草业学报 ›› 2021, Vol. 30 ›› Issue (5): 13-24.DOI: 10.11686/cyxb2020458
濮阳雪华1,2(), 王月玲2, 赵志杰1, 黄娟2, 杨宇2
收稿日期:
2020-10-14
修回日期:
2020-12-14
出版日期:
2021-05-20
发布日期:
2021-04-16
通讯作者:
濮阳雪华
作者简介:
濮阳雪华(1987-),男,安徽广德人,讲师,博士。E-mail: puyangxuehua@163.com基金资助:
Xue-hua PUYANG1,2(), Yue-ling WANG2, Zhi-jie ZHAO1, Juan HUANG2, Yu YANG2
Received:
2020-10-14
Revised:
2020-12-14
Online:
2021-05-20
Published:
2021-04-16
Contact:
Xue-hua PUYANG
摘要:
植被与土壤耦合协调关系是退耕还林还草工程高效实施与可持续发展的重要依据。通过对陕北黄土区针叶纯林、阔叶纯林、针阔混交林、乔灌复层林、灌木林和天然草地6种不同植被恢复模式植被和土壤的全面调查与采样分析,建立植被与土壤耦合关系评价指标体系,综合运用层次分析法和熵权法确定各表征指标的权重,构建了不同植被恢复模式植被与土壤耦合协调度模型。结果表明:不同植被恢复模式对土壤水分和养分影响差异显著,针阔混交林的土壤环境综合评价最好,乔灌复层林最差。不同植被恢复模式的植被郁闭度、生物量、营养元素含量和生物多样性指数均存在显著差异,针阔混交林的植被群落综合评分最高,天然草地最低。土壤环境因子与植被生物量、营养元素及生物多样性密切相关。不同植被恢复模式耦合协调度依次为针阔混交林(0.767)>阔叶纯林(0.661)>天然草地(0.655)>灌木林(0.646)>针叶纯林(0.628)>乔灌复层林(0.234),其中针阔混交林为中级协调同步发展型,阔叶纯林属于初级协调同步发展型,天然草地属于初级协调植被滞后型,灌木林和针叶纯林均处于初级协调土壤滞后型,乔灌复层林则为中度失调土壤损益型。陕北黄土区植被恢复重建宜种植针阔混交林,还需加强植被抚育和土壤管理,避免配置乔灌复层林。
濮阳雪华, 王月玲, 赵志杰, 黄娟, 杨宇. 陕北黄土区不同植被恢复模式植被与土壤耦合关系研究[J]. 草业学报, 2021, 30(5): 13-24.
Xue-hua PUYANG, Yue-ling WANG, Zhi-jie ZHAO, Juan HUANG, Yu YANG. Coupling relationships between vegetation and soil in different vegetation restoration models in the Loess region of Northern Shaanxi Province[J]. Acta Prataculturae Sinica, 2021, 30(5): 13-24.
植被恢复模式 Vegetation restoration model | 植被类型 Vegetation type | 海拔 Altitude (m) | 坡度 Gradient (°) | 坡向 Slope aspect | 郁闭度 Canopy density (%) | 栽植密度 Planting density (plant·hm-2) |
---|---|---|---|---|---|---|
针叶纯林 Coniferous forest | 油松、侧柏 P. tabuliformis, P. orientalis | 1405~1447 | 21~25 | 半阳坡 Half sunny slope | 53~71 | 1450~2225 |
阔叶纯林 Hardwood forest | 刺槐、山杏、小叶杨 R. pseudoacacia, A. sibirica, P. simonii | 1412~1443 | 16~27 | 半阳坡 Half sunny slope | 57~78 | 875~1550 |
针阔混交林 Theropencedrymion | 山杏×油松、小叶杨×油松 A. sibirica×P. tabuliformis, P. simonii × P. tabuliformis | 1424~1452 | 15~24 | 半阳坡 Half sunny slope | 61~77 | 1325~1625 |
乔灌复层林 Arbor-shrub forest | 侧柏+沙棘、山杏+沙棘 P. orientalis+H. rhamnoides, A. sibirica+H. rhamnoides | 1406~1430 | 20~25 | 半阳坡 Half sunny slope | 71~85 | 3825~4675 |
灌木林 Shrubwood | 沙棘、柠条 H. rhamnoides, C. korshinskii | 1409~1455 | 20~28 | 半阳坡 Half sunny slope | 64~85 | 6400~9600 |
天然草地 Natural grassland | - | 1404~1438 | 19~24 | 半阳坡 Half sunny slope | - | - |
表1 研究样地基本概况
Table 1 Information of the study area
植被恢复模式 Vegetation restoration model | 植被类型 Vegetation type | 海拔 Altitude (m) | 坡度 Gradient (°) | 坡向 Slope aspect | 郁闭度 Canopy density (%) | 栽植密度 Planting density (plant·hm-2) |
---|---|---|---|---|---|---|
针叶纯林 Coniferous forest | 油松、侧柏 P. tabuliformis, P. orientalis | 1405~1447 | 21~25 | 半阳坡 Half sunny slope | 53~71 | 1450~2225 |
阔叶纯林 Hardwood forest | 刺槐、山杏、小叶杨 R. pseudoacacia, A. sibirica, P. simonii | 1412~1443 | 16~27 | 半阳坡 Half sunny slope | 57~78 | 875~1550 |
针阔混交林 Theropencedrymion | 山杏×油松、小叶杨×油松 A. sibirica×P. tabuliformis, P. simonii × P. tabuliformis | 1424~1452 | 15~24 | 半阳坡 Half sunny slope | 61~77 | 1325~1625 |
乔灌复层林 Arbor-shrub forest | 侧柏+沙棘、山杏+沙棘 P. orientalis+H. rhamnoides, A. sibirica+H. rhamnoides | 1406~1430 | 20~25 | 半阳坡 Half sunny slope | 71~85 | 3825~4675 |
灌木林 Shrubwood | 沙棘、柠条 H. rhamnoides, C. korshinskii | 1409~1455 | 20~28 | 半阳坡 Half sunny slope | 64~85 | 6400~9600 |
