草业学报 ›› 2023, Vol. 32 ›› Issue (8): 152-163.DOI: 10.11686/cyxb2022365
• 研究论文 • 上一篇
柳文蔚1(), 刘鑫1, 雷映霞1, 周青平1, 刘志峰2, 王沛1()
收稿日期:
2022-09-08
修回日期:
2022-11-14
出版日期:
2023-08-20
发布日期:
2023-06-16
通讯作者:
王沛
作者简介:
E-mail: wangpei@swun.edu.cn基金资助:
Wen-wei LIU1(), Xin LIU1, Ying-xia LEI1, Qing-ping ZHOU1, Zhi-feng LIU2, Pei WANG1()
Received:
2022-09-08
Revised:
2022-11-14
Online:
2023-08-20
Published:
2023-06-16
Contact:
Pei WANG
摘要:
为了筛选出抗寒性强的老芒麦种质并深入研究其抗寒机制,本研究采用盆栽法,测定了-4 ℃冰冻处理下43份老芒麦种质资源的相对电导率、叶绿素含量、最大光化学效率,并通过隶属函数综合评价法从中筛选出一份最抗寒种质(I-1-4-1)和一份低温敏感种质(09-244)。进一步对I-1-4-1与09-244进行4 ℃冷处理和-4 ℃冰冻处理,分析了低温胁迫下I-1-4-1与 09-244叶片相对含水量、细胞膜透性、渗透调节物质、抗氧化系统、叶绿素荧光特性等指标的差异。结果表明:-4 ℃胁迫下,I-1-4-1的叶绿素含量、光系统Ⅱ最大光化学效率、实际光化学效率、光化学淬灭系数、非光化学淬灭系数均高于09-244,表明I-1-4-1能维持光合作用高效进行;I-1-4-1叶片中超氧阴离子、过氧化氢含量均低于09-244,而过氧化氢酶的活性高于09-244,表明相比于09-244,I-1-4-1具有更强的活性氧清除能力;I-1-4-1的相对电导率和丙二醛含量均低于09-244,表明I-1-4-1的细胞膜受损程度较低;此外,I-1-4-1通过积累更多的游离脯氨酸含量以提高渗透调节能力来适应低温胁迫引起的细胞脱水。主成分分析共提取了2个主成分,累积贡献率超过85%,其中,第一主成分主要为叶绿素荧光和细胞膜透性变化的相关指标;第二主成分主要为渗透调节物质的变化情况。研究结果为老芒麦抗寒性评价及抗寒种质筛选提供了参考。
柳文蔚, 刘鑫, 雷映霞, 周青平, 刘志峰, 王沛. 老芒麦种质资源抗寒性综合评价及冷胁迫下的生理反应[J]. 草业学报, 2023, 32(8): 152-163.
Wen-wei LIU, Xin LIU, Ying-xia LEI, Qing-ping ZHOU, Zhi-feng LIU, Pei WANG. A comprehensive evaluation of cold resistance and the physiological response of Elymus sibiricus genotypes[J]. Acta Prataculturae Sinica, 2023, 32(8): 152-163.
