草业学报 ›› 2023, Vol. 32 ›› Issue (12): 47-57.DOI: 10.11686/cyxb2023082
路文杰1,2(), 齐晋云1,2, 吴聪1,2, 景亚泓1,2
收稿日期:
2023-03-14
修回日期:
2023-04-17
出版日期:
2023-12-20
发布日期:
2023-10-18
作者简介:
路文杰(1987-),男,山西太原人,博士。E-mail: luwenjie1231104@126.com
基金资助:
Wen-jie LU1,2(), Jin-yun QI1,2, Cong WU1,2, Ya-hong JING1,2
Received:
2023-03-14
Revised:
2023-04-17
Online:
2023-12-20
Published:
2023-10-18
摘要:
半干旱草地凋落物层广泛存在着不同分解程度的植物残体,为探究其混合分解对草地养分循环的影响,本研究采用野外凋落物分解袋法,对晋北半干旱草地3种乡土植物本氏针茅、艾蒿和铁杆蒿不同分解程度凋落物进行单独[新鲜凋落物(LFresh)、半分解凋落物(LAged)]或混合分解[新鲜凋落物与半分解凋落物1:1混合凋落物(LMix)],研究不同分解程度凋落物混合对分解特征的影响。结果表明:不同分解程度凋落物混合物的干重剩余率随分解时间增加而降低。在分解335 d后,其交互作用强度最大,具体表现为:针茅混合凋落物和铁杆蒿混合凋落物的干重剩余率实测值分别比期望值低5.12%、4.68%,表现为协同效应,而艾蒿混合凋落物表现为加和效应。此外,针茅不同分解程度凋落物混合分解可以促进N释放,抑制纤维素分解;铁杆蒿不同分解程度凋落物混合分解可以促进C释放和木质素分解。研究表明,不同分解程度凋落物混合可以改变分解速率,促进养分释放,从而对草地生态系统的养分循环产生影响。
路文杰, 齐晋云, 吴聪, 景亚泓. 晋北半干旱草地不同分解程度凋落物混合对分解特征的影响[J]. 草业学报, 2023, 32(12): 47-57.
Wen-jie LU, Jin-yun QI, Cong WU, Ya-hong JING. Effects of mixed litter with different degrees of decomposition on the decomposition characteristics of semi-arid grassland in northern Shanxi[J]. Acta Prataculturae Sinica, 2023, 32(12): 47-57.
化学组分 Chemical composition | 针茅凋落物S. bungeana litter | 艾蒿凋落物A. argyi litter | 铁杆蒿凋落物A. gmelinii litter | |||
---|---|---|---|---|---|---|
新鲜Fresh | 半分解Aged | 新鲜Fresh | 半分解Aged | 新鲜Fresh | 半分解Aged | |
C (g·kg-1) | 455.70±5.40 | 415.59±17.17 | 419.23±9.85 | 442.35±10.33 | 469.01±31.68 | 469.82±2.43 |
N (g·kg-1) | 7.46±0.07 | 7.38±0.01 | 22.35±0.02** | 12.31±0.04 | 9.23±0.01** | 8.70±0.04 |
纤维素Cellulose (g·kg-1) | 346.64±1.52** | 309.87±6.27 | 210.91±2.95** | 239.65±2.81 | 272.37±4.85** | 349.94±2.35 |
木质素Lignin (g·kg-1) | 36.05±0.69** | 20.79±1.45 | 57.73±5.05** | 99.10±6.05 | 132.45±1.10** | 168.27±1.42 |
C/N | 61.09±0.27 | 56.30±2.40 | 18.76±0.45** | 35.95±0.96 | 50.80±3.41 | 54.00±0.10 |
木质素/N Lignin/N | 4.83±0.13** | 2.82±0.20 | 2.58±0.22** | 8.06±0.52 | 14.35±0.12** | 19.34±0.14 |
表1 凋落物的初始化学组成
Table 1 Initial chemical composition of litter
化学组分 Chemical composition | 针茅凋落物S. bungeana litter | 艾蒿凋落物A. argyi litter | 铁杆蒿凋落物A. gmelinii litter | |||
---|---|---|---|---|---|---|
新鲜Fresh | 半分解Aged | 新鲜Fresh | 半分解Aged | 新鲜Fresh | 半分解Aged | |
C (g·kg-1) | 455.70±5.40 | 415.59±17.17 | 419.23±9.85 | 442.35±10.33 | 469.01±31.68 | 469.82±2.43 |
N (g·kg-1) | 7.46±0.07 | 7.38±0.01 | 22.35±0.02** | 12.31±0.04 | 9.23±0.01** | 8.70±0.04 |