天然草地 Natural grassland | - | 1404~1438 | 19~24 | 半阳坡 Half sunny slope | - | - |
目标层 Target layer | 准则层 Criteria layer | 权重值 Weight value | 指标层 Indicator layer | 综合权重值 Composite weight value | |
---|---|---|---|---|---|
表征指标 Characteristic index | 权重值 Weight value | ||||
植被群落 Vegetation community | 生长特性 Growth characteristic | 0.185 | 郁闭度 Canopy density | 0.584 | 0.108 |
生物量 Biomass | 0.416 | 0.077 | |||
养分效应 Nutrient effect | 0.334 | 全氮 Total N | 0.374 | 0.125 | |
全磷 Total P | 0.300 | 0.100 | |||
全钾 Total K | 0.326 | 0.109 | |||
物种多样性 Biodiversity | 0.481 | 物种丰富度 Species richness | 0.224 | 0.108 | |
Shannon-Wiener指数Shannon-Wiener index | 0.335 | 0.161 | |||
Pielou指数Pielou index | 0.252 | 0.121 | |||
Simpson指数Simpson index | 0.189 | 0.091 | |||
土壤环境 Soil environment | 物理性状 Physical characteristic | 0.309 | 容重 Bulk density | 0.265 | 0.082 |
含水量 Water content | 0.735 | 0.227 | |||
养分水平 Nutrient level | 0.691 | pH值 pH value | 0.103 | 0.071 | |
有机质 Organic matter | 0.236 | 0.163 | |||
全氮 Total N | 0.178 | 0.123 | |||
碱解氮 Alkali hydrolyzed N | 0.127 | 0.088 | |||
有效磷 Available P | 0.175 | 0.121 | |||
速效钾 Available K | 0.181 | 0.125 |
表2 植被与土壤耦合关系评价指标体系及权重值
Table 2 Evaluation index system and weight value of coupling relationship between vegetation and soil
目标层 Target layer | 准则层 Criteria layer | 权重值 Weight value | 指标层 Indicator layer | 综合权重值 Composite weight value | |
---|---|---|---|---|---|
表征指标 Characteristic index | 权重值 Weight value | ||||
植被群落 Vegetation community | 生长特性 Growth characteristic | 0.185 | 郁闭度 Canopy density | 0.584 | 0.108 |
生物量 Biomass | 0.416 | 0.077 | |||
养分效应 Nutrient effect | 0.334 | 全氮 Total N | 0.374 | 0.125 | |
全磷 Total P | 0.300 | 0.100 | |||
全钾 Total K | 0.326 | 0.109 | |||
物种多样性 Biodiversity | 0.481 | 物种丰富度 Species richness | 0.224 | 0.108 | |
Shannon-Wiener指数Shannon-Wiener index | 0.335 | 0.161 | |||
Pielou指数Pielou index | 0.252 | 0.121 | |||
Simpson指数Simpson index | 0.189 | 0.091 | |||
土壤环境 Soil environment | 物理性状 Physical characteristic | 0.309 | 容重 Bulk density | 0.265 | 0.082 |
含水量 Water content | 0.735 | 0.227 | |||
养分水平 Nutrient level | 0.691 | pH值 pH value | 0.103 | 0.071 | |
有机质 Organic matter | 0.236 | 0.163 | |||
全氮 Total N | 0.178 | 0.123 | |||
碱解氮 Alkali hydrolyzed N | 0.127 | 0.088 | |||
有效磷 Available P | 0.175 | 0.121 | |||
速效钾 Available K | 0.181 | 0.125 |
耦合协调度 Coupling coordination degree | 耦合协调类型 Coupling coordination type | 耦合协调等级 Coupling coordination level | P (x)/S (y) | 耦合协调特征 Coupling coordination characteristic |
---|---|---|---|---|
0<D≤0.1 | 失调型 Imbalance type | 极度失调 Extreme imbalance | P (x)/S (y)>1.2 0.8≤P (x)/S (y)≤1.2 P (x)/S (y)<0.8 | 土壤损益型 Soil loss type 共损衰退型 Both loss recession type 植被损益型 Vegetation loss type |
0.1<D≤0.2 | 严重失调 Serious imbalance | |||
0.2<D≤0.3 | 中度失调 Moderate imbalance | |||
0.3<D≤0.4 | 轻度失调 Mild imbalance | |||
0.4<D≤0.5 | 濒临失调 Endangered imbalance | |||
0.5<D≤0.6 | 协调型 Coordination type | 勉强协调 Barely coordination | P (x)/S (y)>1.2 0.8≤P (x)/S (y)≤1.2 P (x)/S (y)<0.8 | 土壤滞后型 Soil lag type 同步发展型 Synchronous development type 植被滞后型 Vegetation lag type |
0.6<D≤0.7 | 初级协调 Primary coordination | |||
0.7<D≤0.8 | 中级协调 Intermediate coordination | |||
0.8<D≤0.9 | 良好协调 Good coordination | |||
0.9<D≤1.0 | 优质协调 Superior coordination |
