草业学报 ›› 2023, Vol. 32 ›› Issue (7): 1-11.DOI: 10.11686/cyxb2022310
• 研究论文 •
刘欣雷1,2(), 杜鹤强1(), 刘秀帆1,2, 范亚伟1,2
收稿日期:
2022-08-02
修回日期:
2022-10-19
出版日期:
2023-07-20
发布日期:
2023-05-26
通讯作者:
杜鹤强
作者简介:
E-mail: dilikexue119@163.com基金资助:
Xin-lei LIU1,2(), He-qiang DU1(), Xiu-fan LIU1,2, Ya-wei FAN1,2
Received:
2022-08-02
Revised:
2022-10-19
Online:
2023-07-20
Published:
2023-05-26
Contact:
He-qiang DU
摘要:
研究放牧强度对草地风沙活动的影响对深入理解风沙动力过程、准确评估和防治风沙灾害具有重要意义。本研究依托中国科学院乌拉特荒漠草原研究站,以内蒙古荒漠草原为研究区,设置两种草地类型(以草本为主的针茅草地和以灌木为主的灌丛草地)和3种放牧强度(禁牧为对照、中度和重度放牧强度),开展了近地表风速廓线、粒径分布、风沙流结构等相关参数的测量和研究。结果表明:1)放牧强度对不同草地类型地表的空气动力学粗糙度有显著影响,且对草本区的影响大于对灌木区的影响。2)草地类型和放牧强度对地表土壤可蚀性颗粒含量的影响均达到显著水平(P<0.05),且随着放牧强度的增加,草本区地表可蚀性颗粒含量逐渐减少,土壤质地逐渐粗化。3)放牧区的风沙流拟合函数均为幂函数,R2为0.78~0.97。草本中度(6.468 g·m-1·d-1)和重度放牧区(9.294 g·m-1·d-1)的水平通量分别是草本对照区(0.907 g·m-1·d-1)的7.13和10.25倍。灌木区的输沙高度和放牧强度对输沙率的影响均小于草本区。以上研究结果表明:草本区风沙活动受放牧扰动的影响远大于灌木区,即使是中度放牧强度的水平输沙通量也远远大于禁牧区。因此,仅仅依据载畜量制定的放牧策略尚存在严重不足,为了防止草地退化,促进牧业的持续发展,在制定放牧策略时应将地表风沙活动强度作为重要指标进行综合考虑。
刘欣雷, 杜鹤强, 刘秀帆, 范亚伟. 内蒙古荒漠草原地表风沙活动对放牧强度的响应[J]. 草业学报, 2023, 32(7): 1-11.
Xin-lei LIU, He-qiang DU, Xiu-fan LIU, Ya-wei FAN. Response of aeolian activity to grazing intensities in the desert steppe, Northern China[J]. Acta Prataculturae Sinica, 2023, 32(7): 1-11.
图1 乌拉特荒漠草原研究站放牧样地布设a: 灌木草地放牧区Grazing plots in shrub dominated grassland (SDG);b: 草本草地放牧区Grazing plots in grass dominated grassland (GDG);c: 灌木样地的阶梯式集沙仪Multistep omni- directional sand traps in SDG;d: 草本样地的阶梯式集沙仪Multistep omni- directional sand traps in GDG. CK表示对照样地,禁牧区;MG表示中度放牧区;HG表示重度放牧区。下同。CK: Prohibiting grazing as the control; MG: Moderate grazing; HG: Heavy grazing. The same below.
