草业学报 ›› 2023, Vol. 32 ›› Issue (4): 91-100.DOI: 10.11686/cyxb2022173
郑甲成1(), 余婕1(), 李凡1, 黄小奕1, 李杰勤1, 陈海州3, 王歆1, 詹秋文1(), 徐兆师2()
收稿日期:
2022-04-19
修回日期:
2022-07-27
出版日期:
2023-04-20
发布日期:
2023-01-29
通讯作者:
詹秋文,徐兆师
作者简介:
E-mail: xuzhaoshi@caas.cn基金资助:
Jia-cheng ZHENG1(), Jie YU1(), Fan LI1, Xiao-yi HUANG1, Jie-qin LI1, Hai-zhou CHEN3, Xin WANG1, Qiu-wen ZHAN1(), Zhao-shi XU2()
Received:
2022-04-19
Revised:
2022-07-27
Online:
2023-04-20
Published:
2023-01-29
Contact:
Qiu-wen ZHAN,Zhao-shi XU
摘要:
为了分析SbER10_X1调控高粱光合作用和生物产量的功能特性,本研究以高粱SbER10_X1基因过表达株系(SbERex)、目的基因沉默株系(SbERin)和野生型对照株系(WT)为材料,鉴定转基因株系的阳性和目的基因表达水平,挑选SbERex 5和SbERin 6株系,切片观察茎秆细胞大小,测定主茎秆内植物激素含量,分析光合作用相关参数,并连续两年调查生物量相关指标。结果表明:与WT株系相比,SbERex 5茎秆中赤霉素含量显著增加,脱落酸含量显著降低,导致过表达株系茎秆细胞显著增大,株高显著增加,而SbERin 6株系的赤霉素含量显著减少,脱落酸含量显著升高,但主茎秆细胞大小变化不显著。SbERex 5株系的光合速率和水分利用效率显著增加,引起SbERex 5的株高、分蘖数、叶面积、单株产量和单株生物量显著高于WT,而SbERin 6仅存在减小趋势。结果表明SbER10_X1可以影响植物激素合成,导致高粱细胞体积增大,光合能力增强,有效提升饲用高粱生物产量。
郑甲成, 余婕, 李凡, 黄小奕, 李杰勤, 陈海州, 王歆, 詹秋文, 徐兆师. SbER10_X1调控饲用高粱光合作用和生物产量的功能特性分析[J]. 草业学报, 2023, 32(4): 91-100.
Jia-cheng ZHENG, Jie YU, Fan LI, Xiao-yi HUANG, Jie-qin LI, Hai-zhou CHEN, Xin WANG, Qiu-wen ZHAN, Zhao-shi XU. Functional characterization of the role of SbER10_X1 in regulating photosynthesis and biomass of sorghum forage[J]. Acta Prataculturae Sinica, 2023, 32(4): 91-100.
图1 转基因高粱不同株系阳性鉴定A为目标基因过表达株系SbERex,泳道1~6分别为SbERex 1~6株系,7为WT株系,8为阴性对照。B为目标基因沉默株系SbERin,泳道1~5分别为SbERin 6、SbERin 8、SbERin 9、SbERin 15和SbERin 16株系,6为阴性对照。+表示检测为阳性单株,-表示检测为阴性单株,I~Ⅳ表示4次生物学重复,M为DL2000 marker。A was target gene overexpression lines SbERex, lane 1-6 were SbERex 1-6 lines, 7 was WT line, 8 was negative control, B was target gene silence lines SbERin, lane 1-5 were SbERin 6, SbERin 8, SbERin 9, SbERin 15 and SbERin 16, respectively, 6 was negative control. “+” represented the positive plants, “-” represented the negative plants, I-Ⅳ were four biological replications, M was DL2000 marker.
Fig.1 Positive identification of different transgenic sorghum lines (n=4)
图2 高粱不同转基因株系SbER10_X1基因的表达水平分析A: SbER10_X1过表达株系SbER10_X1 overexpression lines; B: 目标基因沉默株系SbER10_X1 gene silencing lines; 不同大写字母表示差异显著(P<0.01)Different capital letters indicate significant differences (P<0.01).