表3 植被与土壤耦合协调类型划分标准
Table 3 Classification standard of coupling coordination type between vegetation and soil
耦合协调度 Coupling coordination degree | 耦合协调类型 Coupling coordination type | 耦合协调等级 Coupling coordination level | P (x)/S (y) | 耦合协调特征 Coupling coordination characteristic |
---|---|---|---|---|
0<D≤0.1 | 失调型 Imbalance type | 极度失调 Extreme imbalance | P (x)/S (y)>1.2 0.8≤P (x)/S (y)≤1.2 P (x)/S (y)<0.8 | 土壤损益型 Soil loss type 共损衰退型 Both loss recession type 植被损益型 Vegetation loss type |
0.1<D≤0.2 | 严重失调 Serious imbalance | |||
0.2<D≤0.3 | 中度失调 Moderate imbalance | |||
0.3<D≤0.4 | 轻度失调 Mild imbalance | |||
0.4<D≤0.5 | 濒临失调 Endangered imbalance | |||
0.5<D≤0.6 | 协调型 Coordination type | 勉强协调 Barely coordination | P (x)/S (y)>1.2 0.8≤P (x)/S (y)≤1.2 P (x)/S (y)<0.8 | 土壤滞后型 Soil lag type 同步发展型 Synchronous development type 植被滞后型 Vegetation lag type |
0.6<D≤0.7 | 初级协调 Primary coordination | |||
0.7<D≤0.8 | 中级协调 Intermediate coordination | |||
0.8<D≤0.9 | 良好协调 Good coordination | |||
0.9<D≤1.0 | 优质协调 Superior coordination |
图1 不同植被恢复模式土壤物理指标含量比较A:针叶纯林 Coniferous forest;B:阔叶纯林 Hardwood forest;C:针阔混交林 Theropencedrymion;D:乔灌复层林 Arbor-shrub forest;E:灌木林 Shrubwood;F:天然草地 Natural grassland. 不同小写字母表示不同植被恢复模式间差异显著(P<0.05)。下同。Different small letters indicate significant differences in different vegetation restoration models (P<0.05). The same below.
Fig.1 Comparison of soil physical index contents in different vegetation restoration models
植被恢复模式 Vegetation restoration model | pH值 pH value | 有机质 Organic matter (%) | 全氮 Total N (g·kg-1) | 碱解氮 Alkali hydrolyzed N (mg·kg-1) | 有效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) |
---|---|---|---|---|---|---|
针叶纯林 Coniferous forest | 8.40±0.11abc | 0.58±0.21ab | 0.28±0.08ab | 35.79±4.10b | 1.80±0.63b | 78.30±13.36bc |
阔叶纯林 Hardwood forest | 8.44±0.08ab | 0.54±0.14ab | 0.34±0.12ab | 34.83±3.70b | 2.90±0.82a | 107.39±18.61a |
针阔混交林 Theropencedrymion | 8.30±0.09c | 0.61±0.12a | 0.39±0.08a | 36.95±4.67b | 2.93±0.75a | 98.87±22.53ab |
乔灌复层林 Arbor-shrub forest | 8.47±0.12a | 0.41±0.10b | 0.26±0.10b | 31.95±3.39b | 2.03±0.80ab | 112.70±19.40a |
灌木林 Shrubwood | 8.34±0.07bc | 0.44±0.10ab | 0.29±0.05ab | 34.89±3.12b | 1.97±0.44b | 83.71±11.80bc |
天然草地 Natural grassland | 8.34±0.06bc | 0.52±0.08ab | 0.37±0.07ab | 43.97±7.48a | 1.78±0.54b | 66.32±12.40c |
表4 不同植被恢复模式土壤养分指标含量比较
Table 4 Comparison of soil nutrient index contents in different vegetation restoration models
植被恢复模式 Vegetation restoration model | pH值 pH value | 有机质 Organic matter (%) | 全氮 Total N (g·kg-1) | 碱解氮 Alkali hydrolyzed N (mg·kg-1) | 有效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) |
---|---|---|---|---|---|---|
针叶纯林 Coniferous forest | 8.40±0.11abc | 0.58±0.21ab | 0.28±0.08ab | 35.79±4.10b | 1.80±0.63b | 78.30±13.36bc |
阔叶纯林 Hardwood forest | 8.44±0.08ab | 0.54±0.14ab | 0.34±0.12ab | 34.83±3.70b | 2.90±0.82a | 107.39±18.61a |
针阔混交林 Theropencedrymion | 8.30±0.09c | 0.61±0.12a | 0.39±0.08a | 36.95±4.67b | 2.93±0.75a | 98.87±22.53ab |
乔灌复层林 Arbor-shrub forest | 8.47±0.12a | 0.41±0.10b | 0.26±0.10b | 31.95±3.39b | 2.03±0.80ab | 112.70±19.40a |
灌木林 Shrubwood | 8.34±0.07bc | 0.44±0.10ab | 0.29±0.05ab | 34.89±3.12b | 1.97±0.44b | 83.71±11.80bc |
