.61±0.00 | |
钉柱委陵菜Potentilla saundersiana | -26.76±0.00 | 2.79±0.00 | 52.34±0.00 | 1.53±0.00 | 3.46±0.00 | |
二裂委陵菜Potentilla bifurca | -26.83±0.11 | 3.40±0.47 | 47.72±1.24 | 1.54±0.07 | 4.33±1.85 | |
纤杆蒿Artemisia demissa | -27.32±0.16 | 4.45±0.27 | 47.95±0.95 | 1.78±0.08 | 2.96±1.04 | |
藏沙蒿Artemisia wellbyi | -26.61±0.32 | 4.54±0.66 | 47.41±1.73 | 2.02±0.13 | 0.27±0.06 | |
棉毛葶苈Draba winterbottomii | -26.57±0.18 | 5.09±0.47 | 39.96±2.13 | 2.07±0.07 | 1.49±0.47 | |
禾本科 Grasses | 紫花针茅S. purpurea | -26.38±0.14 | 1.32±0.34 | 50.11±0.46 | 1.63±0.05 | 22.49±4.17 |
梭罗草Roegneria thoroldiana | -26.66±0.00 | 2.92±0.00 | 46.49±0.00 | 1.47±0.00 | 0.39±0.00 | |
羽柱针茅Stipa subsessiliflora | -26.38±0.46 | 2.97±0.41 | 46.75±1.86 | 1.50±0.11 | 7.60±0.95 | |
固沙草Orinus thoroldii | -23.35±0.20 | 4.37±0.57 | 51.90±1.33 | 1.46±0.04 | 14.28±4.25 | |
沙生针茅S. glareosa | -26.83±0.13 | 5.50±0.31 | 49.67±1.29 | 1.64±0.10 | 12.04±1.02 | |
莎草科 Sedges | 华扁穗草Blysmus sinocompressus | -26.86±0.15 | 3.02±0.26 | 49.06±0.86 | 1.65±0.07 | 1.96±0.48 |
青藏苔草Carex moorcroftii | -27.31±0.00 | 6.80±0.00 | 52.93±0.00 | 1.76±0.00 | 2.06±0.00 |
表2 不同功能群植物叶片碳、氮含量和同位素组成及其地上生物量
Table 2 Leaf carbon and nitrogen content (LCC and LNC), leaf stable carbon and nitrogen isotopic composition (δ13C and δ15N), and aboveground biomass of different plant functional groups (PFGs)
功能群 PFGs | 物种 Species | δ13C (‰) | δ15N (‰) | 叶碳含量 LCC (%) | 叶氮含量 LNC (%) | 地上生物量 AGB (g·m-2) |
---|---|---|---|---|---|---|
豆科 Legumes | 轮叶棘豆Oxytropis chiliophylla | -27.50±0.36 | -0.93±0.35 | 41.87±2.25 | 2.71±0.14 | 3.11±1.88 |
小垫黄芪Astragalus pulvinatus | -26.82±0.08 | -0.58±0.39 | 42.36±1.36 | 2.95±0.15 | 0.98±0.36 | |
杂类草 Forbs | 半卧狗娃花Heteropappus semiprostratus | -27.86±0.00 | 1.16±0.00 | 35.15±0.00 | 2.28±0.00 | 1.36±0.00 |
半球齿缘草Eritrichium hemisphaericum | -27.83±0.35 | 1.76±0.43 | 39.74±0.17 | 1.74±0.04 | 0.25±0.05 | |
青藏大戟Euphorbia altotibetica | -24.91±0.00 | 2.27±0.00 | 45.51±0.00 | 2.13±0.00 | 0.61±0.00 | |
钉柱委陵菜Potentilla saundersiana | -26.76±0.00 | 2.79±0.00 | 52.34±0.00 | 1.53±0.00 | 3.46±0.00 | |
二裂委陵菜Potentilla bifurca | -26.83±0.11 | 3.40±0.47 | 47.72±1.24 | 1.54±0.07 | 4.33±1.85 | |
纤杆蒿Artemisia demissa | -27.32±0.16 | 4.45±0.27 | 47.95±0.95 | 1.78±0.08 | 2.96±1.04 | |
藏沙蒿Artemisia wellbyi | -26.61±0.32 | 4.54±0.66 | 47.41±1.73 | 2.02±0.13 | 0.27±0.06 | |
棉毛葶苈Draba winterbottomii | -26.57±0.18 | 5.09±0.47 | 39.96±2.13 | 2.07±0.07 | 1.49±0.47 | |
禾本科 Grasses | 紫花针茅S. purpurea | -26.38±0.14 | 1.32±0.34 | 50.11±0.46 | 1.63±0.05 | 22.49±4.17 |
梭罗草Roegneria thoroldiana | -26.66±0.00 | 2.92±0.00 | 46.49±0.00 | 1.47±0.00 | 0.39±0.00 | |
羽柱针茅Stipa subsessiliflora | -26.38±0.46 | 2.97±0.41 | 46.75±1.86 | 1.50±0.11 | 7.60±0.95 | |
固沙草Orinus thoroldii | -23.35±0.20 | 4.37±0.57 | 51.90±1.33 | 1.46±0.04 | 14.28±4.25 | |
沙生针茅S. glareosa | -26.83±0.13 | 5.50±0.31 | 49.67±1.29 | 1.64±0.10 | 12.04±1.02 | |
莎草科 Sedges | 华扁穗草Blysmus sinocompressus | -26.86±0.15 | 3.02±0.26 | 49.06±0.86 | 1.65±0.07 | 1.96±0.48 |
青藏苔草Carex moorcroftii | -27.31±0.00 | 6.80±0.00 | 52.93±0.00 | 1.76±0.00 | 2.06±0.00 |
图1 围栏封育内外不同功能群植物地上生物量占比之间的比较不同大写字母表示不同功能群之间存在显著差异(P<0.05);不同小写字母表示围栏封育内外之间存在显著差异(P<0.05)。下同。Different capital letters indicate significant differences among different functional group (P<0.05); Different lowercase letters indicate significant differences between inside and outside the fence (P<0.05). The same below.