纤维素Cellulose (g·kg-1) | 346.64±1.52** | 309.87±6.27 | 210.91±2.95** | 239.65±2.81 | 272.37±4.85** | 349.94±2.35 |
木质素Lignin (g·kg-1) | 36.05±0.69** | 20.79±1.45 | 57.73±5.05** | 99.10±6.05 | 132.45±1.10** | 168.27±1.42 |
C/N | 61.09±0.27 | 56.30±2.40 | 18.76±0.45** | 35.95±0.96 | 50.80±3.41 | 54.00±0.10 |
木质素/N Lignin/N | 4.83±0.13** | 2.82±0.20 | 2.58±0.22** | 8.06±0.52 | 14.35±0.12** | 19.34±0.14 |
时间Time (d) | 项目Item | 针茅混合物LMix-Sb | 艾蒿混合物LMix-Aa | 铁杆蒿混合物LMix-Ag |
---|---|---|---|---|
0 | 期望值Expected value | 100.00±0.00 | 100.00±0.00 | 100.00±0.00 |
实测值Observed value | 100.00±0.00 | 100.00±0.00 | 100.00±0.00 | |
179 | 期望值Expected value | 94.73±0.73 | 92.74±0.24 | 97.09±0.29 |
实测值Observed value | 95.82±0.02 | 92.25±0.55 | 96.00±0.63 | |
221 | 期望值Expected value | 90.87±1.03 | 83.92±1.00 | 94.32±0.11 |
实测值Observed value | 91.55±1.00 | 83.98±1.82 | 93.88±0.56 | |
256 | 期望值Expected value | 81.38±0.50 | 71.63±0.78 | 89.64±0.70 |
实测值Observed value | 82.55±0.90 | 70.00±0.26 | 88.12±0.52 | |
293 | 期望值Expected value | 66.74±0.78 | 49.38±0.03 | 76.36±0.30 |
实测值Observed value | 62.65±0.47** | 51.10±0.67* | 75.33±0.76 | |
335 | 期望值Expected value | 59.59±0.68 | 39.84±1.27 | 75.37±1.40 |
实测值Observed value | 54.47±0.70** | 43.57±1.50 | 70.69±0.35* |
表2 不同分解程度凋落物混合处理的实测与期望干重剩余率的变化
Table 2 Changes of observed and expected mass remaining percentage in mixed treatment of litter with different degree of decomposition (%)
时间Time (d) | 项目Item | 针茅混合物LMix-Sb | 艾蒿混合物LMix-Aa | 铁杆蒿混合物LMix-Ag |
---|---|---|---|---|
0 | 期望值Expected value | 100.00±0.00 | 100.00±0.00 | 100.00±0.00 |
实测值Observed value | 100.00±0.00 | 100.00±0.00 | 100.00±0.00 | |
179 | 期望值Expected value | 94.73±0.73 | 92.74±0.24 | 97.09±0.29 |
实测值Observed value | 95.82±0.02 | 92.25±0.55 | 96.00±0.63 | |
221 | 期望值Expected value | 90.87±1.03 | 83.92±1.00 | 94.32±0.11 |
实测值Observed value | 91.55±1.00 | 83.98±1.82 | 93.88±0.56 | |
256 | 期望值Expected value | 81.38±0.50 | 71.63±0.78 | 89.64±0.70 |
实测值Observed value | 82.55±0.90 | 70.00±0.26 | 88.12±0.52 | |
293 | 期望值Expected value | 66.74±0.78 | 49.38±0.03 | 76.36±0.30 |
实测值Observed value | 62.65±0.47** | 51.10±0.67* | 75.33±0.76 | |
335 | 期望值Expected value | 59.59±0.68 | 39.84±1.27 | 75.37±1.40 |
实测值Observed value | 54.47±0.70** | 43.57±1.50 | 70.69±0.35* |
图2 混合凋落物分解交互作用强度不同小写字母表示同一植物不同分解时间差异显著(P<0.05),下同。Different lowercase letters indicate that the different decomposition time of the same plant is significantly different at the 0.05 level, the same below.
