草业学报 ›› 2024, Vol. 33 ›› Issue (11): 58-68.DOI: 10.11686/cyxb2024017
王思瑶1,2,3,4(), 邱开阳1,2,3,4(), 王建宇1()
收稿日期:
2024-01-11
修回日期:
2024-03-11
出版日期:
2024-11-20
发布日期:
2024-09-09
通讯作者:
邱开阳,王建宇
作者简介:
w305y517@nxu.edu.cn基金资助:
Si-yao WANG1,2,3,4(), Kai-yang QIU1,2,3,4(), Jian-yu WANG1()
Received:
2024-01-11
Revised:
2024-03-11
Online:
2024-11-20
Published:
2024-09-09
Contact:
Kai-yang QIU,Jian-yu WANG
摘要:
探讨宁夏压砂区域退出耕地对土壤性状和土壤质量的影响,对于促进黄河流域生态保护和高质量发展先行区建设具有重要的生态学意义。以宁夏中卫市环香山地区退耕压砂地为研究对象,采用空间序列代替时间序列的方法,选取地势平缓一致、土壤类型相同的不同退耕年限压砂地,研究压砂地退耕2、5、10、15、20、30和100 a的土壤理化性质及酶活性的变化,采用隶属函数结合因子分析的方法评价压砂地退耕不同年限下的土壤质量。结果表明:1)自退耕5 a后,土壤全钾含量整体随退耕年限增加呈下降趋势;土壤硝态氮含量在退耕2 a时最高,其余年限间无显著差异;土壤全磷、有效磷、速效钾含量随退耕年限增加呈波动变化趋势,分别在退耕15、2、15 a时最高。2)土壤孔隙度随退耕年限增加呈先减后增趋势;田间持水量和土壤含水量均于退耕2 a时最大,退耕5 a时急剧降低,之后随年限增加显著增加;土壤含水量在退耕20 a后趋于稳定。3)土壤脲酶、蔗糖酶活性随退耕年限增加呈先下降后升高趋势,两者均在退耕30 a时活性最大。4)不同退耕年限土壤质量综合得分为2 a>30 a>100 a>15 a>20 a>10 a>5 a,退耕恢复2 a时土壤质量评价得分最高,综上所述,压砂地退耕2 a土壤质量有一定恢复,退耕5 a时土壤质量衰退,并随退耕年限增加土壤质量呈正向演替的趋势。
王思瑶, 邱开阳, 王建宇. 宁夏中部不同年限退耕压砂地土壤质量评价[J]. 草业学报, 2024, 33(11): 58-68.
Si-yao WANG, Kai-yang QIU, Jian-yu WANG. Evaluation of soil quality change over time when retiring cultivated farmland on gravel-sand mulched fields in central Ningxia[J]. Acta Prataculturae Sinica, 2024, 33(11): 58-68.
行政区划 Administrative division | 退砂年限 Sand removal period (a) | 纬度 Latitude (N) | 经度 Longitude (E) | 海拔 Altitude (m) |
---|---|---|---|---|
深井Shenjing | 100 | 37°38′25.7″ | 105°01′23.2″ | 1712 |
近三眼井Near Sanyanjing | 30 | 37°20′58.0″ | 105°33′32.5″ | 1728 |
近三眼井Near Sanyanjing | 15 | 37°20′27.6″ | 105°37′12.0″ | 1599 |
近三眼井Near Sanyanjing | 2 | 37°20′31.2″ | 105°37′8.4″ | 1559 |
红圈子Hongquanzi | 10 | 37°13′12.0″ | 105°06′9.0″ | 1599 |
红圈子Hongquanzi | 5 | 37°12′57.6″ | 105°06′7.9″ | 1603 |
红圈子Hongquanzi | 20 | 36°35′41.3″ | 105°08′28.7″ | 1614 |
表1 各样地基本情况
Table 1 The basic information of different sample plots
行政区划 Administrative division | 退砂年限 Sand removal period (a) | 纬度 Latitude (N) | 经度 Longitude (E) | 海拔 Altitude (m) |
---|---|---|---|---|
深井Shenjing | 100 | 37°38′25.7″ | 105°01′23.2″ | 1712 |
近三眼井Near Sanyanjing | 30 | 37°20′58.0″ | 105°33′32.5″ | 1728 |
近三眼井Near Sanyanjing | 15 | 37°20′27.6″ | 105°37′12.0″ | 1599 |
近三眼井Near Sanyanjing | 2 | 37°20′31.2″ | 105°37′8.4″ | 1559 |
红圈子Hongquanzi | 10 | 37°13′12.0″ | 105°06′9.0″ | 1599 |
红圈子Hongquanzi | 5 | 37°12′57.6″ | 105°06′7.9″ | 1603 |
红圈子Hongquanzi | 20 | 36°35′41.3″ | 105°08′28.7″ | 1614 |
图1 压砂地退耕恢复不同年限下土壤化学性质差异不同小写字母表示不同处理间差异显著(P<0.05)。下同。Different lowercase letters indicate significant differences among different treatments (P<0.05). The same below.