Fig.1 Comparisons of aboveground biomass fraction of different plant functional groups (PFGs) between grazed and fenced sites
图2 围栏封育对群落水平植物叶片碳氮含量和同位素组成的影响
Fig.2 Effects of livestock exclusion on community weighted means (CWMs) of leaf carbon and nitrogen content (LCC and LNC), leaf stable carbon and nitrogen isotopic composition (δ13C and δ15N)
项目 Item | 叶碳含量LCC | 叶氮含量LNC | δ13C | δ15N | ||||
---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | |
土地利用类型 LUT | 5.17 | <0.05 | 1.33 | 0.25 | 0.40 | 0.53 | 2.53 | 0.12 |
植物功能群PFGs | 8.16 | <0.01 | 60.78 | <0.01 | 3.55 | <0.05 | 24.55 | <0.01 |
LUT∶PFGs | 0.94 | 0.43 | 3.14 | <0.05 | 0.27 | 0.85 | 0.41 | 0.75 |
表3 土地利用和植物功能群对群落水平叶片碳氮含量以及同位素组成的影响
Table 3 Effects of land use types (LUT, fenced vs grazed) and plant functional groups (PFGs) on the community-weighted means of leaf carbon and nitrogen content (LCC and LNC) and stable carbon and nitrogen isotopic composition (δ13C and δ15N)
项目 Item | 叶碳含量LCC | 叶氮含量LNC | δ13C | δ15N | ||||
---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | |
土地利用类型 LUT | 5.17 | <0.05 | 1.33 | 0.25 | 0.40 | 0.53 | 2.53 | 0.12 |
植物功能群PFGs | 8.16 | <0.01 | 60.78 | <0.01 | 3.55 | <0.05 | 24.55 | <0.01 |
LUT∶PFGs | 0.94 | 0.43 | 3.14 | <0.05 | 0.27 | 0.85 | 0.41 | 0.75 |
图3 围栏封育对不同功能群植物叶片碳氮含量和同位素组成的影响
Fig.3 Effects of livestock exclusion on leaf carbon and nitrogen content (LCC and LNC) and stable carbon and nitrogen isotopic composition (δ13C and δ15N) of different functional group (PFGs)
图4 群落水平上植物叶片碳氮含量和同位素组成之间的关系
Fig.4 Relationship among community weighted means (CWMs) of leaf carbon and nitrogen content (LCC and LNC) and stable carbon and nitrogen isotopic composition (δ15N and δ13C)
变量Variables | δ15N | δ13C | LNC | LCC | GST | GSP | SWC | SOC | ||
---|---|---|---|---|---|---|---|---|---|---|
δ13C | -0.09 | |||||||||
叶氮含量LNC | 0.00 | -0.15 | ||||||||
叶碳含量LCC | 0.06 | 0.13 | 0.05 | |||||||
生长季气温GST | 0.87*** | -0.16 | 0.03 | -0.08 | ||||||
生长季降水GSP | -0.48 | 0.13 | 0.13 | 0.40 | -0.69* | |||||
土壤含水量SWC | 0.11 | 0.00 | 0.30 | 0.42 | -0.01 | 0.65* | ||||
铵态氮NH4+-N | 0.49 | -0.17 | 0.29 | 0.25 | 0.48 | 0.18 | 0.63* | |||
硝态氮NO3--N | -0.39 | 0.30 | 0.00 | 0.51 | -0.69* | 0.84** | 0.41 | -0.04 | ||
土壤有机碳SOC | 0.03 | -0.07 | 0.25 | 0.32 | -0.07 | 0.65* | 0.85*** | 0.57 | 0.45 | |
土壤pH Soil pH | 0.42 | -0.40 | 0.09 | -0.51 | 0.62 | -0.78** | -0.48 | 0.03 | -0.86** | -0.54 |
表4 群落水平叶片碳氮含量和同位素组成与环境变量之间的相关矩阵
Table 4 Correlation matrix of community weighted means (CWMs) of leaf carbon and nitrogen content (LCC and LNC) and stable carbon and nitrogen isotopic composition (δ13C and δ15N) as well as environmental variables
变量Variables | δ15N | δ13C | LNC | LCC | GST | GSP | SWC | SOC | ||
---|---|---|---|---|---|---|---|---|---|---|
δ13C | -0.09 | |||||||||
叶氮含量LNC | 0.00 | -0.15 | ||||||||
叶碳含量LCC | 0.06 | 0.13 | 0.05 | |||||||
生长季气温GST | 0.87*** | -0.16 | 0.03 | -0.08 | ||||||
生长季降水GSP | -0.48 | 0.13 | 0.13 | 0.40 | -0.69* | |||||
土壤含水量SWC | 0.11 | 0.00 | 0.30 | 0.42 | -0.01 | 0.65* | ||||
铵态氮NH4+-N | 0.49 | -0.17 | 0.29 | 0.25 | 0.48 | 0.18 | 0.63* | |||
硝态氮NO3--N | -0.39 | 0.30 | 0.00 | 0.51 | -0.69* | 0.84** | 0.41 | -0.04 | ||
