草业学报 ›› 2023, Vol. 32 ›› Issue (10): 187-199.DOI: 10.11686/cyxb2021048
• 研究论文 • 上一篇
收稿日期:
2021-02-02
修回日期:
2021-04-07
出版日期:
2023-10-20
发布日期:
2023-07-26
通讯作者:
蒋齐
作者简介:
Corresponding author. E-mail: yciqnx@ 163.com基金资助:
Zhan-jun WANG(), Bo JI, Tong JI, Qi JIANG()
Received:
2021-02-02
Revised:
2021-04-07
Online:
2023-10-20
Published:
2023-07-26
Contact:
Qi JIANG
摘要:
通过对牧草生长的水分条件进行系统分析,筛选出适合干旱地区的优质抗旱牧草,本研究以5种多年生豆科牧草(草木樨状黄芪、牛枝子、达乌里胡枝子、小冠花、鹰嘴紫云英)为研究对象,测定土壤水分、牧草农艺性状(绿叶数与株高),利用均方根偏差(RMSD)计算绿叶数和株高离散度与土壤水分离散度,并计算两者间的权衡关系,以土壤水分为自变量,权衡值为因变量,利用分位数模型界定维持植物正常生命活动的土壤水分阈值,同时结合干旱胁迫下牧草生理指标,达到科学评价牧草抗旱性的目的,结果表明:1)胁迫前期牧草农艺性状优于对照,随胁迫时间延长,牧草农艺性状大体呈下降趋势;2)土壤水分阈值(绿叶数)分别为草木樨状黄芪(17%)、牛枝子(10%)、鹰嘴紫云英(5%),土壤水分阈值(株高)分别为草木樨状黄芪(16%)、牛枝子(14%)、鹰嘴紫云英(10%);3)以隶属函数法对7项生理指标进行综合评价,5种多年生豆科牧草抗旱性强弱表现为:牛枝子>达乌里胡枝子>小冠花>鹰嘴紫云英>草木樨状黄芪;4)综合牧草外部性状与内部生理评价,选出可耐受中度干旱地区的牧草为牛枝子,可作为中度干旱区的引种牧草。
王占军, 季波, 纪童, 蒋齐. 5种豆科牧草抗旱性研究与评价[J]. 草业学报, 2023, 32(10): 187-199.
Zhan-jun WANG, Bo JI, Tong JI, Qi JIANG. An evaluation of drought resistance of five forage legumes based on a quantile model[J]. Acta Prataculturae Sinica, 2023, 32(10): 187-199.
编号 Number | 供试牧草 Test plants | 种质类型 Germplasm type | 来源 Source |
---|---|---|---|
A | 草木樨状黄芪A. melilotoides | 豆科黄耆属Leguminosae Astragalus | 盐池 Yanchi |
B | 牛枝子L. potaninii | 豆科胡枝子属Leguminosae Lespedeza | 盐池Yanchi |
C | 达乌里胡枝子L. davurica | 豆科胡枝子属Leguminosae Lespedeza | 西贝农林牧生态科技公司Xibei Agriculture-Forest-Stock-breeding Biology and Technology Co., Ltd. |
D | 小冠花C. varia | 豆科小冠花属Leguminosae Coronilla | 甘肃农业大学Gansu Agricultural University |
E | 鹰嘴紫云英A. cicer | 豆科黄耆属Leguminosae Astragalus | 甘肃农业大学Gansu Agricultural University |
表1 供试牧草信息
Table 1 Information of tested forage
编号 Number | 供试牧草 Test plants | 种质类型 Germplasm type | 来源 Source |
---|---|---|---|
A | 草木樨状黄芪A. melilotoides | 豆科黄耆属Leguminosae Astragalus | 盐池 Yanchi |
B | 牛枝子L. potaninii | 豆科胡枝子属Leguminosae Lespedeza | 盐池Yanchi |
C | 达乌里胡枝子L. davurica | 豆科胡枝子属Leguminosae Lespedeza | 西贝农林牧生态科技公司Xibei Agriculture-Forest-Stock-breeding Biology and Technology Co., Ltd. |
D | 小冠花C. varia | 豆科小冠花属Leguminosae Coronilla | 甘肃农业大学Gansu Agricultural University |
E | 鹰嘴紫云英A. cicer | 豆科黄耆属Leguminosae Astragalus | 甘肃农业大学Gansu Agricultural University |
全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 全钾 Total potassium (g·kg-1) | 速效钾 Available potassium (mg·kg-1) | 有效磷 Available phosphorus (mg·kg-1) | 碱解氮 Alkali-hydrolyzable nitrogen (mg·kg-1) | 有机质 Organic matter (g·kg-1) | pH | 全盐 Full salt (%) | Average (%) | Minimum (%) |
---|---|---|---|---|---|---|---|---|---|---|
0.45±0.05 | 0.44±0.01 | 18.78±0.56 | 208.95±3.51 | 2.70±1.08 | 14.14±2.93 | 6.17±0.99 | 8.21±0.06 | 2.27±0.14 | 12.35±3.42 | 8.00 |
表2 供试土壤基本情况
Table 2 Soil base conditions for testing