Fig.1 Differences in soil chemical properties under different years of restoration of gravel-mulched land
图4 土壤性状间相关性热图*和**分别表示在压砂地退耕恢复下不同理化性质之间显著(P<0.05)和极显著(P<0.01)相关。*, ** represent the significant (P<0.05) and extremely significant (P<0.01) correlations among different physical and chemical properties under the restoration of gravel-mulched land. TK: 全钾Total potassium; TP: 全磷Total phosphorus; NN: 硝态氮Nitrate nitrogen; AP: 有效磷Available phosphorus; AK: 速效钾Available potassium; UA: 脲酶活性Urease activity; SA: 蔗糖酶活性Sucrase activity; SP: 土壤孔隙度Soil porosity; SWC: 土壤含水量Soil water content; Fc: 田间持水量Field capacity.
Fig.4 Heatmap of correlation between soil properties
检验方法 Testing method | 项目Item | 检验值Test value |
---|---|---|
KMO检验Kaiser-Meyer-Olkin measure of sampling adequacy | 0.614 | |
Bartlett球形检验Bartlett’s test of sphericity | 近似方差Approximately Chi-Square | 216.477 |
自由度 Degree of freedom | 45 | |
显著性 Significance | 0.000 |
表2 KMO和Bartlett球形检验
Table 2 KMO and Bartlett test
检验方法 Testing method | 项目Item | 检验值Test value |
---|---|---|
KMO检验Kaiser-Meyer-Olkin measure of sampling adequacy | 0.614 | |
Bartlett球形检验Bartlett’s test of sphericity | 近似方差Approximately Chi-Square | 216.477 |
自由度 Degree of freedom | 45 | |
显著性 Significance | 0.000 |
因子 Factor | 特征值 Eigenvalue | 方差贡献率 Variance contribution rate (%) | 累计贡献率 The accumulative contribution rate (%) |
---|---|---|---|
因子1 Factor 1 | 4.933 | 49.328 | 49.328 |
因子2 Factor 2 | 2.319 | 23.193 | 72.521 |
因子3 Factor 3 | 1.290 | 12.895 | 85.416 |
表3 因子特征值及方差贡献率
Table 3 Factor eigenvalues and variance contribution rate
因子 Factor | 特征值 Eigenvalue | 方差贡献率 Variance contribution rate (%) | 累计贡献率 The accumulative contribution rate (%) |
---|---|---|---|
因子1 Factor 1 | 4.933 | 49.328 | 49.328 |
因子2 Factor 2 | 2.319 | 23.193 | 72.521 |
因子3 Factor 3 | 1.290 | 12.895 | 85.416 |
指标 Parameter | 因子1 Factor 1 | 因子2 Factor 2 | 因子3 Factor 3 |
---|---|---|---|
全磷Total phosphorus (X1) | 0.118 | 0.956 | 0.035 |
全钾Total potassium (X2) | -0.452 | -0.654 | -0.474 |
硝态氮Nitrate nitrogen (X3) | 0.978 | -0.077 | 0.096 |
有效磷Available phosphorus (X4) | 0.761 | 0.312 | -0.356 |
速效钾Available potassium (X5) | 0.443 | 0.820 | -0.011 |
脲酶活性Urease activity (X6) | -0.038 | 0.047 | 0.952 |
蔗糖酶活性Sucrase activity (X7) | 0.088 | 0.433 | 0.601 |
土壤孔隙度 Soil porosity (X8) | -0.051 | 0.839 | 0.369 |
土壤含水量Soil water content (X9) | 0.959 | 0.171 | -0.015 |
田间持水量Field capacity (X10) | 0.087 | 0.437 | 0.600 |
表4 旋转后的因子载荷矩阵
Table 4 Factor load matrix after rotation
指标 Parameter | 因子1 Factor 1 | 因子2 Factor 2 | 因子3 Factor 3 |
---|---|---|---|
全磷Total phosphorus (X1) | 0.118 | 0.956 | 0.035 |
全钾Total potassium (X2) | -0.452 | -0.654 | -0.474 |