Fig.1 Grazing experiments plots and sand trap setting
项目 | 草本区Grass dominated grassland (GDG) | 灌木区Shrub dominated grassland (SDG) | ||||
---|---|---|---|---|---|---|
Item | 对照区 Control area (CK) | 中度放牧区 Moderate grazing area (MG) | 重度放牧区 Heavy grazing area (HG) | 对照区 Control area (CK) | 中度放牧区 Moderate grazing area (MG) | 重度放牧区 Heavy grazing area (HG) |
植被盖度Vegetation cover (%) | 56.56 | 31.44 | 25.89 | 49.20 | 33.40 | 30.20 |
植被密度Vegetation density (plant·m-2) | 26.980 | 25.264 | 25.534 | 104.300 | 75.810 | 64.390 |
地上生物量Aboveground biomass (g·m-2) | 85.192 | 33.152 | 24.774 | 130.616 | 80.112 | 75.128 |
表1 不同放牧样地植被基本特征
Table 1 Basic characteristics of vegetation in different grazing plots
项目 | 草本区Grass dominated grassland (GDG) | 灌木区Shrub dominated grassland (SDG) | ||||
---|---|---|---|---|---|---|
Item | 对照区 Control area (CK) | 中度放牧区 Moderate grazing area (MG) | 重度放牧区 Heavy grazing area (HG) | 对照区 Control area (CK) | 中度放牧区 Moderate grazing area (MG) | 重度放牧区 Heavy grazing area (HG) |
植被盖度Vegetation cover (%) | 56.56 | 31.44 | 25.89 | 49.20 | 33.40 | 30.20 |
植被密度Vegetation density (plant·m-2) | 26.980 | 25.264 | 25.534 | 104.300 | 75.810 | 64.390 |
地上生物量Aboveground biomass (g·m-2) | 85.192 | 33.152 | 24.774 | 130.616 | 80.112 | 75.128 |
草地类型 Grassland type | 放牧强度 Grazing intensity | 拟合系数b Fitting coefficient b | 拟合系数a Fitting coefficient a | 决定系数R2 Decision coefficient R2 | 摩阻风速u* Friction velocity u* (m·s-1) | 空气动力学粗糙度z0 Aerodynamic roughness length z0 (m) |
---|---|---|---|---|---|---|
草本区Grass dominated grassland (GDG) | 对照区Control area (CK) | 9.602 | 3.231 | 0.974 | 1.293 | 0.051 |
中度放牧区Moderate grazing area (MG) | 8.226 | 2.682 | 0.991 | 1.073 | 0.046 | |
重度放牧区Heavy grazing area (HG) | 6.303 | 1.363 | 0.874 | 0.545 | 0.010 | |
灌木区Shrub dominated grassland (SDG) | 中度放牧区Moderate grazing area (MG) | 5.422 | 1.681 | 0.995 | 0.672 | 0.040 |
重度放牧区Heavy grazing area (HG) | 6.128 | 1.694 | 0.984 | 0.678 | 0.027 |
表2 放牧样地风速廓线拟合结果
Table 2 Fitting results of wind profile in sample plots
草地类型 Grassland type | 放牧强度 Grazing intensity | 拟合系数b Fitting coefficient b | 拟合系数a Fitting coefficient a | 决定系数R2 Decision coefficient R2 | 摩阻风速u* Friction velocity u* (m·s-1) | 空气动力学粗糙度z0 Aerodynamic roughness length z0 (m) |
---|---|---|---|---|---|---|
草本区Grass dominated grassland (GDG) | 对照区Control area (CK) | 9.602 | 3.231 | 0.974 | 1.293 | 0.051 |
中度放牧区Moderate grazing area (MG) | 8.226 | 2.682 | 0.991 | 1.073 | 0.046 | |
重度放牧区Heavy grazing area (HG) | 6.303 | 1.363 | 0.874 | 0.545 | 0.010 | |
灌木区Shrub dominated grassland (SDG) | 中度放牧区Moderate grazing area (MG) | 5.422 | 1.681 | 0.995 | 0.672 | 0.040 |
重度放牧区Heavy grazing area (HG) | 6.128 | 1.694 | 0.984 | 0.678 | 0.027 |
图2 不同放牧强度下的草本区和灌木区地表土壤和集沙仪内不同高度风沙沉积物粒径分布曲线
Fig.2 Particle size frequency curves of aeolian sediment at different heights and surface particle in GDG and SDG under different grazing intensities
图3 不同放牧强度下草本区和灌木区地表土壤和风沙沉积物中值粒径随高度的分布
Fig.3 Distribution of median particle size of surface soil and aeolian sediment with height in GDG and SDG under different grazing intensities