全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 全钾 Total potassium (g·kg-1) | 速效钾 Available potassium (mg·kg-1) | 有效磷 Available phosphorus (mg·kg-1) | 碱解氮 Alkali-hydrolyzable nitrogen (mg·kg-1) | 有机质 Organic matter (g·kg-1) | pH | 全盐 Full salt (%) | Average (%) | Minimum (%) |
---|---|---|---|---|---|---|---|---|---|---|
0.45±0.05 | 0.44±0.01 | 18.78±0.56 | 208.95±3.51 | 2.70±1.08 | 14.14±2.93 | 6.17±0.99 | 8.21±0.06 | 2.27±0.14 | 12.35±3.42 | 8.00 |
指标 Index | 方法Method |
---|---|
叶绿素 Chlorophyll,Chl | 酒精浸提法 Alcohol extraction method [ |
脯氨酸 Proline,Pro | 磺基水杨酸法Sulfosalicylic acid method[ |
丙二醛 Malondialdehyde,MDA | 硫代巴比妥酸法Thiobarbituric acid method[ |
超氧化物歧化酶 Superoxide dismutase,SOD | 氮蓝四唑法Nitrogen blue tetrazole method[ |
过氧化物酶 Peroxidase,POD | 愈创木酚比色法Guaiacol colorimetry[ |
过氧化氢酶 Catalase,CAT | 紫外吸收法Ultraviolet absorption method[ |
可溶性糖 Soluble sugar,SS | 蒽酮法Anthrone method[ |
表3 指标测定方法
Table 3 Measurement of indicators
指标 Index | 方法Method |
---|---|
叶绿素 Chlorophyll,Chl | 酒精浸提法 Alcohol extraction method [ |
脯氨酸 Proline,Pro | 磺基水杨酸法Sulfosalicylic acid method[ |
丙二醛 Malondialdehyde,MDA | 硫代巴比妥酸法Thiobarbituric acid method[ |
超氧化物歧化酶 Superoxide dismutase,SOD | 氮蓝四唑法Nitrogen blue tetrazole method[ |
过氧化物酶 Peroxidase,POD | 愈创木酚比色法Guaiacol colorimetry[ |
过氧化氢酶 Catalase,CAT | 紫外吸收法Ultraviolet absorption method[ |
可溶性糖 Soluble sugar,SS | 蒽酮法Anthrone method[ |
项目 Item | 绿叶数-土壤含水量权衡分位数模型 Quantile model of the number of green leaves-soil water content trade-off | 株高-土壤含水量权衡分位数模型 Plant height-soil water content trade-off quantile model | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | A | B | C | D | E | |
总样本数Total number of samples | 42 | 42 | 36 | 42 | 42 | 42 | 42 | 42 | 42 | 42 |
≥0权衡样本数Weigh the number of samples | 29 | 8 | 25 | 32 | 13 | 17 | 8 | 27 | 29 | 6 |
分位点Quantile | 0.31 | 0.81 | 0.31 | 0.24 | 0.70 | 0.60 | 0.81 | 0.36 | 0.31 | 0.86 |
表4 各牧草分位点
Table 4 Forage quantile
项目 Item | 绿叶数-土壤含水量权衡分位数模型 Quantile model of the number of green leaves-soil water content trade-off | 株高-土壤含水量权衡分位数模型 Plant height-soil water content trade-off quantile model | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | A | B | C | D | E | |
总样本数Total number of samples | 42 | 42 | 36 | 42 | 42 | 42 | 42 | 42 | 42 | 42 |
≥0权衡样本数Weigh the number of samples | 29 | 8 | 25 | 32 | 13 | 17 | 8 | 27 | 29 | 6 |
分位点Quantile | 0.31 | 0.81 | 0.31 | 0.24 | 0.70 | 0.60 | 0.81 | 0.36 | 0.31 | 0.86 |
图2 豆科牧草绿叶数A~E分别为草木樨状黄芪、牛枝子、达乌里胡枝子、小冠花、鹰嘴紫云英,不同小写字母表示同一牧草同一时间不同处理下在P<0.05水平上差异显著。下同。A-E is A. melilotoides, L. potaninii, L. davurica, C. varia, A. cicer. The different lowercase letters indicate for the same forage at different times were significant difference at the P<0.05 level. CK: Contrast. The same below.