Fig.2 Interaction strengths for mixed litter decomposition treatments
图3 混合凋落物分解常数实测值和期望值*: 实测值和期望值差异显著(P<0.05),下同Significant difference between observed and expected values at the 0.05 level, the same below.
Fig.3 The observed and expected decomposition rate (k) for the mixed litter
图4 凋落物碳、氮分解过程LMixobserved: 混合凋落物实测剩余率The observed remaining percentage of mixed litter;LMixexpected: 混合凋落物期望剩余率The expected remaining percentage of mixed litter; 下同The same below.
Fig.4 Decomposition processes of litter carbon and nitrogen
时间 Time (d) | 项目 Item | 碳/氮C/N | 木质素/N Lignin/N | ||||
---|---|---|---|---|---|---|---|
针茅S. bungeana | 艾蒿A. argyi | 铁杆蒿A. gmelinii | 针茅S. bungeana | 艾蒿A. argyi | 铁杆蒿A. gmelinii | ||
0 | LFresh | 61.90±0.27a | 18.76±0.45c | 50.80±3.41a | 4.84±0.13a | 2.58±0.22c | 14.35±0.12c |
LAged | 56.30±2.40a | 35.95±0.96a | 54.01±0.10a | 2.82±0.20c | 8.06±0.52a | 19.34±0.14a | |
LMix | 58.70±1.25a | 27.35±0.30b | 52.40±1.69a | 3.82±0.16b | 5.32±0.23b | 16.84±0.05b | |
P | 0.177 | 0.000 | 0.613 | 0.000 | 0.000 | 0.000 | |
179 | LFresh | 49.26±5.32a | 20.22±1.33c | 36.90±0.47a | 4.64±0.41a | 3.98±0.47b | 12.62±0.15b |
LAged | 35.68±0.25b | 34.04±1.58a | 42.04±2.85a | 3.19±0.18b | 8.13±1.22a | 17.55±0.28a | |
LMix | 44.94±1.71ab | 25.02±0.62b | 42.34±4.10a | 4.02±0.17ab | 4.25±0.30b | 13.07±0.10b | |
P | 0.042 | 0.000 | 0.369 | 0.015 | 0.007 | 0.000 | |
221 | LFresh | 46.25±0.32a | 21.43±0.77b | 30.58±1.11b | 5.08±0.15a | 3.64±0.47b | 13.21±0.32c |
LAged | 40.89±1.40b | 34.48±1.61a | 37.37±0.83a | 3.91±0.15c | 8.60±1.15a | 19.38±0.55a | |
LMix | 47.15±0.45a | 24.83±0.56b | 32.50±1.47b | 4.41±0.07b | 4.98±0.31b | 16.07±0.41b | |
P | 0.001 | 0.000 | 0.007 | 0.000 | 0.003 | 0.000 | |
256 | LFresh | 49.29±0.64a | 15.98±0.58c | 29.82±1.25c | 6.68±0.55a | 1.54±0.18c | 14.62±0.58c |
LAged | 39.76±0.92b | 29.53±1.04a | 41.53±0.40a | 4.60±0.17b | 8.32±0.72a | 20.53±0.30a | |
LMix | 41.30±1.05b | 21.03±0.99b | 33.35±0.88b | 5.21±0.16b | 4.51±0.83b | 16.19±0.43b | |
P | 0.000 | 0.000 | 0.000 | 0.006 | 0.000 | 0.000 | |
293 | LFresh | 31.76±0.16a | 13.39±0.10c | 32.15±1.84b | 4.95±0.03a | 1.84±0.04c | 15.64±0.40b |
LAged | 29.76±1.13a | 26.09±0.68a | 37.03±1.52a | 4.71±0.01a | 9.14±1.02a | 18.52±0.95a | |
LMix | 30.45±1.42a | 18.26±0.90b | 31.61±0.17b | 5.11±0.28a | 5.46±0.90b | 15.68±0.81b | |
P | 0.429 | 0.000 | 0.040 | 0.263 | 0.000 | 0.000 | |