主要影响Main effect | P值P value |
---|---|
草地类型Grassland type | <0.001 |
放牧强度Grazing intensity | <0.001 |
草地类型×放牧强度Grassland type×grazing intensity | 0.135 |
表3 草地类型和放牧强度对地表土壤可蚀性颗粒含量影响的多因素方差分析
Table 3 Two-way ANOVA analysis of the effects of grassland type and grazing intensity on the content of erodible particles in surface soil
主要影响Main effect | P值P value |
---|---|
草地类型Grassland type | <0.001 |
放牧强度Grazing intensity | <0.001 |
草地类型×放牧强度Grassland type×grazing intensity | 0.135 |
1 | Wu Z. Sand geomorphology and sand control engineering. Beijing: Science Press, 2003. |
吴正. 风沙地貌与治沙工程学. 北京: 科学出版社, 2003. | |
2 | Wu L L. Research on the mechanism of mutual feeding between desert wind-sand movement and solar power generation technology. Hohhot: Inner Mongolia University of Technology, 2021. |
吴丽玲. 沙漠风沙运动与太阳能发电技术的互馈机理研究. 呼和浩特: 内蒙古工业大学, 2021. | |
3 | Zheng X J, Zhou Y H. Some key problems in the research of wind-blown sands. Mechanics in Engineering, 2003, 25(2): 1-6. |
郑晓静, 周又和. 风沙运动研究中的若干关键力学问题. 力学与实践, 2003, 25(2): 1-6. | |
4 | National Forestry and Grassland Administration. China bulletin on desertification and desertification (Fifth national desertification and desertification monitoring results). [2015-12-29](2022-08-02). http://www.forestry.gov.cn. |
国家林业和草原局. 中国荒漠化和沙化状况公报(第五次全国荒漠化和沙化监测结果). [2015-12-29](2022-08-02). http://www.forestry.gov.cn. | |
5 | Cheng X. Experimental research on sand incipience law in wind-blown-sand two phase flow. Beijing: Tsinghua University, 2003. |
程旭. 风沙两相流中沙粒起动规律的实验研究. 北京: 清华大学, 2003. | |
6 | Bagnold R A. The physics of blown sand and desert dunes. Berlin: Springer Netherlands, 1942. |
7 | Sun C L, Zhang Z D, Qiu Q Q, et al. AHP based wind erosion risk analysis of the Xilinguole grassland landscape system. Arid Land Geography, 2016, 39(5): 1036-1042. |
孙传龙, 张卓栋, 邱倩倩, 等. 基于层次分析法的锡林郭勒草地景观系统风蚀危险性分析. 干旱区地理, 2016, 39(5): 1036-1042. | |
8 | Webb N P, Strong C L. Soil erodibility dynamics and its representation for wind erosion and dust emission models. Aeolian Research, 2011, 3(2): 165-179. |
9 | Dong Z B, Chen W N, Dong G R, et al. Influences of vegetation cover on the wind erosion of sandy soil. Acta Scientiae Circumstantiae, 1996, 16(4): 442-446. |
董治宝, 陈渭南, 董光荣, 等. 植被对风沙土风蚀作用的影响. 环境科学学报, 1996, 16(4): 442-446. | |
10 | Chen Z, Ma S S, Zhao Y L, et al. Characteristics of drifting sand flux over conservation tillage field. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(1): 118-122. |
陈智, 麻硕士, 赵永来, 等. 保护性耕作农田地表风沙流特性. 农业工程学报, 2010, 26(1): 118-122. | |
11 | Li Y Q, Li Z G, Dong Z, et al. Comparison on the anti erosion characterisitics under different grazing intensities on the desert steppe bases on the wind tunnel simulation. Journal of Soil and Water Conservation, 2016, 30(3): 103-106. |
李永强, 李治国, 董智, 等. 基于风洞模拟的荒漠草原不同放牧强度抗蚀特征比较. 水土保持学报, 2016, 30(3): 103-106. | |
12 | Li Y Q, Li Z G, Dong Z, et al. Effects of grazing intensity on windblown sediment mass flux and particle size distribution in the desert steppe of Nei Mongol, China. Chinese Journal of Plant Ecology, 2016, 40(10): 1003-1014. |