Fig.2 Relative expression of SbER10_X1 in different transgenic sorghum lines (n=4)
图3 转基因高粱茎秆细胞切片分析A: 高粱茎秆外表面扫描电镜分析The outer surface scanning of sorghum stem by electron microscopic; B: 高粱茎秆外表面气孔密度Stomatal density of outer surface of sorghum stem; C: 高粱茎秆外表面气孔细胞大小Stomatal cell size of outer surface of sorghum stem; 不同小写字母表示同一指标中不同株系间差异显著(P<0.05)Different lowercase letters indicate the significant differences among different lines inside the same index (P<0.05); 下同The same below.
Fig.3 Stem cell section analysis of transgenic sorghum lines (n=60)
株系Line | 生长素IAA | 脱落酸ABA | 赤霉素GA3 |
---|---|---|---|
WT | 3.49±0.14a | 3.16±0.07b | 0.24±0.01b |
SbERex 5 | 3.26±0.08a | 2.38±0.08c | 0.39±0.00a |
SbERin 6 | 3.58±0.20a | 10.95±0.08a | 0.18±0.00c |
表1 转基因高粱茎秆内源激素含量
Table 1 Endogenous hormone content of transgenic sorghum stem (n=6, ng·g-1)
株系Line | 生长素IAA | 脱落酸ABA | 赤霉素GA3 |
---|---|---|---|
WT | 3.49±0.14a | 3.16±0.07b | 0.24±0.01b |
SbERex 5 | 3.26±0.08a | 2.38±0.08c | 0.39±0.00a |
SbERin 6 | 3.58±0.20a | 10.95±0.08a | 0.18±0.00c |
指标 Index | 株系 Lines | 年份 Year | 变异系数 Coefficient of variation | |
---|---|---|---|---|
2020 | 2021 | |||
株高 Plant height (cm) | WT | 131.37±3.51b | 132.13±2.65b | 0.41 |
SbERex 5 | 156.31±3.14a | 154.54±1.53a | 0.81 | |
SbERin 6 | 120.16±2.08c | 116.73±3.51c | 3.21 | |
叶面积 Leaf area (cm2) | WT | 212.52±7.00b | 207.63±15.40b | 1.65 |
SbERex 5 | 232.79±10.70a | 231.94±18.15a | 0.26 | |
SbERin 6 | 195.46±12.06b | 197.71±10.90b | 0.85 | |
分蘖数 Tiller number | WT | 4.60±1.00b | 4.80±1.00b | 2.63 |
SbERex 5 | 7.60±1.15a | 8.00±0.58a | 3.63 | |
SbERin 6 | 4.40±0.58b | 4.30±0.58b | 1.63 | |
主茎粗 Main stem diameter (mm) | WT | 28.91±2.12a | 27.89±1.65a | 2.54 |
SbERex 5 | 30.95±1.34a | 30.71±2.00a | 0.55 | |
SbERin 6 | 28.33±3.82a | 28.97±4.99a | 1.58 | |
主茎穗长 Main stem spike length (cm) | WT | 32.17±1.53a | 32.32±0.58a | 0.33 |
SbERex 5 | 33.42±2.08a | 32.67±1.53a | 1.60 | |
SbERin 6 | 31.11±1.15a | 30.38±1.16a | 1.68 | |
单株产量 Yield per plant (g·plant-1) | WT | 31.36±3.84b | 31.27±3.80b | 0.20 |
SbERex 5 | 39.02±3.48a | 39.30±3.50a | 0.51 | |
SbERin 6 | 29.52±1.14b | 29.53±1.15b | 0.02 | |
单株生物量 Biomass per plant (g·plant-1) | WT | 386.35±20.40b | 382.45±35.90b | 0.72 |
SbERex 5 | 576.38±5.93a | 574.74±7.07a | 0.20 | |
SbERin 6 | 373.19±13.47b | 372.99±13.55b | 0.04 |
表2 转基因高粱生物量相关性状分析
Table 2 Biomass-related traits of transgenic sorghum lines (n=10)
指标 Index | 株系 Lines | 年份 Year | 变异系数 Coefficient of variation | |
---|---|---|---|---|
2020 | 2021 | |||
株高 Plant height (cm) | WT | 131.37±3.51b | 132.13±2.65b | 0.41 |
SbERex 5 | 156.31±3.14a | 154.54±1.53a | 0.81 | |
SbERin 6 | 120.16±2.08c | 116.73±3.51c | 3.21 | |
叶面积 Leaf area (cm2) | WT | 212.52±7.00b | 207.63±15.40b | 1.65 |