天然草地 Natural grassland | 8.34±0.06bc | 0.52±0.08ab | 0.37±0.07ab | 43.97±7.48a | 1.78±0.54b | 66.32±12.40c |
植被恢复模式 Vegetation restoration model | 全氮 Total N (%) | 全磷 Total P (mg·kg-1) | 全钾 Total K (g·kg-1) |
---|---|---|---|
针叶纯林 Coniferous forest | 0.99±0.11c | 867.95±55.18d | 5.49±0.87d |
阔叶纯林 Hardwood forest | 2.41±0.89b | 1686.96±200.98b | 27.62±8.36a |
针阔混交林 Theropencedrymion | 1.46±0.22c | 1270.82±267.02c | 19.99±6.91ab |
乔灌复层林 Arbor-shrub forest | 2.29±0.45b | 1738.57±394.12b | 18.28±11.38bc |
灌木林 Shrubwood | 3.21±0.32a | 2040.83±206.31a | 13.54±3.76bcd |
天然草地 Natural grassland | 1.00±0.10c | 714.37±32.55d | 9.73±1.10cd |
表5 不同植被恢复模式植被营养元素含量比较
Table 5 Comparison of vegetation nutrient contents in different vegetation restoration models
植被恢复模式 Vegetation restoration model | 全氮 Total N (%) | 全磷 Total P (mg·kg-1) | 全钾 Total K (g·kg-1) |
---|---|---|---|
针叶纯林 Coniferous forest | 0.99±0.11c | 867.95±55.18d | 5.49±0.87d |
阔叶纯林 Hardwood forest | 2.41±0.89b | 1686.96±200.98b | 27.62±8.36a |
针阔混交林 Theropencedrymion | 1.46±0.22c | 1270.82±267.02c | 19.99±6.91ab |
乔灌复层林 Arbor-shrub forest | 2.29±0.45b | 1738.57±394.12b | 18.28±11.38bc |
灌木林 Shrubwood | 3.21±0.32a | 2040.83±206.31a | 13.54±3.76bcd |
天然草地 Natural grassland | 1.00±0.10c | 714.37±32.55d | 9.73±1.10cd |
植被恢复模式 Vegetation restoration model | 物种丰富度 Species richness | Shannon-Wiener指数 Shannon-Wiener index | Pielou指数 Pielou index | Simpson指数 Simpson index |
---|---|---|---|---|
针叶纯林 Coniferous forest | 8.33±2.50b | 1.887±0.345a | 0.905±0.041ab | 0.810±0.073a |
阔叶纯林 Hardwood forest | 6.33±1.23b | 1.518±0.188b | 0.830±0.047cd | 0.739±0.027b |
针阔混交林 Theropencedrymion | 7.00±1.90b | 1.756±0.277ab | 0.916±0.031a | 0.799±0.062ab |
乔灌复层林 Arbor-shrub forest | 6.67±1.63b | 1.610±0.166ab | 0.863±0.041bc | 0.753±0.026ab |
灌木林 Shrubwood | 6.33±1.37b | 1.572±0.224ab | 0.859±0.036bc | 0.748±0.049ab |
天然草地 Natural grassland | 10.67±2.08a | 1.871±0.178a | 0.794±0.036d | 0.758±0.037ab |
表6 不同植被恢复模式植被生物多样性比较
Table 6 Comparison of vegetation biodiversity in different vegetation restoration models
植被恢复模式 Vegetation restoration model | 物种丰富度 Species richness | Shannon-Wiener指数 Shannon-Wiener index | Pielou指数 Pielou index | Simpson指数 Simpson index |
---|---|---|---|---|
针叶纯林 Coniferous forest | 8.33±2.50b | 1.887±0.345a | 0.905±0.041ab | 0.810±0.073a |
阔叶纯林 Hardwood forest | 6.33±1.23b | 1.518±0.188b | 0.830±0.047cd | 0.739±0.027b |
针阔混交林 Theropencedrymion | 7.00±1.90b | 1.756±0.277ab | 0.916±0.031a | 0.799±0.062ab |
乔灌复层林 Arbor-shrub forest | 6.67±1.63b | 1.610±0.166ab | 0.863±0.041bc | 0.753±0.026ab |
灌木林 Shrubwood | 6.33±1.37b | 1.572±0.224ab | 0.859±0.036bc | 0.748±0.049ab |
天然草地 Natural grassland | 10.67±2.08a | 1.871±0.178a | 0.794±0.036d | 0.758±0.037ab |
指标 Index | 容重 Bulk density | 含水量 Water content | pH值 pH value | 有机质 Organic matter | 全氮 Total N | 碱解氮 Alkali hydrolyzed N | 有效磷 Available P | 速效钾 Available K |
---|---|---|---|---|---|---|---|---|
郁闭度 Canopy density | -0.242 | 0.247 | -0.314 | -0.060 | 0.243 | 0.194 | 0.090 | 0.193 |
生物量 Biomass | 0.178 | -0.690** | 0.269 | -0.018 | 0.119 | -0.146 | 0.357* | 0.465** |
全氮 Total N | -0.036 | -0.168 | -0.027 | -0.308 | 0.161 | -0.117 | 0.243 | 0.472** |
全磷 Total P | -0.101 | -0.358* | 0.005 | -0.216 | 0.063 | -0.233 | 0.279 | 0.569** |