Fig.2 Green leaves number of legume forages
图4 绿叶数-分位数模型Tau为分位点,Intercept为模型截距,Slope为模型自变量X的系数,Slope. Std. Error为自变量系数标准差,Slope. P为自变量系数显著性检验,Intercept. P为模型截距显著性检验,Significant表示模型通过检验,Insignificant表示模型未通过检验,下同。Tau is the quantile, Intercept is the model intercept, Slope is the coefficient of the model independent variable X, Slope, Std. Error is the standard deviation of the independent variable coefficient, Slope. P is the significance test of the independent variable coefficient, Intercept. P is the model intercept distance significance test, Significant means that the model has passed the test, Insignificant means that the model has not passed the test. The same below.
Fig.4 Green leaf number-single digit model
图7 干旱胁迫指数小写字母表示同一牧草品种不同胁迫时期差异显著(P<0.05)。Different lowerease letters indicate significant differences among different stress periods of the same forage (P<0.05).
Fig.7 Drought stress index
编号 Number | 隶属函数值Membership function value | D值 D value | 排序 Order | ||||||
---|---|---|---|---|---|---|---|---|---|
过氧化物酶抗旱胁迫指数 POD DRI | 脯氨酸抗旱胁迫指数Pro DRI | 丙二醛抗旱胁迫指数 MDA DRI | 可溶性糖抗旱胁迫指数 SS DRI | 叶绿素抗旱胁迫指数 Chl DRI | 超氧化物歧化酶抗旱胁迫指数 SOD DRI | 过氧化氢酶抗旱胁迫指数 CAT DRI | |||
A | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 | 0.04 | 0.04 | 5 |
B | 0.01 | 0.54 | 0.11 | 0.06 | 0.00 | 0.01 | 0.02 | 0.74 | 1 |
C | 0.00 | 0.50 | 0.01 | 0.01 | 0.00 | 0.01 | 0.02 | 0.56 | 2 |
D | 0.23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.26 | 3 |
E | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.07 | 4 |
表5 综合评价D值
Table 5 Comprehensive evaluation D value
编号 Number | 隶属函数值Membership function value | D值 D value | 排序 Order | ||||||
---|---|---|---|---|---|---|---|---|---|
过氧化物酶抗旱胁迫指数 POD DRI | 脯氨酸抗旱胁迫指数Pro DRI | 丙二醛抗旱胁迫指数 MDA DRI | 可溶性糖抗旱胁迫指数 SS DRI | 叶绿素抗旱胁迫指数 Chl DRI | 超氧化物歧化酶抗旱胁迫指数 SOD DRI | 过氧化氢酶抗旱胁迫指数 CAT DRI | |||
A | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 | 0.04 | 0.04 | 5 |
B | 0.01 | 0.54 | 0.11 | 0.06 | 0.00 | 0.01 | 0.02 | 0.74 | 1 |
C | 0.00 | 0.50 | 0.01 | 0.01 | 0.00 | 0.01 | 0.02 | 0.56 | 2 |
D | 0.23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.26 | 3 |
E | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.07 | 4 |
1 | Zhang J H, Wu B. Research progress of soil moisture of arid and semi-arid regions. Soil and Water Conservation in China, 2012(2): 40-43, 68. |
张军红, 吴波. 干旱、半干旱地区土壤水分研究进展. 中国水土保持, 2012(2): 40-43, 68. | |
2 | Li L, Jia Z Q, Zhu Y J, et al. Research advances on drought resistance mechanism of plant species in arid area of China. Journal of Desert Research, 2010, 30(5): 1053-1059. |
李磊, 贾志清, 朱雅娟, 等. 我国干旱区植物抗旱机理研究进展. 中国沙漠, 2010, 30(5): 1053-1059. | |