硝态氮Nitrate nitrogen (X3) | 0.978 | -0.077 | 0.096 |
有效磷Available phosphorus (X4) | 0.761 | 0.312 | -0.356 |
速效钾Available potassium (X5) | 0.443 | 0.820 | -0.011 |
脲酶活性Urease activity (X6) | -0.038 | 0.047 | 0.952 |
蔗糖酶活性Sucrase activity (X7) | 0.088 | 0.433 | 0.601 |
土壤孔隙度 Soil porosity (X8) | -0.051 | 0.839 | 0.369 |
土壤含水量Soil water content (X9) | 0.959 | 0.171 | -0.015 |
田间持水量Field capacity (X10) | 0.087 | 0.437 | 0.600 |
恢复年限 Restoration age (a) | 因子1 Factor 1 | 因子2 Factor 2 | 因子3 Factor 3 | 综合评价指数 Comprehensive evaluation index | 排序 Ranking |
---|---|---|---|---|---|
2 | 1.747 | 1.620 | 0.890 | 1.353 | 1 |
30 | 0.573 | 1.573 | 1.600 | 0.853 | 2 |
100 | 0.590 | 1.620 | 1.220 | 0.827 | 3 |
15 | 0.700 | 1.650 | 0.410 | 0.780 | 4 |
20 | 0.280 | 0.410 | 0.683 | 0.320 | 5 |
10 | 0.180 | 0.350 | -0.017 | 0.170 | 6 |
5 | 0.037 | 0.083 | 0.280 | 0.073 | 7 |
表5 不同恢复年限下土壤质量评价
Table 5 Evaluation of soil quality under different restoration years
恢复年限 Restoration age (a) | 因子1 Factor 1 | 因子2 Factor 2 | 因子3 Factor 3 | 综合评价指数 Comprehensive evaluation index | 排序 Ranking |
---|---|---|---|---|---|
2 | 1.747 | 1.620 | 0.890 | 1.353 | 1 |
30 | 0.573 | 1.573 | 1.600 | 0.853 | 2 |
100 | 0.590 | 1.620 | 1.220 | 0.827 | 3 |
15 | 0.700 | 1.650 | 0.410 | 0.780 | 4 |
20 | 0.280 | 0.410 | 0.683 | 0.320 | 5 |
10 | 0.180 | 0.350 | -0.017 | 0.170 | 6 |
5 | 0.037 | 0.083 | 0.280 | 0.073 | 7 |
1 | Zhang T L, Pan J J, Zhao Q G. Research progress and direction of soil quality. Soils, 1999(1): 2-8. |
张桃林, 潘剑君, 赵其国. 土壤质量研究进展与方向. 土壤, 1999(1): 2-8. | |
2 | Doran J W, Parkin T B. Defining and assessing soil quality. Madison: SSSA Special Publications, 1994: 1-21. |
3 | Zhang W S, Li X X, Huang W J, et al. Comprehensive assessment methodology of soil quality under different land use conditions. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(12): 311-318. |
张汪寿, 李晓秀, 黄文江, 等. 不同土地利用条件下土壤质量综合评价方法. 农业工程学报, 2010, 26(12): 311-318. | |
4 | Sun J, Liu Z Q, Zhu D Y, et al. Evaluation on soil qualities of different ecological restoration models in rocky desertification control area. Research of Soil and Water Conservation, 2019, 26(5): 222-228. |
孙建, 刘子琦, 朱大运, 等. 石漠化治理区不同生态恢复模式土壤质量评价. 水土保持研究, 2019, 26(5): 222-228. | |
5 | Wang J Q, Wang G L, Yin H S, et al. Soil quality evaluation of abandoned date plam forest in LüLiang Mountain of Loess Plateau. Journal of Shanxi Agricultural Sciences, 2023, 51(7): 777-784. |
王佳琪, 王改玲, 殷海善, 等. 黄土高原吕梁山撂荒枣林土壤质量评价. 山西农业科学, 2023, 51(7): 777-784. | |
6 | Liu C, Zhang J J, Zhang H B, et al. Characteristics of soil infiltration and soil quality evaluation after conversion of farmland to forest in loess region of Western Shanxi Province. Journal of Soil and Water Conservation, 2021, 35(5): 101-107. |