全钾 Total K | -0.100 | -0.484** | 0.052 | 0.163 | 0.214 | -0.092 | 0.590** | 0.641** |
物种丰富度 Species richness | -0.363* | 0.570** | -0.385* | 0.478** | 0.447** | 0.552** | 0.204 | 0.110 |
Shannon-Wiener指数 Shannon-Wiener index | -0.442** | 0.379* | -0.354* | 0.540** | 0.402* | 0.399* | 0.243 | 0.168 |
Pielou指数Pielou index | -0.168 | -0.229 | -0.019 | 0.277 | -0.022 | -0.136 | 0.036 | 0.043 |
Simpson指数Simpson index | -0.471** | 0.168 | -0.293 | 0.457** | 0.353* | 0.137 | 0.265 | 0.255 |
表7 植被群落与土壤环境表征指标相关性分析
Table 7 Correlation analysis of indexes between vegetation community and soil environment
指标 Index | 容重 Bulk density | 含水量 Water content | pH值 pH value | 有机质 Organic matter | 全氮 Total N | 碱解氮 Alkali hydrolyzed N | 有效磷 Available P | 速效钾 Available K |
---|---|---|---|---|---|---|---|---|
郁闭度 Canopy density | -0.242 | 0.247 | -0.314 | -0.060 | 0.243 | 0.194 | 0.090 | 0.193 |
生物量 Biomass | 0.178 | -0.690** | 0.269 | -0.018 | 0.119 | -0.146 | 0.357* | 0.465** |
全氮 Total N | -0.036 | -0.168 | -0.027 | -0.308 | 0.161 | -0.117 | 0.243 | 0.472** |
全磷 Total P | -0.101 | -0.358* | 0.005 | -0.216 | 0.063 | -0.233 | 0.279 | 0.569** |
全钾 Total K | -0.100 | -0.484** | 0.052 | 0.163 | 0.214 | -0.092 | 0.590** | 0.641** |
物种丰富度 Species richness | -0.363* | 0.570** | -0.385* | 0.478** | 0.447** | 0.552** | 0.204 | 0.110 |
Shannon-Wiener指数 Shannon-Wiener index | -0.442** | 0.379* | -0.354* | 0.540** | 0.402* | 0.399* | 0.243 | 0.168 |
Pielou指数Pielou index | -0.168 | -0.229 | -0.019 | 0.277 | -0.022 | -0.136 | 0.036 | 0.043 |
Simpson指数Simpson index | -0.471** | 0.168 | -0.293 | 0.457** | 0.353* | 0.137 | 0.265 | 0.255 |
植被恢复模式 Vegetation restoration model | P (x) | S (y) | C | D | P (x)/S (y) | 耦合协调类型 Coupling coordination type |
---|---|---|---|---|---|---|
针叶纯林 Coniferous forest | 0.481 | 0.373 | 0.923 | 0.628 | 1.288 | 初级协调土壤滞后型 Primary coordination soil lag type |
阔叶纯林 Hardwood forest | 0.415 | 0.488 | 0.968 | 0.661 | 0.850 | 初级协调同步发展型 Primary coordination synchronous development type |
针阔混交林 Theropencedrymion | 0.557 | 0.695 | 0.941 | 0.767 | 0.801 | 中级协调同步发展型 Intermediate coordination synchronous development type |
乔灌复层林 Arbor-shrub forest | 0.524 | 0.151 | 0.162 | 0.234 | 3.466 | 中度失调土壤损益型 Moderate imbalance soil loss type |
灌木林 Shrubwood | 0.475 | 0.396 | 0.959 | 0.646 | 1.201 | 初级协调土壤滞后型 Primary coordination soil lag type |
天然草地 Natural grassland | 0.413 | 0.581 | 0.865 | 0.655 | 0.711 | 初级协调植被滞后型 Primary coordination vegetation lag type |
平均值 Mean | 0.477 | 0.447 | 0.995 | 0.678 | 1.067 | 初级协调同步发展型 Primary coordination synchronous development type |
表8 不同植被恢复模式植被与土壤耦合关系比较
Table 8 Comparison of coupling relationship between vegetation and soil in different vegetation restoration models
植被恢复模式 Vegetation restoration model | P (x) | S (y) | C | D | P (x)/S (y) | 耦合协调类型 Coupling coordination type |
---|---|---|---|---|---|---|
针叶纯林 Coniferous forest | 0.481 | 0.373 | 0.923 | 0.628 | 1.288 | 初级协调土壤滞后型 Primary coordination soil lag type |
阔叶纯林 Hardwood forest | 0.415 | 0.488 | 0.968 | 0.661 | 0.850 | 初级协调同步发展型 Primary coordination synchronous development type |
针阔混交林 Theropencedrymion | 0.557 | 0.695 | 0.941 | 0.767 | 0.801 | 中级协调同步发展型 Intermediate coordination synchronous development type |