335 | LFresh | 29.93±0.81ab | 11.96±0.06c | 26.58±1.87c | 4.33±0.20b | 3.43±0.07c | 14.32±0.02c |
LAged | 27.46±0.26b | 25.45±1.24a | 39.05±0.53a | 4.61±0.11ab | 9.40±0.28a | 21.11±0.37a | |
LMix | 31.41±1.21a | 17.82±1.69b | 32.03±0.94b | 4.84±0.16a | 5.94±0.40b | 16.45±0.50b | |
P | 0.028 | 0.000 | 0.000 | 0.125 | 0.000 | 0.000 |
表3 凋落物分解过程中C/N和木质素/N值的变化
Table 3 Changes of C/N and lignin/N during litter decomposition
时间 Time (d) | 项目 Item | 碳/氮C/N | 木质素/N Lignin/N | ||||
---|---|---|---|---|---|---|---|
针茅S. bungeana | 艾蒿A. argyi | 铁杆蒿A. gmelinii | 针茅S. bungeana | 艾蒿A. argyi | 铁杆蒿A. gmelinii | ||
0 | LFresh | 61.90±0.27a | 18.76±0.45c | 50.80±3.41a | 4.84±0.13a | 2.58±0.22c | 14.35±0.12c |
LAged | 56.30±2.40a | 35.95±0.96a | 54.01±0.10a | 2.82±0.20c | 8.06±0.52a | 19.34±0.14a | |
LMix | 58.70±1.25a | 27.35±0.30b | 52.40±1.69a | 3.82±0.16b | 5.32±0.23b | 16.84±0.05b | |
P | 0.177 | 0.000 | 0.613 | 0.000 | 0.000 | 0.000 | |
179 | LFresh | 49.26±5.32a | 20.22±1.33c | 36.90±0.47a | 4.64±0.41a | 3.98±0.47b | 12.62±0.15b |
LAged | 35.68±0.25b | 34.04±1.58a | 42.04±2.85a | 3.19±0.18b | 8.13±1.22a | 17.55±0.28a | |
LMix | 44.94±1.71ab | 25.02±0.62b | 42.34±4.10a | 4.02±0.17ab | 4.25±0.30b | 13.07±0.10b | |
P | 0.042 | 0.000 | 0.369 | 0.015 | 0.007 | 0.000 | |
221 | LFresh | 46.25±0.32a | 21.43±0.77b | 30.58±1.11b | 5.08±0.15a | 3.64±0.47b | 13.21±0.32c |
LAged | 40.89±1.40b | 34.48±1.61a | 37.37±0.83a | 3.91±0.15c | 8.60±1.15a | 19.38±0.55a | |
LMix | 47.15±0.45a | 24.83±0.56b | 32.50±1.47b | 4.41±0.07b | 4.98±0.31b | 16.07±0.41b | |
P | 0.001 | 0.000 | 0.007 | 0.000 | 0.003 | 0.000 | |
256 | LFresh | 49.29±0.64a | 15.98±0.58c | 29.82±1.25c | 6.68±0.55a | 1.54±0.18c | 14.62±0.58c |
LAged | 39.76±0.92b | 29.53±1.04a | 41.53±0.40a | 4.60±0.17b | 8.32±0.72a | 20.53±0.30a | |
LMix | 41.30±1.05b | 21.03±0.99b | 33.35±0.88b | 5.21±0.16b | 4.51±0.83b | 16.19±0.43b | |
P | 0.000 | 0.000 | 0.000 | 0.006 | 0.000 | 0.000 | |
293 | LFresh | 31.76±0.16a | 13.39±0.10c | 32.15±1.84b | 4.95±0.03a | 1.84±0.04c | 15.64±0.40b |
LAged | 29.76±1.13a | 26.09±0.68a | 37.03±1.52a | 4.71±0.01a | 9.14±1.02a | 18.52±0.95a | |
LMix | 30.45±1.42a | 18.26±0.90b | 31.61±0.17b | 5.11±0.28a | 5.46±0.90b | 15.68±0.81b | |
P | 0.429 | 0.000 | 0.040 | 0.263 | 0.000 | 0.000 | |
335 | LFresh | 29.93±0.81ab | 11.96±0.06c | 26.58±1.87c | 4.33±0.20b | 3.43±0.07c | 14.32±0.02c |