表1 供试 43 份老芒麦种质来源
Table 1 The origin of 43 accessions of E. sibiricus germplasms
编号 Code | 隶属函数值Subordinate function value | 综合评价值 C value | 排序 Rank | ||
---|---|---|---|---|---|
最大光化学效率Fv/Fm | 相对电导率Relative electric conductivity | 叶绿素含量Chlorophyll content | |||
0.4687 | 0.2178 | 0.1289 | 0.8154 | 1 | |
0.4213 | 0.2488 | 0.1028 | 0.7729 | 2 | |
0.3842 | 0.2648 | 0.0994 | 0.7483 | 3 | |
0.4064 | 0.2552 | 0.0612 | 0.7228 | 4 | |
0.4506 | 0.2174 | 0.0529 | 0.7209 | 5 | |
0.4604 | 0.0992 | 0.0883 | 0.6479 | 6 | |
0.3456 | 0.2241 | 0.0776 | 0.6473 | 7 | |
0.3152 | 0.2971 | 0.0234 | 0.6357 | 8 | |
0.3211 | 0.2946 | 0.0197 | 0.6354 | 9 | |
0.3616 | 0.2132 | 0.0585 | 0.6333 | 10 | |
0.3773 | 0.2474 | 0.0000 | 0.6247 | 11 | |
0.4029 | 0.1947 | 0.0192 | 0.6168 | 12 | |
0.3427 | 0.2535 | 0.0111 | 0.6072 | 13 | |
0.2171 | 0.3296 | 0.0557 | 0.6023 | 14 | |
0.1771 | 0.3384 | 0.0839 | 0.5994 | 15 | |
0.1395 | 0.3592 | 0.1006 | 0.5992 | 16 | |
0.3294 | 0.2489 | 0.0205 | 0.5989 | 17 | |
0.2833 | 0.2100 | 0.0961 | 0.5893 | 18 | |
0.3101 | 0.1251 | 0.1514 | 0.5866 | 19 | |
0.4557 | 0.0459 | 0.0690 | 0.5707 | 20 | |
0.2536 | 0.2785 | 0.0352 | 0.5673 | 21 | |
0.1988 | 0.2385 | 0.1138 | 0.5511 | 22 | |
0.2108 | 0.2754 | 0.0587 | 0.5449 | 23 | |
0.1608 | 0.3274 | 0.0479 | 0.5361 | 24 | |
0.0775 | 0.3268 | 0.1091 | 0.5134 | 25 | |
0.1429 | 0.2436 | 0.1123 | 0.4987 | 26 | |
0.0502 | 0.3257 | 0.1156 | 0.4915 | 27 | |
0.0968 | 0.3169 | 0.0654 | 0.4791 | 28 | |
0.1813 | 0.1634 | 0.1320 | 0.4768 | 29 | |
0.0949 | 0.3232 | 0.0510 | 0.4692 | 30 | |
0.0684 | 0.2816 | 0.0949 | 0.4450 | 31 | |
0.0370 | 0.2349 | 0.1393 | 0.4112 | 32 | |
0.0462 | 0.2217 | 0.1401 | 0.4079 | 33 | |
0.0860 | 0.1338 | 0.1721 | 0.3919 | 34 | |
0.2368 | 0.0999 | 0.0531 | 0.3898 | 35 | |
0.1063 | 0.2072 | 0.0281 | 0.3417 | 36 | |
0.0828 | 0.1647 | 0.0709 | 0.3184 | 37 | |
0.0042 | 0.1434 | 0.1622 | 0.3099 | 38 | |
0.1261 | 0.0404 | 0.1279 | 0.2944 | 39 | |
0.1568 | 0.0000 | 0.1107 | 0.2675 | 40 | |
0.0000 | 0.1533 | 0.1005 | 0.2538 | 41 | |
0.1208 | 0.0893 | 0.0029 | 0.2130 | 42 | |
0.0593 | 0.0206 | 0.0715 | 0.1514 | 43 |
表2 供试43份老芒麦种质抗寒性隶属函数评价
Table 2 Evaluation of cold resistance among 43 tested E. sibiricus by the membership function