乔灌复层林 Arbor-shrub forest | 0.524 | 0.151 | 0.162 | 0.234 | 3.466 | 中度失调土壤损益型 Moderate imbalance soil loss type |
灌木林 Shrubwood | 0.475 | 0.396 | 0.959 | 0.646 | 1.201 | 初级协调土壤滞后型 Primary coordination soil lag type |
天然草地 Natural grassland | 0.413 | 0.581 | 0.865 | 0.655 | 0.711 | 初级协调植被滞后型 Primary coordination vegetation lag type |
平均值 Mean | 0.477 | 0.447 | 0.995 | 0.678 | 1.067 | 初级协调同步发展型 Primary coordination synchronous development type |
1 | Fu B J, Wang S, Liu Y, et al. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China. Annual Review of Earth and Planetary Sciences, 2017, 45: 223-243. |
2 | Yang L, Zhang Z H, Li Z S. Effects of large-scale re-vegetation on soil desiccation in the Loess Plateau: Problems and perspectives. Acta Ecologica Sinica, 2019, 39(20): 7382-7388. |
杨磊, 张子豪, 李宗善. 黄土高原植被建设与土壤干燥化: 问题与展望. 生态学报, 2019, 39(20): 7382-7388. | |
3 | Jiao F, Wen Z M, An S S. Changes in soil properties across a chronosequence of vegetation restoration on the Loess Plateau of China. Catena, 2011, 86(2): 110-116. |
4 | Wang Y Q, Shao M A, Zhang C C, et al. Choosing an optimal land-use pattern for restoring eco-environments in a semiarid region of the Chinese Loess Plateau. Ecological Engineering, 2015, 74: 213-222. |
5 | Tian N N, Zhang J J, Ru H, et al. Soil moisture and nutrient characteristics of soil and water conservation forests in Loess Plateau of Western Shanxi Province. Science of Soil and Water Conservation, 2015, 13(6): 61-67. |
田宁宁, 张建军, 茹豪, 等. 晋西黄土区水土保持林地的土壤水分和养分特征. 中国水土保持科学, 2015, 13(6): 61-67. | |
6 | Wang N, Bi H X, Kong L X, et al. Soil water compensation characteristic of Robinia pseudoacacia forestlands with different densities in the Loess region of Western Shanxi Province. Journal of Soil and Water Conservation, 2019, 33(4): 255-262. |
王宁, 毕华兴, 孔凌霄, 等. 晋西黄土区不同密度刺槐林地土壤水分补偿特征. 水土保持学报, 2019, 33(4): 255-262. | |
7 | Ge J M, Wang S, Fan J, et al. Soil nutrients of different land-use types and topographic positions in the water-wind erosion crisscross region of China’s Loess Plateau. Catena, 2020, 184: 104243. |
8 | Fan J, Wang Q J, Jones S B, et al. Soil water depletion and recharge under different land cover in China’s Loess Plateau. Ecohydrology, 2016, 9(3): 396-406. |
9 | Wang C, Wang S, Fu B J, et al. Soil moisture variations with land use along the precipitation gradient in the North-South transect of the Loess Plateau. Land Degradation & Development, 2017, 28(3): 926-935. |
10 | Zhao Y L, Wang Y Q, Wang L, et al. Exploring the role of land restoration in the spatial patterns of deep soil water at watershed scales. Catena, 2019, 172: 387-396. |
11 | Zhang H, Liu J J. Distribution of soil nutrient under different land use and relationship between soil nutrient and soil granule composition in Loess hilly region. Journal of Central South University of Forestry & Technology, 2016, 36(11): 80-85. |
张宏, 刘建军. 黄土沟壑区不同土地利用方式下土壤养分及其与土壤颗粒组成关系. 中南林业科技大学学报, 2016, 36(11): 80-85. | |
12 | Cui X H, Hao Y, Qiu Y. Spatial heterogeneity of soil nutrients in Danangou catchment in the Loess Plateau. Journal of Beijing Normal University (Natural Science), 2016, 52(4): 472-478. |
崔旭辉, 郝羽, 邱扬. 黄土高原大南沟小流域土壤养分空间分异特征. 北京师范大学学报(自然科学版), 2016, 52(4): 472-478. | |