李永强, 李治国, 董智, 等. 内蒙古荒漠草原放牧强度对风沙通量和沉积物粒径的影响. 植物生态学报, 2016, 40(10): 1003-1014. | |
13 | Li S, Harazono Y, Oikawa T, et al. Grassland desertification by grazing and resulting micrometeorological changes in Inner Mongolia. Agricultural and Forest Meteorology, 2000, 102: 125-137. |
14 | Du H Q, Wang T, Xue X, et al. Estimation of soil organic carbon, nitrogen, and phosphorus losses induced by wind erosion in Northern China. Land Degradation and Development, 2019, 30(8): 1006-1022. |
15 | Munkhtsetseg E, Shinoda M, Ishizuka M, et al. Anthropogenic dust emissions due to livestock trampling in a Mongolian temperate grassland. Atmospheric Chemistry and Physics, 2017, 17: 11389-11401. |
16 | Belnap J, Reynold R, Reheis M C, et al. Sediment losses and gains across a gradient of livestock grazing and plant invasion in a cool, semi-arid grassland, Colorado Plateau, USA. Aeolian Research, 2009, 1(1): 27-43. |
17 | Zuo X, Zhang J, Lv P, et al. Effects of plant functional diversity induced by grazing and soil properties on above and belowground biomass in a semiarid grassland. Ecological Indicators, 2018, 93: 555-561. |
18 | Ha B R. Research on human-land relationship and ecological restoration in Inner Mongolia desert grassland-Take pastoral area of Wulatehou Banner as an example. Hohhot: Inner Mongolia Normal University, 2021. |
哈布日. 内蒙古荒漠草原人地关系与生态恢复研究. 呼和浩特: 内蒙古师范大学, 2021. | |
19 | Du H Q, Zuo X A, Li S, et al. Wind erosion changes induced by different grazing intensities in the desert steppe, Northern China. Agriculture, Ecosystems and Environment, 2019, 274: 1-13. |
20 | Wentworth C K. A scale of grade and class terms for clastic sediments. Journal of Geology, 1922, 30(5): 377-392. |
21 | Mei F M, Jiang S S, Wang T. The inflected feature of wind profiles over several roughness beds and its implications. Journal of Desert Research, 2010, 30(2): 217-227. |
梅凡民, 江姗姗, 王涛. 粗糙床面风廓线的转折特征及其物理意义. 中国沙漠, 2010, 30(2): 217-227. | |
22 | Priesley C H B. Turbulent transfer in the lower atmosphere. Chicago: The University of Chicago Press, 1959. |
23 | Du H Q, Xue X, Sun J H. Underlying surface characteristics and observation of blown-sand movement in Ulanbuh Desert along bank of Yellow River. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(22): 156-165. |
杜鹤强, 薛娴, 孙家欢. 乌兰布和沙漠沿黄河区域下垫面特征及风沙活动观测. 农业工程学报, 2012, 28(22): 156-165. | |
24 | Liu X P, Dong Z B. Review of aerodynamic roughness length. Journal of Desert Research, 2003, 23(4): 337-346. |
刘小平, 董治宝. 空气动力学粗糙度的物理与实践意义. 中国沙漠, 2003, 23(4): 337-346. | |
25 | Zhu Z D, Wu Z, Liu S. An introduction to China deserts. Beijing: Science Press, 1980: 93-105. |
朱震达, 吴正, 刘恕. 中国沙漠概论. 北京: 科学出版社, 1980: 93-105. | |
26 | Liu X W. Experimental sand physics and sand engineering. Beijing: Science Press, 1995: 68-72. |
刘贤万. 实验风沙物理与风沙工程学. 北京: 科学出版社, 1995: 68-72. | |
27 | Shao Y P. A model for mineral dust emission. Journal of Geophysical Research, 2001, 106(D17): 20239-20254. |