刘畅, 张建军, 张海博, 等. 晋西黄土区退耕还林后土壤入渗特征及土壤质量评价. 水土保持学报, 2021, 35(5): 101-107. | |
7 | Pan C Z, Shangguan Z P, Liu G B. Soil quality evolvement of farming-withdrawn grassland in hilly and gully loess regions. Acta Ecologica Sinica, 2006, 26(3): 690-696. |
潘成忠, 上官周平, 刘国彬. 黄土丘陵沟壑区退耕草地土壤质量演变. 生态学报, 2006, 26(3): 690-696. | |
8 | Zhao W, Wang L, Zhan G, et al. The ecological effects and improving measures of gravel-mulched field in agricultural development of the arid areas. Advanced and Material Research, 2013, 8: 726-731. |
9 | Liu X H. Countermeasures and suggestions for ecological restoration of gravel-mulched field in Ningxia. Journal of Ningxia Agriculture and Forestry Science and Technology, 2023, 64(1): 60-64. |
刘晓慧. 宁夏压砂地生态修复对策及建议. 宁夏农林科技, 2023, 64(1): 60-64. | |
10 | Sekucia F, Dlapa P, Kollár J, et al. Land-use impact on porosity and water retention of soils rich in rock fragments. Catena, 2020, 195: 104807. |
11 | Bonachela S, Lopez J C, Granados M R, et al. Effects of gravel mulch on surface energy balance and soil thermal regime in an unheated plastic greenhouse. Biosystems Engineering, 2020, 192: 1-13. |
12 | Liu P, Yue Z H, Wang W, et al. Risk and countermeasures of soil and water loss in gravel-mulched land in Ningxia. Soil and Water Conservation in China, 2022(2): 21-22. |
刘平, 岳自慧, 王文, 等. 宁夏压砂地水土流失风险及防治对策. 中国水土保持, 2022(2): 21-22. | |
13 | Ma X F, Chen J. On sustainable utilization of gravel-covering land in Zhongwei municipality. Journal of Ningxia Agriculture and Forestry Science and Technology, 2012, 53(4): 53-55. |
马学峰, 陈洁. 中卫市压砂地可持续利用思考. 宁夏农林科技, 2012, 53(4): 53-55. | |
14 | Liu Q L, Li W C, Zhao G X, et al. Effects of gravel-sand mulching and irrigation on soil hydrothermal conditions and fruit yield in ecological jujube forests on degraded field. Journal of Agricultural Resources and Environment, 2022, 39(5): 940-947. |
刘巧玲, 李王成, 赵广兴, 等. 覆砂和灌水量对退耕压砂地生态枣林土壤水热及枣果产量的影响. 农业资源与环境学报, 2022, 39(5): 940-947. | |
15 | Liu X Z, Li W C, Zhao Z Y, et al. Analysis on change of soil quality in sandy ground. Modern Agricultural Science and Technology, 2017(12): 192-193. |
刘学智, 李王成, 赵自阳, 等. 压砂地土壤质量变化分析. 现代农业科技, 2017(12): 192-193. | |
16 | Jia Z J, Zhao G X, Li W C, et al. Estimation of soil evaporation under mixed sand cover in arid regions of central Ningxia. Journal of Soil and Water Conservation, 2022, 36(2): 219-227. |
贾振江, 赵广兴, 李王成, 等. 宁夏中部干旱带砂土混合覆盖下土壤蒸发估算. 水土保持学报, 2022, 36(2): 219-227. | |
17 | Zhao W, Cui Z, Zhou C. Spatiotemporal variability of soil-water content at different depths in fields mulched with gravel for different planting years. Journal of Hydrology, 2020, 590: 125253. |