SbERex 5 | 232.79±10.70a | 231.94±18.15a | 0.26 | |
SbERin 6 | 195.46±12.06b | 197.71±10.90b | 0.85 | |
分蘖数 Tiller number | WT | 4.60±1.00b | 4.80±1.00b | 2.63 |
SbERex 5 | 7.60±1.15a | 8.00±0.58a | 3.63 | |
SbERin 6 | 4.40±0.58b | 4.30±0.58b | 1.63 | |
主茎粗 Main stem diameter (mm) | WT | 28.91±2.12a | 27.89±1.65a | 2.54 |
SbERex 5 | 30.95±1.34a | 30.71±2.00a | 0.55 | |
SbERin 6 | 28.33±3.82a | 28.97±4.99a | 1.58 | |
主茎穗长 Main stem spike length (cm) | WT | 32.17±1.53a | 32.32±0.58a | 0.33 |
SbERex 5 | 33.42±2.08a | 32.67±1.53a | 1.60 | |
SbERin 6 | 31.11±1.15a | 30.38±1.16a | 1.68 | |
单株产量 Yield per plant (g·plant-1) | WT | 31.36±3.84b | 31.27±3.80b | 0.20 |
SbERex 5 | 39.02±3.48a | 39.30±3.50a | 0.51 | |
SbERin 6 | 29.52±1.14b | 29.53±1.15b | 0.02 | |
单株生物量 Biomass per plant (g·plant-1) | WT | 386.35±20.40b | 382.45±35.90b | 0.72 |
SbERex 5 | 576.38±5.93a | 574.74±7.07a | 0.20 | |
SbERin 6 | 373.19±13.47b | 372.99±13.55b | 0.04 |
1 | Zou J Q. New research progress on sorghum breeding and cultivation techniques. Scientia Agricultura Science, 2020, 53(14): 2769-2773. |
邹剑秋. 高粱育种与栽培技术研究新进展. 中国农业科学, 2020, 53(14): 2769-2773. | |
2 | Paterson A H, Bowers J E, Bruggmann R, et al. The Sorghum bicolor genome and the diversification of grasses. Nature, 2009, 457: 551-556. |
3 | Liu Q S, Liang D, Duan B, et al. Infection characteristic and control measure for sorghum dwarf mosaic disease in China. Journal of Shanxi Agricultural Sciences, 2009, 37(3): 75-77. |
柳青山, 梁笃, 段冰, 等. 我国高粱红条病发生特点及防治措施. 山西农业科学, 2009, 37(3): 75-77. | |
4 | Huang M J. Research progress of Fusarium stalk rot in sorghum. Chinese Agricultural Science Bulletin, 2016, 32(14): 90-95. |
黄敏佳. 高粱镰孢菌茎腐病研究进展. 中国农学通报, 2016, 32(14): 90-95. | |
5 | Sun J, Tie B Q, Qian Z, et al. The effect of compound heavy metal on seedling growth of Zea mays and Sorghum vulgare. Journal of Mountain Agriculture and Biology, 2005(6): 514-521. |
孙健, 铁柏清, 钱湛, 等. 复合重金属胁迫对玉米和高粱成苗过程的影响. 山地农业生物学报, 2005(6): 514-521. | |
6 | Li A J, Zhang G X, Zhou F P, et al. Response of sorghum seedlings to exogenous proline under low temperature stress. Seed, 2019, 38(5): 44-47. |
李爱军, 张桂香, 周福平, 等. 低温胁迫下高粱幼苗对外源脯氨酸的响应. 种子, 2019, 38(5): 44-47. | |
7 | Wang Z H, Wei Y Q, Zhao Y R, et al. A transcriptomic study of physiological responses to drought and salt stress in sweet sorghum seedlings. Acta Prataculturae Sinica, 2022, 31(3): 71-84. |
王志恒, 魏玉清, 赵延蓉, 等. 基于转录组学比较研究甜高粱幼苗响应干旱和盐胁迫的生理特征. 草业学报, 2022, 31(3): 71-84. | |
8 | Zheng J C, Zhou L, Qian Y C, et al. Research progress of ERECTA regulation on cell growth of plant. Molecular Plant Breeding, 2020, 18(9): 2922-2929. |
郑甲成, 周磊, 钱宇宸, 等. ERECTA调控植物细胞生长功能的研究进展. 分子植物育种, 2020, 18(9): 2922-2929. | |