编号 Code | 隶属函数值Subordinate function value | 综合评价值 C value | 排序 Rank | ||
---|---|---|---|---|---|
最大光化学效率Fv/Fm | 相对电导率Relative electric conductivity | 叶绿素含量Chlorophyll content | |||
0.4687 | 0.2178 | 0.1289 | 0.8154 | 1 | |
0.4213 | 0.2488 | 0.1028 | 0.7729 | 2 | |
0.3842 | 0.2648 | 0.0994 | 0.7483 | 3 | |
0.4064 | 0.2552 | 0.0612 | 0.7228 | 4 | |
0.4506 | 0.2174 | 0.0529 | 0.7209 | 5 | |
0.4604 | 0.0992 | 0.0883 | 0.6479 | 6 | |
0.3456 | 0.2241 | 0.0776 | 0.6473 | 7 | |
0.3152 | 0.2971 | 0.0234 | 0.6357 | 8 | |
0.3211 | 0.2946 | 0.0197 | 0.6354 | 9 | |
0.3616 | 0.2132 | 0.0585 | 0.6333 | 10 | |
0.3773 | 0.2474 | 0.0000 | 0.6247 | 11 | |
0.4029 | 0.1947 | 0.0192 | 0.6168 | 12 | |
0.3427 | 0.2535 | 0.0111 | 0.6072 | 13 | |
0.2171 | 0.3296 | 0.0557 | 0.6023 | 14 | |
0.1771 | 0.3384 | 0.0839 | 0.5994 | 15 | |
0.1395 | 0.3592 | 0.1006 | 0.5992 | 16 | |
0.3294 | 0.2489 | 0.0205 | 0.5989 | 17 | |
0.2833 | 0.2100 | 0.0961 | 0.5893 | 18 | |
0.3101 | 0.1251 | 0.1514 | 0.5866 | 19 | |
0.4557 | 0.0459 | 0.0690 | 0.5707 | 20 | |
0.2536 | 0.2785 | 0.0352 | 0.5673 | 21 | |
0.1988 | 0.2385 | 0.1138 | 0.5511 | 22 | |
0.2108 | 0.2754 | 0.0587 | 0.5449 | 23 | |
0.1608 | 0.3274 | 0.0479 | 0.5361 | 24 | |
0.0775 | 0.3268 | 0.1091 | 0.5134 | 25 | |
0.1429 | 0.2436 | 0.1123 | 0.4987 | 26 | |
0.0502 | 0.3257 | 0.1156 | 0.4915 | 27 | |
0.0968 | 0.3169 | 0.0654 | 0.4791 | 28 | |
0.1813 | 0.1634 | 0.1320 | 0.4768 | 29 | |
0.0949 | 0.3232 | 0.0510 | 0.4692 | 30 | |
0.0684 | 0.2816 | 0.0949 | 0.4450 | 31 | |
0.0370 | 0.2349 | 0.1393 | 0.4112 | 32 | |
0.0462 | 0.2217 | 0.1401 | 0.4079 | 33 | |
0.0860 | 0.1338 | 0.1721 | 0.3919 | 34 | |
0.2368 | 0.0999 | 0.0531 | 0.3898 | 35 | |
0.1063 | 0.2072 | 0.0281 | 0.3417 | 36 | |
0.0828 | 0.1647 | 0.0709 | 0.3184 | 37 | |
0.0042 | 0.1434 | 0.1622 | 0.3099 | 38 | |
0.1261 | 0.0404 | 0.1279 | 0.2944 | 39 | |
0.1568 | 0.0000 | 0.1107 | 0.2675 | 40 | |
0.0000 | 0.1533 | 0.1005 | 0.2538 | 41 | |
0.1208 | 0.0893 | 0.0029 | 0.2130 | 42 | |
0.0593 | 0.0206 | 0.0715 | 0.1514 | 43 |
图2 低温胁迫对两份不同抗寒性老芒麦相对含水量的影响不同小写字母表示在P<0.05水平差异显著,下同。 Different lowercase letters indicate significant differences at P<0.05level, the same below.