18 | Li W C, Wang S, Wang X W. Service life of the gravel-sand mulch in reducing soil evaporation. Journal of Irrigation and Drainage, 2019, 38(3): 83-89. |
李王成, 王帅, 王兴旺. 砂田抑制蒸发功能随覆砂年限的演变规律. 灌溉排水学报, 2019, 38(3): 83-89. | |
19 | Zhao Y P, Bai Y R, Lu X E, et al. Effects of different growth years of watermelon on soil desiccation in gravel-sand mulched field in Ningxia. Research of Soil and Water Conservation, 2019, 26(1): 273-279. |
赵云鹏, 白一茹, 陆学娥, 等. 宁夏不同种植年限下硒砂瓜土壤干燥化效应研究. 水土保持研究, 2019, 26(1): 273-279. | |
20 | Bao S D. Soil agrochemical analysis (The Third Edition). Beijing: China Agriculture Press, 2000. |
鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000. | |
21 | Guan S Y. Soil enzyme and its research method. Beijing: Agriculture Press, 1986. |
关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986. | |
22 | Fu B C, Bo W. Analyses of the subordinate function and the principal components of hosta drought resistance. Acta Agrestia Sinica, 2014, 22(6): 1324-1330. |
付宝春, 薄伟. 玉簪抗旱性隶属函数及主成分分析. 草地学报, 2014, 22(6): 1324-1330. | |
23 | Gong L, Zhang X N, Lyu G H, et al. Soil quality assessment under different land use types in typical oasis of the upper reaches of the Tarim River. Resources Science, 2012, 34(1): 120-127. |
贡璐, 张雪妮, 吕光辉, 等. 塔里木河上游典型绿洲不同土地利用方式下土壤质量评价. 资源科学, 2012, 34(1): 120-127. | |
24 | Zheng Z P, Liu Z X. Soil quality and its evaluation. Chinese Journal of Applied Ecology, 2003, 14(1): 131-134. |
郑昭佩, 刘作新. 土壤质量及其评价. 应用生态学报, 2003, 14(1): 131-134. | |
25 | Herrick J E. Soil quality: An indicator of sustainable land management? Applied Soil Ecology, 2000, 15(1): 75-83. |
26 | Zeng C S, Zhong C Q, Tong C, et al. Contents of soil N, P and K under different land uses in estuary wetland of Min River. Journal of Soil and Water Conservation, 2009, 23(3): 87-91. |
曾从盛, 钟春棋, 仝川, 等. 闽江口湿地不同土地利用方式下表层土壤N, P, K含量研究. 水土保持学报, 2009, 23(3): 87-91. | |
27 | Blońska E, Lasota J, Zwydak M, et al. Restoration of forest soil and vegetation 15 years after landslides in a lower zone of mountains in temperate climates. Ecological Engineering, 2016, 97: 503-515. |
28 | Campbell C A, Biederbeck V O, Zentner R P, et al. Effect of crop rotations and cultural practices on soil organic matter, microbial biomass and respiration in a thin Black Chernozem. Canadian Journal of Soil Science, 1991, 71(3): 363-376. |
29 | Wang Y Z, Niu G Y, Xu Q, et al. Impacts of farming manners in gravel land to agro-ecosystem in the middle arid zone of Ningxia Hui Autonomous Region. Bulletin of Soil and Water Conservation, 2010, 30(3): 163-167. |