9 | Zheng J C, Yu J, Liu T, et al. Identification and expression characterisation of SbERECTA family genes in Sorghum bicolor. Crop and Pasture Science, 2021, 72(2): 125-135. |
10 | Zhang X X, Wang L, Shou L L. A rapid modified CTAB method of extracting genomic DNA from wheat leaf. Chinese Agricultural Science Bulletin, 2012, 28(36): 46-49. |
张晓祥, 王玲, 寿路路. 一种快速提取小麦基因组DNA的改良CTAB方法. 中国农学通报, 2012, 28(36): 46-49. | |
11 | Zheng J C, Hu Y G. TaERECTA responses to phyto-hormones, Mg2+ stress and dehydration and its correlation with stomatal density in bread wheat. Cereal Research Communications, 2016, 44(2): 206-216. |
12 | Hou S, Jiang Z, Ding M, et al. Simultaneous determination of gibberellic acid, indole-3-acetic acid and abscisic acid in wheat extracts by solid-phase extraction and liquid chromatography-electrospray tandem mass spectrometry. Talanta, 2008, 76(4): 798-802. |
13 | Woodward C. Interaction of auxin and ERECTA in elaborating Arabidopsis inflorescence architecture revealed by the activation tagging of a new member of the YUCCA family putative flavin monooxygenases. Plant Physiology, 2005, 139(1): 192-203. |
14 | Cai Y P, Li L, Lin Y, et al. Effects of content of endogenersis hormones on stem growth of Dendrobium in Huoshan. Acta Laser Biology Sinica, 2004(5): 345-348. |
蔡永萍, 李玲, 林毅, 等. 霍山三种石斛的内源GA、ABA含量对茎高生长的影响. 激光生物学报, 2004(5): 345-348. | |
15 | Wu Q, Su N N, Cui J. Effect of LED light treatments on growth and endogenous GA and IAA contents of tomato seedling. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(6): 1171-1176. |
邬奇, 苏娜娜, 崔瑾. LED光质对番茄幼苗生长及内源性GA和IAA含量的影响. 西北植物学报, 2013, 33(6): 1171-1176. | |
16 | Chang M M, Liang L Y, Yang S, et al. Genotypic differences in Mn-induced chlorosis of sugarcane seedlings. Southwest China Journal of Agricultural Sciences, 2019, 32(9): 1980-1985. |
常敏敏, 梁莉燕, 杨曙, 等. 高锰诱导甘蔗幼苗黄化的基因型差异研究. 西南农业学报, 2019, 32(9): 1980-1985. | |
17 | Han X D. The clone of ERECTA family gene from sorghum and relative expression levels analysis of drought stress. Nanchang: Jiangxi Agricultural University, 2015. |
韩小东. 高粱ERECTA家族基因的克隆及其干旱胁迫相对表达水平的分析. 南昌: 江西农业大学, 2015. | |
18 | Swain S M, Tseng T, Olszewski N E. Altered expression of SPINDLY affects gibberellin response and plant development. Plant Physiology, 2001, 126 (3): 1174-1185. |
19 | Fridborg I, Kuusk S, Robertson M, et al. The Arabidopsis protein SHI represses gibberellin responses in Arabidopsis and barley. Plant Physiology, 2001, 127(3): 937-948. |
20 | Masle J, Gilmore S, Farquhar G. The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nature, 2005, 436: 866-870. |
21 | Hai T X, Peng G, Xin L X, et al. PdERECTA, a leucine-rich repeat receptor-like kinase of poplar, confers enhanced water use efficiency in Arabidopsis. Planta, 2011, 234(2): 229-241. |