土壤有机碳SOC | 0.03 | -0.07 | 0.25 | 0.32 | -0.07 | 0.65* | 0.85*** | 0.57 | 0.45 | |
土壤pH Soil pH | 0.42 | -0.40 | 0.09 | -0.51 | 0.62 | -0.78** | -0.48 | 0.03 | -0.86** | -0.54 |
图5 群落水平叶片碳氮含量和同位素组成与气候因子之间的关系
Fig.5 Relationship among community weighted means (CWMs) of leaf carbon and nitrogen content (LCC and LNC) and stable carbon and nitrogen isotopic composition (δ13C and δ15N) and climate factors
图6 群落水平叶片碳氮含量和同位素组成与土壤因子之间的关系
Fig.6 Relationship among community weighted means (CWMs) of leaf carbon and nitrogen content (LCC and LNC) and stable carbon and nitrogen isotopic composition (δ13C and δ15N) and soil factors
环境因子 Environmental variables | df | 群落加权均值多元线性模型Multivariate linear models for CWMs | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
δ13C (R2 =0.36) | δ15N (R2 =0.85) | LCC (R2 =0.49) | LNC (R2 =0.27) | |||||||||||||||
SS | F | P | η2(%) | SS | F | P | η2(%) | SS | F | P | η2(%) | SS | F | P | η2(%) | |||
生长季气温 GST | 1 | 0.72 | 0.86 | 0.36 | 2.51 | 21.84 | 111.53 | <0.01 | 75.31 | 0.18 | 0.26 | 0.61 | 0.61 | 0.03 | 0.04 | 0.85 | 0.12 | |
生长季降水 GSP | 1 | 0.03 | 0.04 | 0.85 | 0.11 | 0.90 | 4.57 | <0.05 | 3.09 | 6.75 | 9.98 | <0.01 | 23.28 | 1.34 | 1.39 | 0.25 | 4.61 | |
土壤含水量 SWC | 1 | 0.12 | 0.15 | 0.71 | 0.43 | 0.34 | 1.73 | 0.20 | 1.17 | 0.07 | 0.10 | 0.76 | 0.23 | 1.68 | 1.74 | 0.20 | 5.79 | |
铵态氮 NH4+-N | 1 | 1.59 | 1.89 | 0.18 | 5.49 | 0.25 | 1.29 | 0.27 | 0.87 | 0.40 | 0.60 | 0.45 | 1.39 | 1.57 | 1.63 | 0.22 | 5.41 | |
硝态氮 NO3--N | 1 | 2.26 | 2.68 | 0.12 | 7.78 | 1.10 | 5.61 | <0.05 | 3.78 | 4.67 | 6.91 | <0.05 | 16.11 | 0.04 | 0.04 | 0.84 | 0.15 | |
土壤有机碳 SOC | 1 | 1.07 | 1.27 | 0.27 | 3.70 | 0.11 | 0.55 | 0.47 | 0.37 | 0.90 | 1.33 | 0.26 | 3.09 | 0.01 | 0.01 | 0.91 | 0.04 | |
土壤pH Soil pH | 1 | 4.65 | 5.51 | <0.05 | 16.03 | 0.17 | 0.85 | 0.37 | 0.57 | 1.15 | 1.70 | 0.21 | 3.97 | 3.14 | 3.26 | 0.08 | 10.84 | |
残差 Residuals | 22 | 18.55 | 4.31 | 14.88 |
表5 环境因子对群落水平叶片碳、氮含量和同位素组成的相对影响
Table 5 Effects of environmental variables on community weighted means (CWMs) of leaf carbon and nitrogen content (LCC and LNC) and stable carbon and nitrogen isotopic composition (δ15N and δ13C)
环境因子 Environmental variables | df | 群落加权均值多元线性模型Multivariate linear models for CWMs | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
δ13C (R2 =0.36) | δ15N (R2 =0.85) | LCC (R2 =0.49) | LNC (R2 =0.27) | |||||||||||||||
SS | F | P | η2(%) | SS | F | P | η2(%) | SS | F | P | η2(%) | SS | F | P | η2(%) | |||
生长季气温 GST | 1 | 0.72 | 0.86 | 0.36 | 2.51 | 21.84 | 111.53 | <0.01 | 75.31 | 0.18 | 0.26 | 0.61 | 0.61 | 0.03 | 0.04 | 0.85 | 0.12 | |
生长季降水 GSP | 1 | 0.03 | 0.04 | 0.85 | 0.11 | 0.90 | 4.57 | <0.05 | 3.09 | 6.75 | 9.98 | <0.01 | 23.28 | 1.34 | 1.39 | 0.25 | 4.61 | |
土壤含水量 SWC | 1 | 0.12 | 0.15 | 0.71 | 0.43 | 0.34 | 1.73 | 0.20 | 1.17 | 0.07 | 0.10 | 0.76 | 0.23 | 1.68 | 1.74 | 0.20 | 5.79 | |
铵态氮 NH4+-N | 1 | 1.59 | 1.89 | 0.18 | 5.49 | 0.25 | 1.29 | 0.27 | 0.87 | 0.40 | 0.60 | 0.45 | 1.39 | 1.57 | 1.63 | 0.22 | 5.41 | |
硝态氮 NO3--N | 1 | 2.26 | 2.68 | 0.12 | 7.78 | 1.10 | 5.61 | <0.05 | 3.78 | 4.67 | 6.91 | <0.05 | 16.11 | 0.04 | 0.04 | 0.84 | 0.15 | |