LAged | 27.46±0.26b | 25.45±1.24a | 39.05±0.53a | 4.61±0.11ab | 9.40±0.28a | 21.11±0.37a | |
LMix | 31.41±1.21a | 17.82±1.69b | 32.03±0.94b | 4.84±0.16a | 5.94±0.40b | 16.45±0.50b | |
P | 0.028 | 0.000 | 0.000 | 0.125 | 0.000 | 0.000 |
1 | Li Y N, Zhou X M, Zhang N L, et al. The research of mixed litter effects on litter decomposition in terrestrial ecosystems. Acta Ecologica Sinica, 2016, 36(16): 4977-4987. |
李宜浓, 周晓梅, 张乃莉, 等. 陆地生态系统混合凋落物分解研究进展. 生态学报, 2016, 36(16): 4977-4987. | |
2 | Zhong H P, Fan J W, Yu G R, et al. Progress of carbon cycle research in grassland ecosystem. Acta Agrestia Sinica, 2005(S1): 67-73. |
钟华平, 樊江文, 于贵瑞, 等. 草地生态系统碳循环研究进展. 草地学报, 2005(S1): 67-73. | |
3 | Bao W Z. Decomposition mechanism of mixed litter of the main plants in Stipa grandis steppe. Hohhot: Inner Mongolia University, 2022. |
宝文智. 大针茅草原主要植物混合凋落物分解机制研究. 呼和浩特: 内蒙古大学, 2022. | |
4 | Lin H, Li Y N, Bruelheide H, et al. What drives leaf litter decomposition and the decomposer community in subtropical forests-the richness of the above-ground tree community or that of the leaf litter? Soil Biology & Biochemistry, 2021, 160: 108314. |
5 | Xiong Y, Xu G Q, Wu L. Progress on non-additive effects of mixed litter decomposition. Environmental Science and Technology, 2012, 35(9): 56-60. |
熊勇, 许光勤, 吴兰. 混合凋落物分解非加和性效应研究进展. 环境科学与技术, 2012, 35(9): 56-60. | |
6 | Singhal V, Roy T, Singh C, et al. Effect of incubation time, litter diversity and species richness on decomposition dynamics of tree species from western Himalayas. Catena, 2021, 203: 105281. |
7 | Hou S L, Lu X T. Mixing effects of litter decomposition at plant organ and species levels in a temperate grassland. Plant and Soil, 2021, 459: 387-396. |
8 | Zhang S Z, Wei Y Q, Liu N, et al. Decomposition characteristic of mixed litter on the improved grassland on the northern slope of the Tianshan Mountains. Acta Agrestia Sinica, 2021, 29(1): 10-16. |
张树振, 魏雨其, 刘楠, 等. 天山北坡改良草地凋落物混合分解特征研究. 草地学报, 2021, 29(1): 10-16. | |
9 | Asif T, Naeem I, Bu Z J, et al. Litter mixing effects on decomposition in a peatland partially drained 30 years ago. Wetlands Ecology and Management, 2021, 29(6): 883-895. |
10 | McLaren J R, Buckeridge K M, van de Weg M J, et al. Shrub encroachment in Arctic tundra: Betula nana effects on above- and belowground litter decomposition. Ecology, 2017, 98(5): 1361-1376. |