3 | Che X, Liang Z S, Wu Z. Responses of two leguminous forage to drought stress and their drought resistance. Pratacultural Science, 2010, 27(11): 89-94. |
车轩, 梁宗锁, 吴珍. 2种豆科牧草对干旱的生理响应及抗旱性评价. 草业科学, 2010, 27(11): 89-94. | |
4 | Suriguga, Zhang Y X, Zhu A M. Effects of drought stress on growth development and physiological mechanisms of drought resistance of 3 wild leguminous forages. Journal of Inner Mongolia University for Nationalities (Natural Sciences), 2017, 32(5): 424-428, 441. |
苏日古嘎, 张玉霞, 朱爱民. 干旱胁迫对3种野生豆科牧草生长发育和抗旱生理机制的影响. 内蒙古民族大学学报(自然科学版), 2017, 32(5): 424-428, 441. | |
5 | Hong K X, Long Z F, Zhang J B, et al. Drought resistance of five annual forages at seeding stage. Guizhou Agricultural Sciences, 2015, 43(12): 113-115. |
洪开祥, 龙忠富, 张建波, 等. 5种一年生豆科牧草苗期的抗旱性. 贵州农业科学, 2015, 43(12): 113-115. | |
6 | Wang F, Peng Y L, Fang Y F, et al. Effect of different stay-green maize on leaves senescence after flowering under drought stress. Bulletin of Soil and Water Conservation, 2018, 38(4): 60-66. |
王芳, 彭云玲, 方永丰, 等. 花后干旱胁迫对不同持绿型玉米叶片衰老的影响. 水土保持通报, 2018, 38(4): 60-66. | |
7 | Ji B, Shi L, Xu J P, et al. Drought resistance evaluation of forage germplasm resources from 10 gramineae species at germination stage. Seed, 2020, 39(7): 12-18. |
季波, 时龙, 徐金鹏, 等. 10种禾本科牧草种质资源萌发期抗旱性评价. 种子, 2020, 39(7): 12-18. | |
8 | Hu L P. Quantile model regression analysis. Sichuan Mental Health, 2018, 31(4): 296-301. |
胡良平. 分位数模型回归分析. 四川精神卫生, 2018, 31(4): 296-301. | |
9 | Zhao J D. Effective ways to improve plant drought resistance. Animal Husbandry and Feed Science, 2009, 30(2): 50-51, 117. |
赵景娣. 提高植物抗旱性的有效途径. 畜牧与饲料科学, 2009, 30(2): 50-51, 117. | |
10 | Wang Y D. Research on drought resistance of Agropyron mongolia, Agropyron cristatum and Leymus mollis under PEG 6000 simulated water stress. Yanbian Korean Autonomous Prefecture: Yanbian University, 2008. |
王怡丹. 聚乙二醇6000模拟水分胁迫下蒙古冰草、扁穗冰草和滨麦抗旱性研究. 延边朝鲜族自治州: 延边大学, 2008. | |
11 | Wang X K, Huang J L. Principles and techniques of plant physiological biochemical experiment. Beijing: Higher Education Press, 2015. |
王学奎, 黄见良. 植物生理生化实验原理与技术. 北京: 高等教育出版社, 2015. | |
12 | Wang P, Wang P, Sun W B, et al. Comprehensive evaluation of drought resistance of eight Elymus germlasms at seedling stage. Acta Agrestia Sinica, 2020, 28(2): 397-404. |
王平, 王沛, 孙万斌, 等. 8份披碱草属牧草苗期抗旱性综合评价. 草地学报, 2020, 28(2): 397-404. | |
13 | Zhang Q D, Wei W, Chen L D, et al. Spatial variation of soil moisture and species diversity patterns along a precipitation gradient in the grasslands of the Loess Plateau. Journal of Natural Resources, 2018, 33(8): 1351-1362. |