土壤有机碳 SOC | 1 | 1.07 | 1.27 | 0.27 | 3.70 | 0.11 | 0.55 | 0.47 | 0.37 | 0.90 | 1.33 | 0.26 | 3.09 | 0.01 | 0.01 | 0.91 | 0.04 | |
土壤pH Soil pH | 1 | 4.65 | 5.51 | <0.05 | 16.03 | 0.17 | 0.85 | 0.37 | 0.57 | 1.15 | 1.70 | 0.21 | 3.97 | 3.14 | 3.26 | 0.08 | 10.84 | |
残差 Residuals | 22 | 18.55 | 4.31 | 14.88 |
项目Item | 环境因子Environmental variables | df | SS | F | P | η2 (%) |
---|---|---|---|---|---|---|
δ15N, R2 =0.84 | 生长季气温GST | 1 | 21.84 | 124.41 | <0.01 | 75.31 |
硝态氮 NO3--N | 1 | 2.43 | 13.82 | <0.01 | 8.36 | |
残差Residuals | 27 | 4.74 | ||||
δ13C, R2 =0.35 | 生长季气温GST | 1 | 0.38 | 1.00 | >0.10 | 2.50 |
土壤有机碳SOC | 1 | 0.12 | 0.28 | >0.10 | 0.70 | |
土壤pH Soil pH | 1 | 4.87 | 12.77 | <0.01 | 31.88 | |
残差Residuals | 26 | 12.09 | ||||
叶碳含量LCC, R2 =0.41 | 生长季气温GST | 1 | 0.18 | 0.28 | 0.60 | 0.61 |
硝态氮 NO3--N | 1 | 11.72 | 18.51 | <0.01 | 40.43 | |
残差Residuals | 27 | 17.10 |
表6 环境因子对群落水平叶片碳含量和同位素组成相对影响的多元线性最优模型
Table 6 Effects of environmental variables on community weighted means (CWMs) of leaf carbon content (LCC) and stable carbon and nitrogen isotopic composition (δ15N and δ13C) in multivariate linear optimal models (MLOM)
项目Item | 环境因子Environmental variables | df | SS | F | P | η2 (%) |
---|---|---|---|---|---|---|
δ15N, R2 =0.84 | 生长季气温GST | 1 | 21.84 | 124.41 | <0.01 | 75.31 |
硝态氮 NO3--N | 1 | 2.43 | 13.82 | <0.01 | 8.36 | |
残差Residuals | 27 | 4.74 | ||||
δ13C, R2 =0.35 | 生长季气温GST | 1 | 0.38 | 1.00 | >0.10 | 2.50 |
土壤有机碳SOC | 1 | 0.12 | 0.28 | >0.10 | 0.70 | |
土壤pH Soil pH | 1 | 4.87 | 12.77 | <0.01 | 31.88 | |
残差Residuals | 26 | 12.09 | ||||
叶碳含量LCC, R2 =0.41 | 生长季气温GST | 1 | 0.18 | 0.28 | 0.60 | 0.61 |
硝态氮 NO3--N | 1 | 11.72 | 18.51 | <0.01 | 40.43 | |
残差Residuals | 27 | 17.10 |
1 | The Agriculture and Animal Husbandry Department of Xizang (Tibetan) Autonomous Region, China. Statistic dataset of grassland resources and ecosystems in the Xizang (Tibetan) Autonomous Region, China. Beijing: China Agriculture, 2017. |
西藏自治区农牧厅. 西藏自治区草原资源与生态统计资料. 北京: 中国农业出版社, 2017. | |
2 | Hua X B, Yan J Z, Liu X. Settled herdsmen’s adaptation strategies to pasture degradation—Case study of Naqu County in Tibet Plateau. Journal of Mountain Science, 2013, 31(2): 140-149. |
花晓波, 阎建忠, 刘祥. 定居牧民对草地退化的适应策略—以那曲县为例. 山地学报, 2013, 31(2): 140-149. | |
3 | Liao H R, Tuvshintogtokh I, Guo T, et al. Effects of grazing exclusion on the vegetation community composition and the community stability of dry steppe and mountain steppe ecosystems in Mongolia. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(3): 471-478. |
廖晗茹, Indree Tuvshintogtokh, 郭通, 等. 围封对蒙古荒漠草原和高山草原植物群落组成及稳定性的影响. 北京大学学报(自然科学版), 2020, 56(3): 471-478. | |
4 | Du G Z, Qin G L, Li Z Z, et al. Relationship between species richness and productivity in an alpine meadow plant community. Acta Phytoecologica Sinica, 2003, 27(1): 125-132. |
杜国祯, 覃光莲, 李自珍, 等. 高寒草甸植物群落中物种丰富度与生产力的关系研究. 植物生态学报, 2003, 27(1): 125-132. | |
5 | Zhou T Y, Gao J, Wang J N, et al. Effects of 7-year enclosure on an alpine meadow at the south-eastern margin of Tibetan Plateau based on community structure and soil physico-chemical properties. Acta Prataculturae Sinica, 2018, 27(12): 1-11. |