22 | Doheny A T, Hunt L, Franks P J, et al. Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient. Philosophical Transactions Royal Society B-biological Sciences, 2012, 367: 547-555. |
23 | Pillitteri L J, Torii K U. Mechanisms of stomatal development. Annual Review of Plant Biology, 2012, 63(1): 591-614. |
24 | Guo M, Rupe M, Simmons C, et al. The maize ERECTA genes for improving plant growth, transpiration, efficiency and drought tolerance in crop plants. United States Patent: US12910922, 2011-02-10. |
25 | Liu M, Li W P, Min Z, et al. Identification and expression analysis of ERECTA family genes in grape (Vitis vinifera L.). Genes & genomics, 2019, 41(6): 723-735. |
26 | Hou X Y. Spinach ERECTA(ER) gene cloning and function analysis of high temperature response. Shanghai: Shanghai Normal University, 2021. |
侯笑颜. 菠菜ERECTA(ER)基因克隆及其高温应答功能分析. 上海: 上海师范大学, 2021. | |
27 | Zheng J C. Functional characterization of TaER, a candidate gene for transpiration efficiency in bread wheat. Xianyang: Northwest A&F University, 2015. |
郑甲成. 普通小麦蒸腾效率候选基因TaER的功能分析. 咸阳: 西北农林科技大学, 2015. |
[1] | 郭芮, 伏帅, 侯蒙京, 刘洁, 苗春丽, 孟新月, 冯琦胜, 贺金生, 钱大文, 梁天刚. 基于Sentinel-2数据的青海门源县天然草地生物量遥感反演研究[J]. 草业学报, 2023, 32(4): 15-29. |
[2] | 刘选帅, 孙延亮, 安晓霞, 马春晖, 张前兵. 施磷和接种解磷菌对紫花苜蓿光合特性及生物量的影响[J]. 草业学报, 2023, 32(3): 189-199. |
[3] | 王腾飞, 王斌, 邓建强, 李满有, 倪旺, 冯琴, 妥昀昀, 兰剑. 宁夏干旱区滴灌条件下拉巴豆不同播种量与甜高粱混播饲草生产性能研究[J]. 草业学报, 2023, 32(3): 30-40. |
[4] | 苏乐乐, 秦燕, 王瞾敏, 张永超, 刘文辉. 氮磷添加对燕麦与箭筈豌豆不同种植方式草地土壤微生物-胞外酶化学计量特征的影响[J]. 草业学报, 2023, 32(3): 56-66. |
[5] | 郭丽珠, 孟慧珍, 范希峰, 滕珂, 滕文军, 温海峰, 岳跃森, 张辉, 武菊英. 野牛草雌雄株对不同形态氮素的生理响应差异[J]. 草业学报, 2023, 32(2): 65-74. |
[6] | 周晓瑾, 黄海霞, 张君霞, 马步东, 陆刚, 齐建伟, 张婷, 朱珠. 盐胁迫对裸果木幼苗光合特性的影响[J]. 草业学报, 2023, 32(2): 75-83. |
[7] | 戎荣, 孙斌, 武志涛, 高志海, 杜自强, 滕思翰. 灌丛化草原小叶锦鸡儿灌丛地上生物量测量方法研究[J]. 草业学报, 2023, 32(1): 36-47. |
[8] | 高玮, 受娜, 蒋丛泽, 马仁诗, 沈禹颖, 杨宪龙. 施氮量对饲用高粱干物质积累、分配及水分利用效率的影响[J]. 草业学报, 2022, 31(9): 26-35. |
[9] | 厉方桢, 钟华平, 欧阳克蕙, 赵小敏, 李愈哲. 基于机器学习的阿勒泰地区草地地下生物量估测与数字制图[J]. 草业学报, 2022, 31(8): 13-23. |
[10] | 刘晓婷, 姚拓. 高寒草地耐低温植物根际促生菌的筛选鉴定及特性研究[J]. 草业学报, 2022, 31(8): 178-187. |
[11] | 李佳林, 姜升林, 李云霞, 全晓艳, 王文波, 单秋丽, 解纯娟, 尹宁, 秦余香, 张立华, 李洪梅, 何文兴. 禾本科草本植物根状茎发育调控机理研究进展[J]. 草业学报, 2022, 31(8): 211-220. |
[12] | 赵翊含, 侯蒙京, 冯琦胜, 高宏元, 梁天刚, 贺金生, 钱大文. 基于Landsat 8和随机森林的青海门源天然草地地上生物量遥感估算[J]. 草业学报, 2022, 31(7): 1-14. |
[13] | 姚露花, 綦才, 杨建峰, 郭彦军. 种子引发对甜高粱角质层蜡质及其抗性的影响[J]. 草业学报, 2022, 31(7): 185-196. |
[14] | 游永亮, 赵海明, 李源, 武瑞鑫, 刘贵波, 周健东, 陈俊峰. 饲用麦类作物的生物量积累和营养品质动态变化规律[J]. 草业学报, 2022, 31(6): 189-201. |
[15] | 张玉琢, 杨志贵, 于红妍, 张强, 杨淑霞, 赵婷, 许画画, 孟宝平, 吕燕燕. 基于STARFM的草地地上生物量遥感估测研究——以甘肃省夏河县桑科草原为例[J]. 草业学报, 2022, 31(6): 23-34. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||