王永忠, 牛国元, 许强, 等. 宁夏中部干旱带压砂地耕作方式的生态功能. 水土保持通报, 2010, 30(3): 163-167. | |
30 | Sun D D, Liu X, Yang J S, et al. Effects of returning years from farmland to wetland on the content and distribution of soil iron oxides in the Yellow River Delta. Chinese Journal of Ecology, 2023, 42(10): 2359-2367. |
孙丹丹, 刘学, 杨继松, 等. 黄河三角洲农田退耕年限对土壤不同形态氧化铁含量及其分布的影响. 生态学杂志, 2023, 42(10): 2359-2367. | |
31 | Neris J, Jiménez C, Fuentes J, et al. Vegetation and land-use effects on soil properties and water infiltration of Andisols in Tenerife (Canary Islands, Spain). Catena, 2012, 98: 55-62. |
32 | Liu X Z. Effects of rainfall and gravel-soil covered on soil water evaporation in gravel-mulched land of Ningxia central arid region. Yinchuan: Ningxia University, 2019. |
刘学智. 宁夏中部干旱带降雨和砂土混合覆盖对压砂地土壤水分蒸发的影响. 银川: 宁夏大学, 2019. | |
33 | He H S, Tian Q, Wang L D, et al. Study on vegetation community characteristics and soil physical and chemical properties of abandoned land in Qingtu Lake. Arid Zone Research, 2021, 38(1): 223-232. |
何洪盛, 田青, 王理德, 等. 青土湖退耕地植被群落特征与土壤理化性质分析. 干旱区研究, 2021, 38(1): 223-232. | |
34 | Zhang X P, Yang G H, Ren G X, et al. Effects of vegetation restoration on soil physical-chemical properties and activities of soil enzyme in the gully region of the Loess Plateau. Agricultural Research in the Arid Areas, 2010, 28(6): 64-68. |
张笑培, 杨改河, 任广鑫, 等. 黄土高原南部植被恢复对土壤理化性状与土壤酶活性的影响. 干旱地区农业研究, 2010, 28(6): 64-68. | |
35 | Yang Y F, Meng X D, Zhang P J. Physical and chemical properties of soils in wetlands of Caizi Lake different in restoration history in Anqing, Anhui Province. Journal of Ecology and Rural Environment, 2013, 29(3): 322-328. |
杨艳芳, 孟向东, 张平究. 不同退耕年限条件下菜子湖湿地土壤理化性质变化. 生态与农村环境学报, 2013, 29(3): 322-328. | |
36 | Liu Z F, Fu B J, Liu G H, et al. Soil quality: Concept, indicators and its assessment. Acta Ecologica Sinica, 2006, 26(3): 901-913. |
刘占锋, 傅伯杰, 刘国华, 等. 土壤质量与土壤质量指标及其评价. 生态学报, 2006, 26(3): 901-913. | |
37 | Cao Y S, Wu F Y, Xiao Y A, et al. Effect of returning farmland to forests on soil nutrients contents and its vertical distribution. Ecology and Environmental Sciences, 2016, 25(2): 196-201. |
曹裕松, 吴风云, 肖宜安, 等. 退耕还林对土壤养分含量及其垂直分布的影响. 生态环境学报, 2016, 25(2): 196-201. | |
38 | Frankenberger J R W T, Dick W A. Relationships between enzyme activities and microbial growth and activity indices in soil. Soil Science Society of America Journal, 1983, 47(5): 945-951. |
39 | Liu S H, Liu S Q, Zhang Z K, et al. Influence of garlic continuous cropping on rhizosphere soil microorganisms and enzyme activities. Scientia Agricultura Sinica, 2010, 43(5): 1000-1006. |
刘素慧, 刘世琦, 张自坤, 等. 大蒜连作对其根际土壤微生物和酶活性的影响. 中国农业科学, 2010, 43(5): 1000-1006. | |