周天阳, 高景, 王金牛, 等. 基于群落结构及土壤理化性质对围封7年青藏高原东南缘高山草地的综合评价. 草业学报, 2018, 27(12): 1-11. | |
6 | Wu T, Song N P, Chen X Y, et al. Effects of enclosure and grazing on the characteristics of plant communities in desert steppe of Yanchi. Acta Agrestia Sinica, 2019, 27(3): 651-660. |
吴婷, 宋乃平, 陈晓莹, 等. 围栏封育和放牧对盐池荒漠草原植物群落特征的影响. 草地学报, 2019, 27(3): 651-660. | |
7 | Zhou H K, Zhao X Q, Wen J, et al. The characteristics of soil and vegetation of degenerated alpine steppe in the Yellow River Source Region. Acta Prataculturae Sinica, 2012, 21(5): 1-11. |
周华坤, 赵新全, 温军, 等. 黄河源区高寒草原的植被退化与土壤退化特征. 草业学报, 2012, 21(5): 1-11. | |
8 | Wu J B, Bao X Y, Li J, et al. Influence of fencing duration on community and population of Stipa grandis in a typical steppe. Acta Agrestia Sinica, 2010, 18(4): 490-495. |
吴建波, 包晓影, 李洁, 等. 不同围封年限对典型草原群落及大针茅种群特征的影响. 草地学报, 2010, 18(4): 490-495. | |
9 | Liu X M, Nie X M. Effects of enclosure on the quantitative characteristics of alpine vegetation. Pratacultural Science, 2012, 29(1): 112-116. |
刘雪明, 聂学敏. 围栏封育对高寒草地植被数量特征的影响. 草业科学, 2012, 29(1): 112-116. | |
10 | Jia X N, Cheng J M, Wan H E. Change of species diversity on typical Stipa bungeana community restoration and succession in the Yunwu Mountain. Acta Prataculturae Sinica, 2008, 17(4): 12-18. |
贾晓妮, 程积民, 万惠娥. 云雾山本氏针茅草地群落恢复演替过程中的物种多样性变化动态. 草业学报, 2008, 17(4): 12-18. | |
11 | Dong X Y, Fu H, Li X D, et al. Effects on plant biomass and CNP contents of plants in grazed and fenced steppe grasslands of the Loess Plateau. Acta Prataculturae Sinica, 2010, 19(2): 175-182. |
董晓玉, 傅华, 李旭东, 等. 放牧与围封对黄土高原典型草原植物生物量及其碳氮磷贮量的影响. 草业学报, 2010, 19(2): 175-182. | |
12 | Lv G Y, Xu X B, Gao C P, et al. Effects of grazing on total nitrogen and stable nitrogen isotopes of plants and soil in different types of grasslands in Inner Mongolia. Acta Prataculturae Sinica, 2021, 30(3): 208-214. |
吕广一, 徐学宝, 高翠萍, 等. 放牧对内蒙古不同类型草原植物和土壤总氮与稳定氮同位素的影响. 草业学报, 2021, 30(3): 208-214. | |
13 | Liu W D, Su J R, Li S F, et al. Leaf carbon, nitrogen and phosphorus stoichiometry at different growth stages in dominant tree species of a monsoon broad-leaved evergreen forest in Pu’er, Yunnan Province, China. Chinese Journal of Plant Ecology, 2015, 39(1): 52-62. |
刘万德, 苏建荣, 李帅锋, 等. 云南普洱季风常绿阔叶林优势物种不同生长阶段叶片碳、氮、磷化学计量特征. 植物生态学报, 2015, 39(1): 52-62. | |
14 | Luo Y Q, Su B, Currie W S, et al. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience, 2004, 54(8): 731-739. |
15 | Wang Q W, Yu D P, Dai L M, et al. Research progress in water use efficiency of plants under global climate change. Chinese Journal of Applied Ecology, 2010, 21(12): 3255-3265. |
王庆伟, 于大炮, 代力民, 等. 全球气候变化下植物水分利用效率研究进展. 应用生态学报, 2010, 21(12): 3255-3265. | |
16 | Bai Y F, Han X G, Wu J G, et al. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 2004, 431: 181-184. |
17 | Xu X Y, Cao J J, Yang L, et al. Effects of grazing and enclosure on foliar and soil stoichiometry of grassland on the Qinghai-Tibetan Plateau. Chinese Journal of Ecology, 2018, 37(5): 1349-1355. |
许雪贇, 曹建军, 杨淋, 等. 放牧与围封对青藏高原草地土壤和植物叶片化学计量学特征的影响. 生态学杂志,2018, 37(5): 1349-1355. | |
18 | Le J J, Su Y, Luo Y, et al. Effects of enclosure on leaves of four plants and soil stoichiometry in an alpine grassland of Tianshan Mountains. Acta Ecologica Sinica, 2020, 40(5): 1621-1628. |