Fig.2 Effects of cold stress on relative water content of two E. sibiricus genotypes with different cold resistance
图6 低温胁迫对两份不同抗寒性老芒麦叶绿素含量及荧光特性的影响
Fig.6 Effects of cold stress on chlorophyll contents and fluorescence properties of two E. sibiricus genotypes with different cold resistance
指标 Index | 主成分 Principal component | |
---|---|---|
Ⅰ | Ⅱ | |
初始荧光Fo | -0.887 | 0.282 |
最大光化学效率Fv/Fm | 0.872 | -0.410 |
实际光化学效率Y(Ⅱ) | 0.938 | -0.232 |
光化学淬灭系数qP | 0.884 | -0.218 |
非光化学淬灭系数qN | 0.949 | -0.293 |
叶绿素Chlorophyll | 0.917 | -0.067 |
相对含水量Relative water content | -0.049 | -0.095 |
相对电导率Relative electric conductivity | -0.973 | -0.067 |
丙二醛Malondialdehyde | -0.874 | 0.051 |
可溶性糖Soluble sugar | -0.264 | 0.834 |
游离脯氨酸Proline | -0.022 | 0.988 |
过氧化氢H2O2 | -0.620 | 0.600 |
超氧阴离子O2·– | -0.761 | 0.627 |
过氧化氢酶Catalase | 0.916 | -0.361 |
特征值 Eigen value | 9.926 | 5.125 |
贡献率Contribution rate (%) | 69.744 | 16.063 |
累计贡献率Cumulative contribution rate (%) | 69.744 | 85.807 |
表3 主成分分析
Table 3 Principal component analysis
指标 Index | 主成分 Principal component | |
---|---|---|
Ⅰ | Ⅱ | |
初始荧光Fo | -0.887 | 0.282 |
最大光化学效率Fv/Fm | 0.872 | -0.410 |
实际光化学效率Y(Ⅱ) | 0.938 | -0.232 |
光化学淬灭系数qP | 0.884 | -0.218 |
非光化学淬灭系数qN | 0.949 | -0.293 |
叶绿素Chlorophyll | 0.917 | -0.067 |
相对含水量Relative water content | -0.049 | -0.095 |
相对电导率Relative electric conductivity | -0.973 | -0.067 |
丙二醛Malondialdehyde | -0.874 | 0.051 |
可溶性糖Soluble sugar | -0.264 | 0.834 |
游离脯氨酸Proline | -0.022 | 0.988 |
过氧化氢H2O2 | -0.620 | 0.600 |
超氧阴离子O2·– | -0.761 | 0.627 |
过氧化氢酶Catalase | 0.916 | -0.361 |
特征值 Eigen value | 9.926 | 5.125 |
贡献率Contribution rate (%) | 69.744 | 16.063 |
累计贡献率Cumulative contribution rate (%) | 69.744 | 85.807 |
1 | Ren Y J, Guo Y T, Zhao M L. Research progress of response to low temperature stress in plant. Molecular Plant Breeding, 2020, 18(14): 4775-4781. |
任延靖, 郭怡婷, 赵孟良. 植物应答低温胁迫的研究进展. 分子植物育种, 2020, 18(14): 4775-4781. | |
2 | Guo X, Liu D, Chong K. Cold signaling in plants: Insights into mechanisms and regulation. Journal of Integrative Plant Biology, 2018, 60(9): 745-756. |
3 | Zhou Q Y, Han Y H, Pan J J, et al. Research progress in plant cold resistance mechanism. Journal of Xinyang Normal University (Natural Science Edition), 2019, 32(3): 511-516. |
周棋赢, 韩月华, 潘娟娟, 等. 植物抗寒机理研究进展. 信阳师范学院学报(自然科学版), 2019, 32(3): 511-516. | |
4 | Li X R, Chen S X, Yan J J, et al. Research progress on Elymus sibiricus germplasm resources. Journal of Grassland and Forage Science, 2021(1): 6-17. |