13 | Ma Q H, Zhang G H, Gen R, et al. Evaluation on soil quality of different land use types in Zhifanggou watershed of the Loess Plateau. Research of Soil and Water Conservation, 2018, 25(4): 30-35, 42. |
马芊红, 张光辉, 耿韧, 等. 黄土高原纸坊沟流域不同土地利用类型土壤质量评价. 水土保持研究, 2018, 25(4): 30-35, 42. | |
14 | Cortois R, Schröder G T, Weigelt A, et al. Plant-soil feedbacks: Role of plant functional group and plant traits. Journal of Ecology, 2016, 104(6): 1608-1617. |
15 | Liang X H, Zhang K B, Qiao X. Relationship between soil moisture and nutrients and plant diversity of Caragana microphylla community in semi-arid loess region. Ecology and Environmental Sciences, 2019, 28(9): 1748-1756. |
梁香寒, 张克斌, 乔厦. 半干旱黄土区柠条林土壤水分和养分与群落多样性关系. 生态环境学报, 2019, 28(9): 1748-1756. | |
16 | Liu D H, Yang Y C. Coupling coordinative degree of regional economy-tourism-ecological environment: A case study of Anhui Province. Resources and Environment in the Yangtze Basin, 2011, 20(7): 892-896. |
刘定惠, 杨永春. 区域经济-旅游-生态环境耦合协调度研究—以安徽省为例. 长江流域资源与环境, 2011, 20(7): 892-896. | |
17 | Peng W X, Song T Q, Zeng F P, et al. Models of vegetation and soil coupling coordinative degree in grain for green project in depressions between Karst hills. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(9): 305-310. |
彭晚霞, 宋同清, 曾馥平, 等. 喀斯特峰丛洼地退耕还林还草工程的植被土壤耦合协调度模型. 农业工程学报, 2011, 27(9): 305-310. | |
18 | Liu Y B, Song X F. Coupling degree model and its forecasting model of urbanization and ecological environment. Journal of China University of Mining & Technology, 2005, 34(1): 91-96. |
刘耀彬, 宋学峰. 城市化与生态环境的耦合度及其预测模型研究. 中国矿业大学学报, 2005, 34(1): 91-96. | |
19 | Zhang Q F, Wu F Q, Wang L, et al. Coupling coordinated development of ecological-economic system in Loess Plateau. Chinese Journal of Applied Ecology, 2011, 22(6): 1531-1536. |
张青峰, 吴发启, 王力, 等. 黄土高原生态与经济系统耦合协调发展状况. 应用生态学报, 2011, 22(6): 1531-1536. | |
20 | Xu M, Zhang J, Liu G B, et al. Analysis on vegetation-soil coupling relationship in gullies with different vegetation restoration patterns. Journal of Natural Resources, 2016, 31(12): 2137-2146. |
徐明, 张健, 刘国彬, 等. 不同植被恢复模式沟谷地植被-土壤系统耦合关系评价. 自然资源学报, 2016, 31(12): 2137-2146. | |
21 | Luo Q H, Ning H S, Chen Q M. Relation between vegetation and soil of Haloxylon ammodendron plantation in the process of sand-fixation. Journal of Desert Research, 2018, 38(4): 780-790. |
罗青红, 宁虎森, 陈启民. 人工梭梭(Haloxylon ammodendron)林固沙过程中植被与土壤耦合关系. 中国沙漠, 2018, 38(4): 780-790. | |
22 | Li H, Lu J Y, Wei T X, et al. Evaluation on coupling characteristics of vegetation and soil systems under different microrelief in Loess Plateau of Northern Shaanxi Province. Journal of Sichuan Agricultural University, 2019, 37(2): 192-198, 214. |
李豪, 卢纪元, 魏天兴, 等. 陕北黄土高原不同微地形下植被-土壤系统耦合特征研究. 四川农业大学学报, 2019, 37(2): 192-198, 214. | |
23 | Bao S D. Soil agrochemical analysis (Third Edition). Beijing: China Agriculture Press, 2000. |
鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000. | |
24 | Puyang X H, Wang C C, Gou Q P, et al. Relationship between vegetation community and soil moisture in the loess region of Northern Shaanxi Province. Acta Prataculturae Sinica, 2019, 28(11): 184-191. |
濮阳雪华, 王春春, 苟清平, 等. 陕北黄土区植被群落特征与土壤水分关系研究. 草业学报, 2019, 28(11): 184-191. | |