勒佳佳, 苏原, 罗艳, 等. 围封对天山高寒草原4种植物叶片和土壤化学计量学特征的影响. 生态学报, 2020, 40(5): 1621-1628. | |
19 | Ding X H, Gong L, Wang D B, et al. Grazing effects on eco-stoichiometry of plant and soil in Hulunbeir, Inner Mogolia. Acta Ecologica Sinica, 2012, 32(15): 4722-4730. |
丁小慧, 宫立, 王东波, 等. 放牧对呼伦贝尔草地植物和土壤生态化学计量学特征的影响. 生态学报, 2012, 32(15): 4722-4730. | |
20 | Wang Y T, Wang X, Zhao T Q, et al. Integration of water and nitrogen use efficiency of plant function groups in the Stipa breviflora grassland of Inner Mongolia along grazing gradients. Ecology and Environmental Sciences, 2017, 26(6): 964-970. |
王亚婷, 王玺, 赵天启, 等. 不同放牧强度上内蒙古短花针茅草原植物功能群水分和氮素利用效率相关分析. 生态环境学报,2017, 26(6): 964-970. | |
21 | Gao T, Xu B, Yang X C, et al. Review of researches on biomass carbon stock in grassland ecosystem of Qinghai-Tibetan Plateau. Progress in Geography, 2012, 31(12): 1724-1731. |
高添, 徐斌, 杨秀春, 等. 青藏高原草地生态系统生物量碳库研究进展. 地理科学进展, 2012, 31(12): 1724-1731. | |
22 | Yao H Y, Li X Y, Guo N, et al. Effects of long-term grazing on carbon isotope composition in plants and soils of different grasslands. Chinese Journal of Applied Ecology, 2019, 30(2): 553-562. |
姚鸿云, 李小雁, 郭娜, 等. 多年放牧对不同类型草原植被及土壤碳同位素的影响. 应用生态学报, 2019, 30(2): 553-562. | |
23 | Bian D, Li C, Yang X H, et al. Analysis of the situation of grassland degradation and it’s mechanism of the alpine pastoral area in Northwestern Tibet. Journal of Natural Resources, 2008(2): 254-262. |
边多, 李春, 杨秀海, 等. 藏西北高寒牧区草地退化现状与机理分析. 自然资源学报, 2008(2): 254-262. | |
24 | Robinson D. δ 15N as an integrator of the nitrogen cycle. Trends in Ecology & Evolution, 2001, 16(3): 153-162. |
25 | Peri P L, Ladd B, Pepper D A, et al. Carbon (δ 13C) and nitrogen (δ 15N) stable isotope composition in plant and soil in Southern Patagonia’s native forests. Global Change Biology, 2012, 18(1): 311-321. |
26 | Naeem S, Li S B. Biodiversity enhances ecosystem reliability. Nature, 1997, 390: 507-509. |
27 | Yan Y, Ma X X, Lu X Y. Effect of human disturbance on plant biomass and CNP contents of the alpine steppe in Northern Tibet. Mountain Research, 2014, 32(4): 460-466. |
鄢燕, 马星星, 鲁旭阳. 人为干扰对藏北高寒草原群落生物量及其碳氮磷含量特征的影响. 山地学报, 2014, 32(4): 460-466. | |
28 | Milchunas D G, Lauenroth W K, Burke I C. Livestock grazing: Animal and plant biodiversity of shortgrass steppe and the relationship to ecosystem function. Oikos, 1998, 83(1): 65-74. |
29 | Coffin D P, Laycock W A, Lauenroth W K. Disturbance intensity and above- and belowground herbivory effects on long-term (14 y) recovery of a semiarid grassland. Plant Ecology, 1998, 139(2): 221-233. |
30 | Fan Y J, Hou X Y, Shi H X, et al. The response of carbon reserves of plants and soils to different grassland managements on alpine meadow of three headwater source regions. Grassland and Turf, 2012, 32(5): 41-46, 52. |
范月君, 侯向阳, 石红霄, 等. 封育与放牧对三江源区高寒草甸植物和土壤碳储量的影响. 草原与草坪, 2012, 32(5): 41-46, 52. | |
31 | Ao Y M, Jiao Y, Xu Z. The changes of carbon and nitrogen storage of plant-soil system of enclosure years in typical steppe. Ecology and Environmental Sciences, 2011, 20(10): 1403-1410. |