李欣瑞, 陈淑娴, 鄢家俊, 等. 老芒麦种质资源研究进展. 草学, 2021(1): 6-17. | |
5 | Yan J J, Bai S Q, Zhang X Q, et al. Genetic diversity of wild Elymus sibiricus germplasm from the Qinghai-Tibetan Plateau in China detected by SRAP markers. Acta Prataculturae Sinica, 2010, 19(1): 173-183. |
鄢家俊, 白史且, 张新全, 等. 青藏高原老芒麦种质基于SRAP标记的遗传多样性研究. 草业学报, 2010, 19(1): 173-183. | |
6 | De Y, Zhao L X, Mu H B. Winter hardiness of 30 germplasm materials of Elymus sibiricus. Pratacultural Science, 2011, 28(1): 90-93. |
德英, 赵来喜, 穆怀彬. 30份老芒麦种质材料抗寒性研究. 草业科学, 2011, 28(1): 90-93. | |
7 | Fu J J, Liu J, Sun Y F, et al. Effects of cold stress on the growths and physiological characteristics of two Elymus nutans varieties. Acta Agrestia Sinica, 2014, 22(4): 789-795. |
付娟娟, 刘建, 孙永芳, 等. 冷胁迫对2种垂穗披碱草生长和生理特性的影响. 草地学报, 2014, 22(4): 789-795. | |
8 | Wang S G. Plant physiology and biochemistry. Beijing: China Agriculture Press, 2007: 332-334. |
王三根. 植物生理生化. 北京: 中国农业出版社, 2007: 332-334. | |
9 | Gao J F. Experimental guidance in plant physiology. Beijing: Higher Education Press, 2006: 228-231. |
高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006: 228-231. | |
10 | Jia X, Duoji G S, Zhao A M, et al. Comprehensive evaluation of cold resistance of 4 species of Gramineae at seedling stage. Acta Agrestia Sinica, 2020, 28(5): 1372-1378. |
贾祥, 多吉格桑, 赵爱民, 等. 4种禾本科牧草苗期抗寒性综合评价. 草地学报, 2020, 28(5): 1372-1378. | |
11 | Wang P, Chen J H, Wang P, et al. Status of research into the abiotic stress tolerance of Elymus species. Acta Prataculturae Sinica, 2019, 28(5): 151-162. |
王沛, 陈玖红, 王平, 等. 披碱草属植物抗逆性研究现状和存在的问题. 草业学报, 2019, 28(5): 151-162. | |
12 | Ma Y Z, Ke S Y. Cold resistance and related physiological indexes identification of Bupleurum seedlings during wintering stage. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(4): 786-791. |
马艳芝, 客绍英. 柴胡幼苗越冬抗寒性及其相关生理指标筛选. 西北植物学报, 2014, 34(4): 786-791. | |
13 | Fracheboud Y, Haldimann P, Leipner J, et al. Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize (Zea mays L.). Journal of Experimental Botany, 1999, 50(338): 1533-1540. |
14 | Na Y W, Jeong H, Lee S Y, et al. Chlorophyll fluorescence as a diagnostic tool for abiotic stress tolerance in wild and cultivated strawberry species. Horticulture, Environment, and Biotechnology, 2014, 55(4): 280-286. |
15 | Zhai F F, Han L, Liu J X, et al. Assessing cold resistance of mutagenic strains of perennial ryegrass under artificial low- temperature stress. Acta Prataculturae Sinica, 2013, 22(6): 268-279. |