11 | Liu J, Liu X, Song Q, et al. Synergistic effects: A common theme in mixed-species litter decomposition. New Phytologist, 2020, 227(3): 757-765. |
12 | Mori A S, Cornelissen J H C, Fujii S, et al. A meta-analysis on decomposition quantifies afterlife effects of plant diversity as a global change driver. Nature Communications, 2020, 11(1): 4547. |
13 | Gripp A R, de Assis Esteves F, Carneiro L S, et al. Weak to no effects of litter biomass and mixing on litter decomposition in a seasonally dry tropical forest. Pedobiologia, 2018, 68: 20-23. |
14 | Kou L, Jiang L, Hättenschwiler S, et al. Diversity-decomposition relationships in forests worldwide. Elife, 2020, 9: e55813. |
15 | Bao S D. Soil agrochemistry analysis. Beijing: China Agriculture Press, 2000: 25-114. |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000: 25-114. | |
16 | Guo Q W, Duan W B, Chen L X, et al. Effects of simulated litter addition, and nitrogen and phosphorus deposition on ecological stoichiometry of Pinus koraiensis litter. Journal of Plant Nutrition and Fertilizers, 2021, 27(7): 1222-1233. |
郭绮雯, 段文标, 陈立新, 等. 模拟凋落物添加与氮磷沉降对红松凋落物生态化学计量特征的影响. 植物营养与肥料学报, 2021, 27(7): 1222-1233. | |
17 | Lu Y. Analysis of mixed effect of leaf litter decomposition and its main affecting factors of dominant tree species in Yaoxiang forest farm. Tai’an: Shandong Agricultural University, 2020. |
路颖. 药乡林场优势树种叶片凋落物分解混合效应及主要影响因素分析. 泰安: 山东农业大学, 2020. | |
18 | Chen Y C, Ma S Q, Jiang H M, et al. Decomposition time, chemical traits and climatic factors determine litter-mixing effects on decomposition in an alpine steppe ecosystem in Northern Tibet. Plant and Soil, 2021, 459(1/2): 23-35. |
19 | Gartner T B, Cardon Z G. Decomposition dynamics in mixed-species leaf litter. Oikos, 2004, 104(2): 230-246. |
20 | Wu R J, Xing W, Ge Z W, et al. Stoichiometric characteristics of leaf litter at different decomposition stages in 4 forest types. Journal of Zhejiang A & F University, 2023, 40(1): 155-163. |
武仁杰, 邢伟, 葛之葳, 等. 4种林分凋落叶不同分解阶段化学计量特征. 浙江农林大学学报, 2023, 40(1): 155-163. | |
21 | Chen S S, Liu H Y, Guo D L. Litter stocks and chemical quality of natural birch forests along temperature and precipitation gradients in eastern Inner Mongolia, China. Chinese Journal of Plant Ecology, 2010, 34(9): 1007-1015. |
陈莎莎, 刘鸿雁, 郭大立. 内蒙古东部天然白桦林的凋落物性质和储量及其随温度和降水梯度的变化格局. 植物生态学报, 2010, 34(9): 1007-1015. | |