张钦弟, 卫伟, 陈利顶, 等. 黄土高原草地土壤水分和物种多样性沿降水梯度的分布格局. 自然资源学报, 2018, 33(8): 1351-1362. | |
14 | Zhang G C, Liu X, He K N. Grading of Robinia pseudoacacia and Platycladus orientalis woodland soil’s water availability and productivity in semi-arid region of Loess Plateau. Chinese Journal of Applied Ecology, 2003, 14(6): 858-862. |
张光灿, 刘霞, 贺康宁. 黄土半干旱区刺槐和侧柏林地土壤水分有效性及生产力分级研究. 应用生态学报, 2003, 14(6): 858-862. | |
15 | Yin F. Genotypic responses of maize (Zea mays L.) to water stress and its physiological mechanisms. Zhengzhou: Henan Agricultural University, 2004. |
尹飞. 玉米对水分胁迫响应的基因型差异及其生理机制研究. 郑州: 河南农业大学, 2004. | |
16 | Chang X G. Study on drought adaptability of 7 Roegneria species. Hohhot: Inner Mongolia Agricultural University, 2011. |
常雪刚. 7种鹅观草属(Roegneria)植物耐旱适应性研究. 呼和浩特: 内蒙古农业大学, 2011. | |
17 | Lu J Y, Xiong J B, Zhang H S, et al. Effects of water stress on yield,quality and trace element composition of alfalfa. Acta Prataculturae Sinica, 2020, 29(8): 126-133. |
陆姣云, 熊军波, 张鹤山, 等. 水分胁迫对紫花苜蓿产量、品质和微量元素的影响. 草业学报, 2020, 29(8): 126-133. | |
18 | Luo D, Wang M J, Li Y H, et al. Four legumes response to simulated drought in the stages of seed germination and seedling growth and drought resistance assessment. Ecology and Environmental Sciences, 2015, 24(2): 224-230. |
罗冬, 王明玖, 李元恒, 等. 四种豆科牧草种子萌发和幼苗生长对干旱的响应及抗旱性评价. 生态环境学报, 2015, 24(2):224-230. | |
19 | Zhang A N, Wang F M, Yu X Q, et al. Screening marker varieties with drought resistance in cultivated rice (Oryza sativa L.) using identification method with soil moisture gradient. Acta Agronomica Sinica, 2008, 34(11): 2026-2032. |
张安宁, 王飞名, 余新桥, 等. 基于土壤水分梯度鉴定法的栽培稻抗旱标识品种筛选. 作物学报, 2008, 34(11): 2026-2032. | |
20 | Zhu J N, Peng W D, Li Y H, et al. Study on the effect of the shallow ploughing used to the desert steppe on soil water and the composition of herbage. Heilongjiang Animal Husbandry and Veterinary, 2014(23): 108-111. |
朱建宁, 彭文栋, 李永华, 等. 荒漠草原采用浅翻耕改良对土壤水分及牧草组成的影响研究. 黑龙江畜牧兽医, 2014(23): 108-111. | |
21 | Han D L, Wang Y R. Adaptability of Medicago sativa under water stress. Acta Prataculturae Sinica, 2005, 14(6): 7-13. |
韩德梁, 王彦荣. 紫花苜蓿对干旱胁迫适应性的研究进展. 草业学报, 2005, 14(6): 7-13. | |
22 | Shao H F, Chen Z, Xu J Y, et al. Physiological responses of two tobacco cultivar leaves to different drought stresses during seedling stage. Plant Physiology Communications, 2016, 52(12): 1861-1871. |
邵惠芳, 陈征, 许嘉阳, 等. 两种烟草幼苗叶片对不同强度干旱胁迫的生理响应比较. 植物生理学报, 2016, 52(12): 1861-1871. | |
23 | Wang W, Cui S X. Responses in suspension cultures of two ecotypes of reed (Phragmites communis) under osmotic stress. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(2): 224-228. |