40 | Wang Y Q, Yin Y L, Li S X. Physicochemical properties and enzymatic activities of alpine meadow at different degradation degrees. Ecology and Environmental Sciences, 2019, 28(6): 1108-1116. |
王玉琴, 尹亚丽, 李世雄. 不同退化程度高寒草甸土壤理化性质及酶活性分析. 生态环境学报, 2019, 28(6): 1108-1116. | |
41 | Zhou Y, Ma H B, Jia X Y, et al. Soil quality assessment under different ecological restoration measures in typical steppe in loess hilly area in Ningxia. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(18): 102-110. |
周瑶, 马红彬, 贾希洋, 等. 不同生态恢复措施下宁夏黄土丘陵典型草原土壤质量评价. 农业工程学报, 2017, 33(18): 102-110. | |
42 | Xu Q, Wu H L, Kang J H, et al. Study on evolution characteristics of sandy-field in arid region. Agricultural Research in the Arid Areas, 2009, 27(1): 37-41. |
许强, 吴宏亮, 康建宏, 等. 旱区砂田肥力演变特征研究. 干旱地区农业研究, 2009, 27(1): 37-41. | |
43 | Clements, Frederic E. Plant succession: An analysis of the development of vegetation. Washington, D. C.: Kessinger Publishing, 1916. |
44 | Lyu W G. Benefit evaluation of ecological compensation policy in the construction of ecological security barrier-A case study of returning farmland to forest and grassland in Gansu Province. Journal of Gansu Administration Institute, 2017(4): 105-116. |
吕文广. 生态安全屏障建设中的生态补偿政策效益评价——以甘肃省退耕还林还草为例. 甘肃行政学院学报, 2017(4): 105-116. |
[1] | 申子傲, 吴静, 李纯斌. 基于生态水文最优性理论的河西内陆河流域植被覆盖模拟[J]. 草业学报, 2024, 33(9): 15-27. |
[2] | 刘莉莉, 王月霖, 李海燕, 丰吉, 初丽爽, 杨允菲, 兰理实, 郭健. 东北退化草原恢复演替系列羊草和寸草无性系种群构件营养繁殖特征比较[J]. 草业学报, 2024, 33(7): 15-24. |
[3] | 赵文军, 刘蕊, 王正旭, 冯瑜, 薛开政, 刘魁, 徐梓荷, 曹卫东, 付利波, 尹梅, 陈华. 烤烟-绿肥轮作对云南烟田土壤质量与微生物养分限制的影响[J]. 草业学报, 2024, 33(10): 147-158. |
[4] | 宋达成, 吴昊, 王理德, 王飞, 张裕凯, 赵学成. 双龙沟废弃矿区不同造林年限人工沙棘林土壤重金属分布特征及其对酶活性的影响[J]. 草业学报, 2023, 32(8): 61-70. |
[5] | 马源, 王晓丽, 王彦龙, 马玉寿, 崔海鹏. 生态恢复领域草种丸粒化研究进展[J]. 草业学报, 2023, 32(4): 197-207. |
[6] | 李江文, 何邦印, 李彩, 回虹燕, 刘博, 张晓曦, 樊慧, 苏文钰. 不同恢复年限草地群落水平植物功能性状及功能多样性分析[J]. 草业学报, 2023, 32(1): 16-25. |
[7] | 王瑞泾, 冯琦胜, 金哲人, 刘洁, 赵玉婷, 葛静, 梁天刚. 青藏高原退化草地的恢复潜势研究[J]. 草业学报, 2022, 31(6): 11-22. |
[8] | 高丽, 丁勇. 世界退化草地恢复研究和实践进展[J]. 草业学报, 2022, 31(10): 189-205. |
[9] | 王星, 于双, 许冬梅, 宋珂辰. 不同恢复措施对退化荒漠草原土壤碳氮及其组分特征的影响[J]. 草业学报, 2022, 31(1): 26-35. |
[10] | 贺翔, 白梅梅, 徐长林, 宋美娟, 汪鹏斌, 鱼小军. 东祁连山小叶金露梅+杯腺柳灌丛草地植被和土壤对其自然恢复演替的响应[J]. 草业学报, 2021, 30(8): 12-24. |
[11] | 杨鑫光, 李希来, 马盼盼, 张静, 周伟. 不同施肥水平下高寒矿区煤矸石山植被和土壤恢复效果研究[J]. 草业学报, 2021, 30(8): 98-108. |
[12] | 濮阳雪华, 王月玲, 赵志杰, 黄娟, 杨宇. 陕北黄土区不同植被恢复模式植被与土壤耦合关系研究[J]. 草业学报, 2021, 30(5): 13-24. |
[13] | 张丽星, 海春兴, 常耀文, 高晓媚, 高文邦, 解云虎. 羊草及芨芨草草原和西北针茅草原土壤质量评价[J]. 草业学报, 2021, 30(4): 68-79. |
[14] | 刘斯莉, 王长庭, 张昌兵, 胡雷, 唐立涛, 潘攀. 川西北高原3种禾本科牧草根系特征比较研究[J]. 草业学报, 2021, 30(3): 41-53. |
[15] | 蒋翔, 马建霞. 我国草地生态恢复对不同因素响应的Meta分析[J]. 草业学报, 2021, 30(2): 14-31. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||