28 | Zender C S, Bian H, Newman D. Mineral Dust Entrainment and Deposition (DEAD) model: description and 1990s dust climatology. Journal of Geophysical Research, 2003, 108(D14): 4416. |
29 | Gillies J A, Nickling W G, Lancaster N. Vegetative roughness controls on wind erosion: a shear stress partitioning approach//Sustainable development in dryland-meeting the challenge of global climate change, Proceedings of the Ninth International Conference on Development of Drylands. Cairo: International Dryland Development Commission, 2010: 374-384. |
30 | Hoffmann C, Funk R, Wieland R, et al. Effects of grazing and topography on dust flux and deposition in the Xilingele grassland, Inner Mongolia. Journal of Arid Environments, 2008, 72: 792-807. |
31 | Aubault H, Webb N P, Strong C L, et al. Grazing impacts on the susceptibility of rangelands to wind erosion: The effects of stocking rate, stocking strategy and land condition. Aeolian Research, 2015, 17: 89-99. |
32 | Xuan C Z, Chen Z, Liu H Y, et al. Tests on anti-wind erosion in different restoration modes of desertification grassland at test zone in Siziwang Banner. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(8): 164-170. |
宣传忠, 陈智, 刘海洋, 等. 四子王旗草地修复试验区不同修复模式的抗风蚀试验. 农业机械学报, 2016, 47(8): 164-170. | |
33 | Sun S X, Ding Y, Li X Z, et al. Effects of seasonal regulation of grazing intensity on soil erosion in desert steppe grassland. Acta Prataculturae Sinica, 2020, 29(7): 23-29. |
孙世贤, 丁勇, 李夏子, 等. 放牧强度季节调控对荒漠草原土壤风蚀的影响.草业学报, 2020, 29(7): 23-29. |
[1] | 陈彦硕, 马彦平, 王红梅, 赵亚楠, 李志丽, 张振杰. 荒漠草原不同年限灌丛引入过程土壤细菌碳源利用特征[J]. 草业学报, 2023, 32(6): 30-44. |
[2] | 胡宇霞, 龚吉蕊, 朱趁趁, 矢佳昱, 张子荷, 宋靓苑, 张魏圆. 基于生态系统服务簇的内蒙古荒漠草原生态系统服务的空间分布特征[J]. 草业学报, 2023, 32(4): 1-14. |
[3] | 牛伟玲, 陈辉, 侯慧新, 郭晨睿, 马娇林, 武建双. 10年禁牧未改变藏西北高寒荒漠植物水氮利用效率[J]. 草业学报, 2022, 31(8): 35-48. |
[4] | 刘万龙, 许冬梅, 史佳梅, 许爱云. 不同群落生境蒙古冰草种群株丛结构和叶片功能性状的变化[J]. 草业学报, 2022, 31(8): 72-80. |
[5] | 郭文章, 井长青, 邓小进, 陈宸, 赵苇康, 侯志雄, 王公鑫. 新疆天山北坡荒漠草原碳通量特征及其对环境因子的响应[J]. 草业学报, 2022, 31(5): 1-12. |
[6] | 金玲, 陆颖, 马红彬, 谢应忠, 沈艳. 内蒙古鄂托克前旗荒漠草原植物群落的数量分类与排序[J]. 草业学报, 2022, 31(4): 12-21. |
[7] | 沈洁, 丁蕾, 辛晓平, 张翔, 徐大伟, 侯路路, 闫瑞瑞. 基于无人机激光雷达与多光谱数据的不同放牧强度下草原冠层尺度特征研究[J]. 草业学报, 2022, 31(3): 1-15. |
[8] | 倪芳芳, 吕世杰, 屈志强, 白璐, 孟彪, 张博涵, 李治国. 不同载畜率下荒漠草原非生长季植物群落特征对近地面风沙通量的影响[J]. 草业学报, 2022, 31(3): 26-33. |
[9] | 程燕明, 马红彬, 马菁, 马子元, 刘进娣, 周瑶, 彭文栋. 不同放牧方式对荒漠草原土壤碳氮储量及固持的影响[J]. 草业学报, 2022, 31(10): 18-27. |
[10] | 王永宏, 田黎明, 艾鷖, 陈仕勇, 泽让东科. 短期牦牛放牧对青藏高原高寒草地土壤真菌群落的影响[J]. 草业学报, 2022, 31(10): 41-52. |
[11] | 陈林, 陈高路, 宋乃平, 李学斌, 万红云, 何文强. 宁夏东部荒漠草原猪毛蒿光合特征和水分利用效率对降水变化的响应[J]. 草业学报, 2022, 31(10): 87-98. |
[12] | 张峰, 孙嘉伟, 孙宇, 郑佳华, 乔荠瑢, 赵萌莉. 不同载畜率对短花针茅荒漠草原优势物种间关系及其空间分布特征的影响[J]. 草业学报, 2021, 30(8): 1-11. |
[13] | 吴旭东, 蒋齐, 任小玢, 俞鸿千, 王占军, 何建龙, 季波, 杜建民. 降水水平对荒漠草原生物土壤结皮碳、氮和微生物的影响[J]. 草业学报, 2021, 30(7): 34-43. |
[14] | 孙忠超, 郭天斗, 于露, 马彦平, 赵亚楠, 李雪颖, 王红梅. 宁夏东部荒漠草原向灌丛地人为转变过程土壤粒径分形特征[J]. 草业学报, 2021, 30(4): 34-45. |
[15] | 蒙仲举, 陈颜洁, 包斯琴. 苏尼特右旗荒漠草原三种放牧方式下群落斑块特征[J]. 草业学报, 2021, 30(4): 13-23. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||