22 | A W, Lv W W, Zhou Y, et al. Effect of temperature and moisture on litter decomposition in an alpine meadow. Acta Ecologica Sinica, 2021, 41(17): 6846-6853. |
阿旺, 吕汪汪, 周阳, 等. 温度和湿度对高寒草甸凋落物分解的影响. 生态学报, 2021, 41(17): 6846-6853. | |
23 | Liu C, Liu Y, Guo K E, et al. Mixing litter from deciduous and evergreen trees enhances decomposition in a subtropical karst forest in Southwestern China. Soil Biology and Biochemistry, 2016, 101: 44-54. |
24 | Yu W C, Zhao J N, Li G, et al. Litter decompositions of three dominant plants in the Stipa baicalensis grassland of Inner Mongolia. Acta Agrestia Sinica, 2014, 22(3): 502-510. |
于雯超, 赵建宁, 李刚, 等. 内蒙古贝加尔针茅草原3种主要植物凋落物分解特征. 草地学报, 2014, 22(3): 502-510. | |
25 | Wang X, Guo Y P, Zhao H, et al. Decomposition characteristics and its nutrient dynamics of the leaf litter mixtures of Larix principis-rupprechtii and Betula platyphylla. Forestry and Ecological Sciences, 2018, 33(1): 29-36. |
王欣, 郭延朋, 赵辉, 等. 华北落叶松与白桦叶凋落物混合分解及其养分动态. 林业与生态科学, 2018, 33(1): 29-36. | |
26 | He D. Decomposition and nutrient release of mixed litterfall of Pinus massoniana and Cinnamomum camphora. Changsha: Central South University of Forestry and Technology, 2015. |
何丹. 马尾松、樟树凋落物混合分解及养分释放. 长沙: 中南林业科技大学, 2015. | |
27 | Xu H J. Study on soil faunal communities and functions during litter decomposition in three forest types from montane region of eastern Liaoning Province, China. Baoding: Hebei Agricultural University, 2015. |
许洪军. 辽东山区三种林型土壤动物群落特征及其在凋落物分解中的作用研究. 保定: 河北农业大学, 2015. | |
28 | De Marco A, Meola A, Maisto G, et al. Non-additive effects of litter mixtures on decomposition of leaf litters in a Mediterranean maquis. Plant and Soil, 2011, 344: 305-317. |
29 | Liao C, Long C, Zhang Q, et al. Stronger effect of litter quality than micro-organisms on leaf and root litter C and N loss at different decomposition stages following a subtropical land use change. Functional Ecology, 2022, 36(4): 896-907. |
30 | Bakker M A, Carreño‐Rocabado G, Poorter L. Leaf economics traits predict litter decomposition of tropical plants and differ among land use types. Functional Ecology, 2011, 25(3): 473-483. |
31 | Pan M F, Jiang M, Zhou Z W. Latest research advances in biodegradation of lignin. Materials Review, 2011, 25(S2): 372-377. |
潘明凤, 姜曼, 周祚万. 木质素生物降解的最新研究进展. 材料导报, 2011, 25(S2): 372-377. | |