翟飞飞, 韩蕾, 刘俊祥, 等. 人工低温胁迫下多年生黑麦草诱变株系的抗寒性研究. 草业学报, 2013, 22(6): 268-279. | |
16 | He Z H, Yang C H, Wang P, et al. Effect of low-temperature stress on the physiological responses of six gramineous forages in alpine regions and evaluation of their cold resistance. Pratacultural Science, 2021, 38(10): 2019-2028. |
何子华, 杨成行, 王沛, 等. 高寒地区6种禾本科牧草对低温胁迫的生理响应及耐寒性评价. 草业科学, 2021, 38(10): 2019-2028. | |
17 | Wise R R, Naylor A W. Chilling-enhanced photooxidation. Plant Physiology, 1987, 83(2): 278-282. |
18 | Pubu Z M, Qimei L M, Li D D, et al. Effects of exogenous proline on growth and antioxidant enzyme related gene expression of Elymus nutans under low temperature stress. Acta Agrestia Sinica, 2020, 28(3): 589-596. |
普布卓玛, 其美拉姆, 李丹丹. 等. 外源脯氨酸对低温胁迫下西藏野生垂穗披碱草幼苗生长和抗氧化酶相关基因表达的影响. 草地学报, 2020, 28(3): 589-596. | |
19 | Hare P D, Cress W A, Staden J V. Dissecting the roles of osmolyte accumulation during stress. Plant, Cell and Environment, 1998, 21(6): 535-553. |
20 | Wang Y F, Zhao S L, Wang H, et al. Comprehensive evaluation on cold resistance of different walnut germplasms at leaf-expansion period. Non-wood Forest Research, 2019, 37(1): 50-60. |
王一峰, 赵淑玲, 王瀚, 等. 不同核桃种质展叶期抗寒性的综合评价. 经济林研究, 2019, 37(1): 50-60. | |
21 | Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 2010, 48(12): 909-930. |
22 | Apel K, Hirt H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 2004, 55(1): 373-399. |
23 | Hui Z M, Wang Z Z, Hu Y, et al. Effects of 24-Epibrassinolide on the antioxidant system and osmotic adjustment substance in grape seedlings (V.vinifera L.) under chilling stress. Scientia Agricultura Sinica, 2013, 46(5): 1005-1013. |
惠竹梅, 王智真, 胡勇, 等. 24-表油菜素内酯对低温胁迫下葡萄幼苗抗氧化系统及渗透调节物质的影响. 中国农业科学, 2013, 46(5): 1005-1013. | |
24 | Kazemi-Shahandashti S S, Maali-Amiri R, Zeinali H, et al. Effect of short-term cold stress on oxidative damage and transcript accumulation of defense-related genes in chickpea seedlings. Journal of Plant Physiology, 2014, 171(13): 1106-1116. |
25 | Huang L F, Li J Q, Wang X Y, et al. Low-temp tolerance of coffea seedlings evaluated by photosynthesis and chlorophyll fluorescence indices. Fujian Journal of Agricultural Sciences, 2020, 35(10): 1063-1070. |
黄丽芳, 李金芹, 王晓阳, 等. 基于幼苗光合及叶绿素荧光参数的3种咖啡耐低温胁迫的综合评判. 福建农业学报, 2020, 35(10): 1063-1070. | |
26 | Yue J Q, Zhang S Y, Li X D, et al. Effect of low temperature stress on chlorophyll fluorescence parameters and yield of wheat. Journal of Triticeae Crops, 2021, 41(1): 105-110. |