敖伊敏, 焦燕, 徐柱. 典型草原不同围封年限植被-土壤系统碳氮贮量的变化. 生态环境学报, 2011, 20(10): 1403-1410. | |
32 | Liu Y W, Tenzintarchen, Geng X D, et al. Grazing exclusion enhanced net ecosystem carbon uptake but decreased plant nutrient content in an alpine steppe. Catena, 2020, DOI: 10.1016/j.catena.2020.104799. |
33 | Wu J S, Zhang X Z, Shen Z X, et al. Grazing-exclusion effects on aboveground biomass and water-use efficiency of alpine grasslands on the Northern Tibetan Plateau. Rangeland Ecology & Management, 2013, 66(4): 454-461. |
34 | Zhu G D, Zhang H D, Yao H Y, et al. Effects of grazing on δ 13C values of plants and soils in a Stipa breviflora desert steppe in Inner Mongolia, China. Grassland and Prataculture, 2015, 27(4): 45-50. |
朱国栋, 张洪丹, 姚鸿云, 等. 内蒙古短花针茅荒漠草原主要植物和土壤δ 13C对放牧干扰的响应. 草原与草业, 2015, 27(4): 45-50. | |
35 | Yao H Y, Wilkes A, Zhu G D, et al. Stable carbon isotope as a signal index for monitoring grassland degradation. Scientific Reports, 2016, DOI: 10.1038/srep31399. |
36 | Raven J A. Stable isotope techniques in the study of biological processes and functioning of ecosystems. Annals of Botany, 2002, 89(4): 499-500. |
37 | An H, Li G Q. Effects of grazing on carbon and nitrogen in plants and soils in a semiarid desert grassland, China. Journal of Arid Land, 2015, 7(3): 341-349. |
38 | Gao L, Yang J, Liu R X. Effects of soil moisture levels on photosynthesis, transpiration, and moisture use efficiency of female and male plants of Hippophae rhamnoides ssp. Sinensis. Acta Ecologica Sinica, 2009, 29(11): 6025-6034. |
高丽, 杨劼, 刘瑞香. 不同土壤水分条件下中国沙棘雌雄株光合作用、蒸腾作用及水分利用效率特征. 生态学报, 2009, 29(11): 6025-6034. | |
39 | Liu H Y, Li J Y, Zhao Y, et al. Study on δ 13C values of desert plant Salix psammophila and water use efficiency. Arid Zone Research, 2008(4): 514-518. |
刘海燕, 李吉跃, 赵燕, 等. 沙柳稳定碳同位素值的特点及其水分利用效率. 干旱区研究, 2008(4): 514-518. | |
40 | Ji L Z, Xiao D M, Wang M. Effects of simulated water stress on photosynthesis rate and WUE of Fraxinus mandshurica. Chinese Journal of Applied Ecology, 2005(3): 408-412. |
姬兰柱, 肖冬梅, 王淼. 模拟水分胁迫对水曲柳光合速率及水分利用效率的影响. 应用生态学报,2 005(3): 408-412. | |
41 | Li Y J, Miao Q W, Chen C H, et al. Influence of sodication and chemical improvement on soil aggregate. Journal of Arid Resources and Environment, 2006(1): 136-139. |
李跃进, 苗青旺, 陈昌和, 等. 土壤碱化和化学改良对土壤团粒结构的影响. 干旱区资源与环境, 2006(1): 136-139. | |
42 | Zhang J J, Liu Z C, Yan C, et al. Effects of soil pH on soil carbon, nitrogen, and phosphorus ecological stoichiometry in three types of steppe. Acta Prataculturae Sinica, 2021, 30(2): 69-81. |
张静静, 刘尊驰, 鄢创, 等. 土壤pH值变化对3种草原类型土壤碳氮磷生态化学计量特征的影响. 草业学报, 2021, 30(2): 69-81. | |
43 | Shi M, Wang R, Sun Q, et al. Vegetation restoration and soil nutrient changes in edge of Tengger Desert. Bulletin of Soil and Water Conservation, 2013, 33(6): 107-111. |
施明, 王锐, 孙权, 等. 腾格里沙漠边缘区植被恢复与土壤养分变化研究. 水土保持通报, 2013, 33(6): 107-111. | |
44 | Amundson R, Austin A T, Schuur E A G, et al. Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochemical Cycles, 2003, 17: 1031. |
45 | Craine J M, Elmore A J, Aidar M P M, et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytologist, 2009, 183(4): 980-992. |