32 | Li X, Zhang Y, Qin Y, et al. Mixed effects on lignin degradation in the litter leaves of Pinus massoniana and native broad-leaved tree species. Journal of Tropical and Subtropical Botany, 2022, 30(1): 19-30. |
李勋, 张艳, 覃宇, 等. 马尾松与乡土阔叶树种凋落叶木质素降解的混合效应. 热带亚热带植物学报, 2022, 30(1): 19-30. | |
33 | Liu S Q, Yang R, Hou C L, et al. Decomposition characteristics of lignin and cellulose in different litters of ecological tea gardens in mountainous areas of Guizhou. Journal of Tea Science, 2021, 41(5): 654-668. |
刘莎茜, 杨瑞, 侯春兰, 等. 贵州山区生态茶园不同凋落物木质素、纤维素分解特征. 茶叶科学, 2021, 41(5): 654-668. | |
34 | Song Q. Study on the decomposition effect of mixed leaf litter from Populus xiaozhuanica and ten tree species. Fuxin: Liaoning Technical University, 2020. |
宋琪. 小钻杨与10个树种枯落叶混合分解效应研究. 阜新: 辽宁工程技术大学, 2020. | |
35 | Grossman J J, Cavender-Bares J, Hobbie S E. Functional diversity of leaf litter mixtures slows decomposition of labile but not recalcitrant carbon over two years. Ecological Monographs, 2020, 90(3): e01407. |
[1] | 杨志贵, 张建国, 李锦荣, 于红妍, 常丽, 宜树华, 吕燕燕, 张玉琢, 孟宝平. 内蒙古温性草原草地类型近20年时空动态变化研究[J]. 草业学报, 2023, 32(9): 1-16. |
[2] | 张东, 侯晨, 马文明, 王长庭, 邓增卓玛, 张婷. 高寒草地不同灌丛化梯度下土壤酶活性研究[J]. 草业学报, 2023, 32(9): 79-92. |
[3] | 张慧龙, 杨秀春, 杨东, 陈昂, 张敏. 2000-2020年内蒙古草地植被覆盖度时空变化及趋势预测[J]. 草业学报, 2023, 32(8): 1-13. |
[4] | 康燕霞, 姜渊博, 齐广平, 银敏华, 马彦麟, 汪精海, 贾琼, 唐仲霞, 汪爱霞. 红豆草与无芒雀麦混播草地生产力提升的水分调控模式研究[J]. 草业学报, 2023, 32(8): 115-128. |
[5] | 李雪敏, 李同宁, 吴芝雨, 武振国. 多情景模拟下内蒙古草地生态系统服务价值时空演变[J]. 草业学报, 2023, 32(8): 14-27. |
[6] | 邢虎成, 王贤芳, 周清, 闫景彩, 揭雨成. 湖南52县草地资源的类型、等级及利用现状分析[J]. 草业学报, 2023, 32(8): 91-103. |
[7] | 黄治鹏, 黄毅, 杨全俊, 夏超, 张岩. 蒙古国草地农业及对我国的启示[J]. 草业学报, 2023, 32(6): 1-15. |
[8] | 崔婷, 王勇, 马晖玲. 外源IAA作用下草地早熟禾中调控Cd长距离运输的关键基因表达及其代谢通路分析[J]. 草业学报, 2023, 32(6): 146-156. |
[9] | 高婕, 赵新全, 刘文亭, 杨晓霞, 张春平, 俞旸, 曹铨, 刘玉祯, 张雪, 董全民. 基于供给—消耗关系的青海省高寒草地承载力时空变化分析[J]. 草业学报, 2023, 32(5): 1-12. |
[10] | 马婧, 郭方君, 邹枝慧, 孙琳, 陈芳. 腾格里沙漠南缘不同恢复阶段沙质草地植被的季节变化特征[J]. 草业学报, 2023, 32(5): 203-210. |
[11] | 郭芮, 伏帅, 侯蒙京, 刘洁, 苗春丽, 孟新月, 冯琦胜, 贺金生, 钱大文, 梁天刚. 基于Sentinel-2数据的青海门源县天然草地生物量遥感反演研究[J]. 草业学报, 2023, 32(4): 15-29. |
[12] | 马源, 王晓丽, 王彦龙, 马玉寿, 崔海鹏. 生态恢复领域草种丸粒化研究进展[J]. 草业学报, 2023, 32(4): 197-207. |
[13] | 江奥, 敬路淮, 泽让东科, 田黎明. 放牧影响草地凋落物分解研究进展[J]. 草业学报, 2023, 32(4): 208-220. |
[14] | 哈雪, 张金青, 白方旭, 马祥荣, 王安琦, 马晖玲. 甘肃野生草地早熟禾种质种子产量相关性状分析及其对矿质元素利用效应评价[J]. 草业学报, 2023, 32(4): 54-67. |
[15] | 雷石龙, 廖李容, 王杰, 张路, 叶振城, 刘国彬, 张超. 高寒草地植物多样性与Godron群落稳定性关系及其环境驱动因素[J]. 草业学报, 2023, 32(3): 1-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||