岳俊芹, 张素瑜, 李向东, 等. 低温胁迫对小麦叶绿素荧光参数及产量的响应. 麦类作物学报, 2021, 41(1): 105-110. | |
27 | Chen Z C, Wang Z W, Wang R R, et al. Physiological response of three broadleaved tree species to drought stress and evaluation of drought resistance. Science of Soil and Water Conservation, 2013, 11(2): 65-71. |
陈志成, 王志伟, 王荣荣, 等. 3种阔叶树种对持续干旱的生理响应及抗旱性评价. 中国水土保持科学, 2013, 11(2): 65-71. | |
28 | Govindjee, Papageorgiou G. Chlorophyll a fluorescence: A bit of basics and history. Netherlands: Kluwer Academic Publishers, 2004: 16-25. |
29 | Yoshihiro Y, Yasuhiro K, Hiroyuki K, et al. Increases in the fluorescence Fo level and reversible inhibition of photosystem Ⅱ reaction center by high-temperature treatments in higher plants. Photosynthesis Research, 1997, 52(1): 57-64. |
30 | Li J Q, Han Y Z, Dong Y P, et al. Effects of low temperature stress on chlorophyll fluorescence parameters of two grafting methods of coffee. China Tropical Agriculture, 2021(1): 63-68, 104. |
李金芹, 韩永庄, 董云萍, 等. 低温胁迫对咖啡2种嫁接方式叶绿素荧光参数的影响. 中国热带农业, 2021(1): 63-68, 104. |
[1] | 张适阳, 刘凤民, 崔均涛, 何磊, 冯月燕, 张伟丽. 三种外源物质对低温胁迫下柱花草生理与荧光特性的影响[J]. 草业学报, 2023, 32(6): 85-99. |
[2] | 李春艳, 王艳, 李欣瑞, 李英主, 李明峰, 陈丽丽, 雷雄, 闫利军, 游明鸿, 季晓菲, 张昌兵, 吴婍, 苟文龙, 李达旭, 鄢家俊, 白史且. 中国野生老芒麦形态多样性研究与种质利用潜力分析[J]. 草业学报, 2023, 32(3): 67-79. |
[3] | 周晓瑾, 黄海霞, 张君霞, 马步东, 陆刚, 齐建伟, 张婷, 朱珠. 盐胁迫对裸果木幼苗光合特性的影响[J]. 草业学报, 2023, 32(2): 75-83. |
[4] | 张永超, 魏小星, 梁国玲, 秦燕, 刘文辉, 贾志锋, 刘勇, 马祥. 老芒麦衰老过程形态特征变化规律及对养分添加的响应[J]. 草业学报, 2022, 31(6): 101-111. |
[5] | 金祎婷, 刘文辉, 刘凯强, 梁国玲, 贾志锋. 全生育期干旱胁迫对‘青燕1号’燕麦叶绿素荧光参数的影响[J]. 草业学报, 2022, 31(6): 112-126. |
[6] | 张永超, 梁国玲, 秦燕, 刘文辉, 贾志锋, 刘勇, 马祥. 老芒麦衰老过程中叶片叶绿素和光合作用变化特征及对养分的响应[J]. 草业学报, 2022, 31(1): 229-237. |
[7] | 吴路遥, 张建国, 常闻谦, 张少磊, 常青. 三种荒漠植物叶绿素荧光参数日变化特征[J]. 草业学报, 2021, 30(9): 203-213. |
[8] | 王传旗, 刘文辉, 张永超, 周青平. 野生老芒麦苗期耐旱性研究[J]. 草业学报, 2021, 30(8): 127-136. |
[9] | 吴瑞, 刘文辉, 张永超, 秦燕, 魏小星, 刘敏洁. 青藏高原老芒麦落粒性及农艺性状相关性研究[J]. 草业学报, 2021, 30(4): 130-139. |
[10] | 王玉萍, 郜春晓, 王盛祥, 何晓童. 低温弱光胁迫下芸豆叶片光抑制与类囊体膜脂构成变化[J]. 草业学报, 2020, 29(8): 116-125. |
[11] | 张利霞, 常青山, 薛娴, 刘伟, 张巧明, 陈苏丹, 郑轶琦, 李景林, 陈婉东, 李大钊. 酸胁迫对夏枯草叶绿素荧光特性和根系抗氧化酶活性的影响[J]. 草业学报, 2020, 29(8): 134-142. |
[12] | 高子奇, 王佳, 汤宇晨, 王迎春. 唐古特白刺类黄酮-3-O-葡萄糖基转移酶基因(NtUFGT)的克隆与功能分析[J]. 草业学报, 2020, 29(5): 159-170. |
[13] | 何海锋, 闫承宏, 吴娜, 刘吉利, 常雯雯. 施氮量对柳枝稷叶片叶绿素荧光特性及干物质积累的影响[J]. 草业学报, 2020, 29(11): 141-150. |
[14] | 贾茵, 向元芬, 王琳璐, 赵健, 刘才磊, 潘远智. 盐胁迫对小报春生长及生理特性的影响[J]. 草业学报, 2020, 29(10): 119-128. |
[15] | 刘建新, 欧晓彬, 王金成, 刘瑞瑞, 贾海燕. 镉胁迫下裸燕麦幼苗对外源H2O2的生理响应[J]. 草业学报, 2020, 29(1): 125-134. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||