25 | Yang L, Wei W, Chen L D, et al. Soil desiccation in deep soil layers under different vegetation types in the semi-arid loess hilly region. Geographical Research, 2012, 31(1): 71-81. |
杨磊, 卫伟, 陈利顶, 等. 半干旱黄土丘陵区人工植被深层土壤干化效应. 地理研究, 2012, 31(1): 71-81. | |
26 | Lu X Y, Zhang H J, Cheng J H, et al. Study on soil nutrients under different plantations in loess hilly region in Western Shanxi. Journal of Henan Agricultural Sciences, 2012, 41(8): 81-84. |
陆晓宇, 张洪江, 程金花, 等. 晋西黄土丘陵区不同人工林下土壤养分性质研究. 河南农业科学, 2012, 41(8): 81-84. | |
27 | Ehrenfeld J G, Ravit B, Elgersma K. Feedback in the plant-soil system. Annual Review of Environment and Resources, 2005, 30: 75-115. |
28 | Zhang Z N, Wu G L, Wang D, et al. Plant community structure and soil moisture in the semi-arid natural grassland of the Loess Plateau. Acta Prataculturae Sinica, 2014, 23(6): 313-319. |
张志南, 武高林, 王冬, 等. 黄土高原半干旱区天然草地群落结构与土壤水分关系. 草业学报, 2014, 23(6): 313-319. | |
29 | Li N N, Zhang G H, Wang H, et al. Properties of vegetation succession on shallow landslide deposits in loess hilly and gully region and the related response of soil nutrient. Mountain Research, 2018, 36(5): 669-678. |
李宁宁, 张光辉, 王浩, 等. 黄土丘陵沟壑区浅层滑坡堆积体植被演替特征及土壤养分响应. 山地学报, 2018, 36(5): 669-678. | |
30 | Ru H L, Zhang H D, Jiao F, et al. Relation analysis of herbaceous community characteristics and soil moisture and nutrients on micro-scale topography typical section in the Hilly Loess Plateau region, China. Acta Agrestia Sinica, 2016, 24(4): 776-782. |
汝海丽, 张海东, 焦峰, 等. 黄土丘陵区微地形条件下草本群落特征与土壤水分及养分关系分析. 草地学报, 2016, 24(4): 776-782. | |
31 | Yang J, Sun Z J, Bademu Q Q G, et al. Effects of enclosure years on vegetation functional groups diversity and soil total nutrients characters of sandy desert grassland. Chinese Journal of Grassland, 2018, 40(4): 102-110. |
杨静, 孙宗玖, 巴德木其其格, 等. 封育对草地植被功能群多样性及土壤养分特征的影响. 中国草地学报, 2018, 40(4): 102-110. |
[1] | 林小丁, 常乐, 冯丹. 2000-2019年青海地区植被总初级生产力遥感估算及时空变化分析[J]. 草业学报, 2021, 30(6): 16-27. |
[2] | 刘小娥, 苏世平, 李毅. 兰州市南北两山典型灌丛土壤理化性质[J]. 草业学报, 2021, 30(6): 28-39. |
[3] | 马英, 许志豪, 曾巧红, 孟建龙, 胡亚虎, 苏洁琼. 氮素添加对荒漠化草原草本植物养分化学计量特征的影响[J]. 草业学报, 2021, 30(6): 64-72. |
[4] | 孙忠超, 郭天斗, 于露, 马彦平, 赵亚楠, 李雪颖, 王红梅. 宁夏东部荒漠草原向灌丛地人为转变过程土壤粒径分形特征[J]. 草业学报, 2021, 30(4): 34-45. |
[5] | 张亦然, 刘廷玺, 童新, 段利民, 吴宇辰. 基于XGBoost算法的草甸地上生物量的高光谱遥感反演[J]. 草业学报, 2021, 30(4): 1-12. |
[6] | 王子欣, 胡国铮, 水宏伟, 葛怡情, 韩玲, 高清竹, 干珠扎布, 旦久罗布. 不同时期干旱对青藏高原高寒草甸生态系统碳交换的影响[J]. 草业学报, 2021, 30(4): 24-33. |
[7] | 顾继雄, 郭天斗, 王红梅, 李雪颖, 梁丹妮, 杨青莲, 高锦月. 宁夏东部荒漠草原向灌丛地转变过程土壤微生物响应[J]. 草业学报, 2021, 30(4): 46-57. |
[8] | 张茹, 李建平, 彭文栋, 王芳, 李志刚. 柠条枝条覆盖对宁夏荒漠草原土壤水热及补播牧草生物量的影响[J]. 草业学报, 2021, 30(4): 58-67. |
[9] | 张丽星, 海春兴, 常耀文, 高晓媚, 高文邦, 解云虎. 羊草及芨芨草草原和西北针茅草原土壤质量评价[J]. 草业学报, 2021, 30(4): 68-79. |
[10] | 罗巧玉, 王彦龙, 杜雷, 刘念, 李丽, 马玉寿. 黄河源区发草适生地植物群落特征及其土壤因子解释[J]. 草业学报, 2021, 30(4): 80-89. |
[11] | 张超, 闫瑞瑞, 梁庆伟, 娜日苏, 李彤, 杨秀芳, 包玉海, 辛晓平. 不同利用方式下草地土壤理化性质及碳、氮固持研究[J]. 草业学报, 2021, 30(4): 90-98. |
[12] | 陈宸, 井长青, 邢文渊, 邓小进, 付皓宇, 郭文章. 近20年新疆荒漠草地动态变化及其对气候变化的响应[J]. 草业学报, 2021, 30(3): 1-14. |
[13] | 侯金伟, 陈焘, 南志标. 不同埋藏方式及杀菌剂处理对黄土高原3种植物种子存活的影响[J]. 草业学报, 2021, 30(3): 129-136. |
[14] | 刘帅楠, 李广, 吴江琪, 马维伟, 杨传杰, 张世康, 姚瑶, 陆燕花, 魏星星, 张娟. 黄土丘陵区不同土地类型下土壤养分特征—基于生态化学计量学[J]. 草业学报, 2021, 30(3): 200-207. |
[15] | 吕广一, 徐学宝, 高翠萍, 于志慧, 王新雅, 王成杰. 放牧对内蒙古不同类型草原植物和土壤总氮与稳定氮同位素的影响[J]. 草业学报, 2021, 30(3): 208-214. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||