46 | Wu J S, Song M H, Ma W L, et al. Plant and soil’s δ 15N are regulated by climate, soil nutrients, and species diversity in alpine grasslands on the Northern Tibetan Plateau. Agriculture Ecosystems & Environment, 2019, 281: 111-123. |
47 | Yang Y H, Ji C J, Robinson D, et al. Vegetation and soil 15N natural abundance in alpine grasslands on the Tibetan Plateau: Patterns and implications. Ecosystems, 2013, 16(6): 1013-1024. |
48 | Zhou Y C, Cheng X L, Fan J W, et al. Patterns and controls of foliar nitrogen isotope composition on the Qinghai-Tibet Plateau, China. Plant and Soil, 2016, 406(1/2): 265-276. |
49 | McCalley C K, Spark J P. Abiotic gas formation drives nitrogen loss from a desert ecosystem. Science, 2009, 326: 837-840. |
50 | Lopes M S, Araus J L. Nitrogen source and water regime effects on durum wheat photosynthesis and stable carbon and nitrogen isotope composition. Physiologia Plantarum, 2006, 126(3): 435-445. |
51 | Xiong X, Zhang H L, Wu J P, et al. 13C and 15N isotopic signatures of plant-soil continuum along a successional gradient in Dinghushan Biosphere Reserve. Chinese Journal of Plant Ecology, 2016, 40(6): 533-542. |
熊鑫, 张慧玲, 吴建平, 等. 鼎湖山森林演替序列植物-土壤碳氮同位素特征. 植物生态学报, 2016, 40(6): 533-542. | |
52 | Chen S P, Bai Y F, Zhang L X, et al. Comparing physiological responses of two dominant grass species to nitrogen addition in Xilin River Basin of China. Environmental and Experimental Botany, 2005, 53(1): 65-75. |
53 | Field C, Merino J, Mooney H A. Compromises between water-use efficiency and nitrogen-use efficiency in five species of California evergreens. Oecologia, 1983, 60(3): 384-389. |
[1] | 周大梁, 石薇, 蒋紫薇, 魏正业, 梁欢欢, 贾倩民. 沟垄集雨下密度和施氮对黄土高原青贮玉米叶片酶活性及水氮利用的影响[J]. 草业学报, 2022, 31(8): 126-143. |
[2] | 郭文章, 井长青, 邓小进, 陈宸, 赵苇康, 侯志雄, 王公鑫. 新疆天山北坡荒漠草原碳通量特征及其对环境因子的响应[J]. 草业学报, 2022, 31(5): 1-12. |
[3] | 金玲, 陆颖, 马红彬, 谢应忠, 沈艳. 内蒙古鄂托克前旗荒漠草原植物群落的数量分类与排序[J]. 草业学报, 2022, 31(4): 12-21. |
[4] | 倪芳芳, 吕世杰, 屈志强, 白璐, 孟彪, 张博涵, 李治国. 不同载畜率下荒漠草原非生长季植物群落特征对近地面风沙通量的影响[J]. 草业学报, 2022, 31(3): 26-33. |
[5] | 张峰, 孙嘉伟, 孙宇, 郑佳华, 乔荠瑢, 赵萌莉. 不同载畜率对短花针茅荒漠草原优势物种间关系及其空间分布特征的影响[J]. 草业学报, 2021, 30(8): 1-11. |
[6] | 古丽娜扎尔·艾力null, 陶海宁, 王自奎, 沈禹颖. 基于APSIM模型的黄土旱塬区苜蓿——小麦轮作系统深层土壤水分及水分利用效率研究[J]. 草业学报, 2021, 30(7): 22-33. |
[7] | 吴旭东, 蒋齐, 任小玢, 俞鸿千, 王占军, 何建龙, 季波, 杜建民. 降水水平对荒漠草原生物土壤结皮碳、氮和微生物的影响[J]. 草业学报, 2021, 30(7): 34-43. |
[8] | 孙忠超, 郭天斗, 于露, 马彦平, 赵亚楠, 李雪颖, 王红梅. 宁夏东部荒漠草原向灌丛地人为转变过程土壤粒径分形特征[J]. 草业学报, 2021, 30(4): 34-45. |
[9] | 蒙仲举, 陈颜洁, 包斯琴. 苏尼特右旗荒漠草原三种放牧方式下群落斑块特征[J]. 草业学报, 2021, 30(4): 13-23. |
[10] | 顾继雄, 郭天斗, 王红梅, 李雪颖, 梁丹妮, 杨青莲, 高锦月. 宁夏东部荒漠草原向灌丛地转变过程土壤微生物响应[J]. 草业学报, 2021, 30(4): 46-57. |
[11] | 熊梅, 乔荠瑢, 杨阳, 张峰, 郑佳华, 吴建新, 赵萌莉. 不同载畜率下短花针茅和土壤生态化学计量特征研究[J]. 草业学报, 2021, 30(2): 212-219. |
[12] | 张静静, 刘尊驰, 鄢创, 王云霞, 刘凯, 时新荣, 袁志友. 土壤pH值变化对3种草原类型土壤碳氮磷生态化学计量特征的影响[J]. 草业学报, 2021, 30(2): 69-81. |
[13] | 聂莹莹, 陈金强, 辛晓平, 徐丽君, 杨桂霞, 王旭. 呼伦贝尔草甸草原区主要植物种群生态位特征与物种多样性对封育年限响应[J]. 草业学报, 2021, 30(10): 15-25. |
[14] | 郭家萌, 何灵芝, 闫东良, 李卓, 王泳超, 邵瑞鑫, 杨青华. 控释氮肥和尿素配比对不同品种夏玉米氮素累积、转移及其利用效率的影响[J]. 草业学报, 2021, 30(1): 81-95. |
[15] | 李静, 红梅, 闫瑾, 张宇晨, 梁志伟, 叶贺, 高海燕, 赵巴音那木拉. 短花针茅荒漠草原植被群落结构及生物量对水氮变化的响应[J]. 草业学报, 2020, 29(9): 38-48. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||