王蔚, 崔素霞. 两种生物型芦苇胚性悬浮培养物对渗透胁迫的生理响应Ⅱ. 抗氧化酶类活性的变化. 西北植物学报, 2003, 23(2): 224-228. | |
24 | Fu J M, Huang B R. Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environment and Experimental Botany, 2001, 45: 105-114. |
25 | DaCosta M, Huang B R. Changes in antioxidant enzyme activities and lipid peroxidation for bent grass species in response to drought stress. Journal of the American Society for Horticultural Science, 2007, 132: 319-326. |
26 | Qi D H, Li X G, Wang L, et al. Effects of simulated low temperature stress on the activated oxygen metabolism protective enzymes of Podocarpus fleuryi seedlings. Journal of Southwest Agricultural University (Natural Science Edition), 2003(5): 385-388, 399. |
齐代华, 李旭光, 王力, 等. 模拟低温胁迫对活性氧代谢保护酶系统的影响——以长叶竹柏(Podocarpus fleuryi Hickel)幼苗为例. 西南农业大学学报(自然科学版), 2003(5): 385-388, 399. | |
27 | Zhang Y P, Wang Z M, Huang Q, et al. Changes of chloroplast ultramicrostructure and function of different green organs in wheat under limited irrigation. Acta Agronomica Sinica, 2008(7): 1213-1219. |
张永平, 王志敏, 黄琴, 等. 不同水分供给对小麦叶与非叶器官叶绿体结构和功能的影响. 作物学报, 2008(7): 1213-1219. |
[1] | 姜瑛, 张辉红, 魏畅, 徐正阳, 赵颖, 刘芳, 李鸽子, 张雪海, 柳海涛. 外源褪黑素对干旱胁迫下玉米幼苗根系发育及生理生化特性的影响[J]. 草业学报, 2023, 32(9): 143-159. |
[2] | 康燕霞, 姜渊博, 齐广平, 银敏华, 马彦麟, 汪精海, 贾琼, 唐仲霞, 汪爱霞. 红豆草与无芒雀麦混播草地生产力提升的水分调控模式研究[J]. 草业学报, 2023, 32(8): 115-128. |
[3] | 王宝强, 马文静, 王贤, 朱晓林, 赵颖, 魏小红. 一氧化氮对干旱胁迫下紫花苜蓿幼苗次生代谢产物的影响[J]. 草业学报, 2023, 32(8): 141-151. |
[4] | 张一龙, 李雯, 喻启坤, 李培英, 孙宗玖. 狗牙根叶与根氮代谢对不同干旱胁迫的响应机制[J]. 草业学报, 2023, 32(7): 175-187. |
[5] | 张浩, 胡海英, 李惠霞, 贺海明, 马霜, 马风华, 宋柯辰. 荒漠草原优势植物牛枝子对干旱胁迫的生理响应与转录组分析[J]. 草业学报, 2023, 32(7): 188-205. |
[6] | 梁佳, 胡朝阳, 谢志明, 马刘峰, 陈芸, 方志刚. 外源褪黑素缓解甜高粱幼苗干旱胁迫的生理效应[J]. 草业学报, 2023, 32(7): 206-215. |
[7] | 李艳鹏, 魏娜, 翟庆妍, 李杭, 张吉宇, 刘文献. 全基因组水平白花草木樨TCP基因家族的鉴定及在干旱胁迫下表达模式分析[J]. 草业学报, 2023, 32(4): 101-111. |
[8] | 张一龙, 喻启坤, 李雯, 李培英, 孙宗玖. 不同抗旱性狗牙根地上地下表型特征及内源激素对干旱胁迫的响应[J]. 草业学报, 2023, 32(3): 163-178. |
[9] | 王腾飞, 王斌, 邓建强, 李满有, 倪旺, 冯琴, 妥昀昀, 兰剑. 宁夏干旱区滴灌条件下拉巴豆不同播种量与甜高粱混播饲草生产性能研究[J]. 草业学报, 2023, 32(3): 30-40. |
[10] | 刘福, 陈诚, 张凯旋, 周美亮, 张新全. 日本百脉根LjbHLH34基因克隆及耐旱功能鉴定[J]. 草业学报, 2023, 32(1): 178-191. |
[11] | 曾令霜, 李培英, 孙宗玖, 孙晓梵. 两类新疆狗牙根抗旱基因型抗氧化酶保护系统及其基因表达差异分析[J]. 草业学报, 2022, 31(7): 122-132. |
[12] | 金祎婷, 刘文辉, 刘凯强, 梁国玲, 贾志锋. 全生育期干旱胁迫对‘青燕1号’燕麦叶绿素荧光参数的影响[J]. 草业学报, 2022, 31(6): 112-126. |
[13] | 苏世平, 李毅, 刘小娥, 种培芳, 单立山, 后有丽. 外源脯氨酸对缓解红砂干旱胁迫的机理研究[J]. 草业学报, 2022, 31(6): 127-138. |
[14] | 孙晓梵, 张一龙, 李培英, 孙宗玖. 不同施氮量对干旱下狗牙根抗氧化酶活性及渗透调节物质含量的影响[J]. 草业学报, 2022, 31(6): 69-78. |
[15] | 沈吉成, 王蕾, 赵彩霞, 叶发慧, 吕士凯, 刘德梅, 刘瑞娟, 张怀刚, 陈文杰. 77份裸燕麦品种籽粒相关性状分析[J]. 草业学报, 2022, 31(3): 156-167. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||