草业学报 ›› 2024, Vol. 33 ›› Issue (5): 106-114.DOI: 10.11686/cyxb2023223
• 研究论文 • 上一篇
邹晓璐(), 张文静, 吕红, 秦楠, 赵晓军, 殷辉, 任璐()
收稿日期:
2023-07-03
修回日期:
2023-08-11
出版日期:
2024-05-20
发布日期:
2024-02-03
通讯作者:
任璐
作者简介:
E-mail: renlubaby@163.com基金资助:
Xiao-lu ZOU(), Wen-jing ZHANG, Hong LYU, Nan QIN, Xiao-jun ZHAO, Hui YIN, Lu REN()
Received:
2023-07-03
Revised:
2023-08-11
Online:
2024-05-20
Published:
2024-02-03
Contact:
Lu REN
摘要:
为推动生物防治技术在实践中的应用,本研究采用稀释涂布平板法对菌株ZJ1的致死温度和酸碱度进行测定,结果表明,菌株ZJ1的致死温度为96 ℃、可存活20 min;致死pH为≤4或≥14。而生物膜能够吸附土壤中的金属离子改善植物生长环境,帮助生防菌株更好地定殖在植物表面,发挥生防功能。采用菌膜检测法观察几种常见金属离子对菌株ZJ1生物膜形成的影响,结果表明,0.3%的Zn2+、Mn2+、Cu2+ 和 Fe2+会抑制菌株ZJ1产生生物膜 ,但同浓度的Mg2+、K+均可促进菌株ZJ1生物膜的产生;进一步采用96微孔板定量法对菌株ZJ1生物膜形成能力进行了测定,结果表明,菌株ZJ1为强生物膜形成株。室内盆栽试验结果表明,菌株ZJ1发酵液10×稀释液对番茄早疫病的保护效果最高,达到95.54%,菌株ZJ1发酵液200×稀释液对番茄灰霉病的治疗效果最高达,到91.99%。综合考虑菌株ZJ1对两种病害的治疗和保护效果,菌株ZJ1发酵液稀释200×防治效果最好。且菌株ZJ1发酵液10~200×均具有促生效果。因此,菌株ZJ1是一株具有生防潜力的微生物菌株。
邹晓璐, 张文静, 吕红, 秦楠, 赵晓军, 殷辉, 任璐. 醉鱼草内生细菌 ZJ1的生物学特性及防病促生效果[J]. 草业学报, 2024, 33(5): 106-114.
Xiao-lu ZOU, Wen-jing ZHANG, Hong LYU, Nan QIN, Xiao-jun ZHAO, Hui YIN, Lu REN. Biological characteristics and plant growth-promoting and biocontrol properties of endophytic bacterium ZJ1 from Buddleja lindleyana[J]. Acta Prataculturae Sinica, 2024, 33(5): 106-114.
图1 菌株ZJ1存活率与温度的关系不同字母表示差异显著(P<0.05)。下同。The different letters indicate significant difference at P<0.05. The same below.
Fig.1 Relationship between strain bacteria ZJ1 survival rate and temperature
图5 以 96 孔板染色法测定菌株ZJ1生物膜形成量变化同曲线不同字母表示差异显著(P<0.05);数据以均值±标准差表示。Different letters represents significant differences at P<0.05. Datas are represented as means±standard deviation.
Fig.5 The biofilm formation of strain bacteria ZJ1 by crystal violet staining in 96-well plate
发酵液浓度 Concentration of fermentation | 病斑面积 Lesion area (mm2) | 抑制率 Inhibition rate (%) |
---|---|---|
发酵液原液 Fermentation liquid | 21.79±0.73e | 98.29±0.59a |
5×稀释液5× diluent | 96.30±0.86d | 92.40±0.44b |
20×稀释液20× diluent | 174.49±1.25c | 86.68±0.48c |
50×稀释液50× diluent | 812.91±2.35b | 35.83±1.18d |
对照Control | 1275.94±1.76a | - |
表1 菌株ZJ1发酵液对离体果实早疫病的防治效果
Table 1 The control effect of fermentation of strain ZJ1 against A. solani on isolated fruits
发酵液浓度 Concentration of fermentation | 病斑面积 Lesion area (mm2) | 抑制率 Inhibition rate (%) |
---|---|---|
发酵液原液 Fermentation liquid | 21.79±0.73e | 98.29±0.59a |
5×稀释液5× diluent | 96.30±0.86d | 92.40±0.44b |
20×稀释液20× diluent | 174.49±1.25c | 86.68±0.48c |
50×稀释液50× diluent | 812.91±2.35b | 35.83±1.18d |
对照Control | 1275.94±1.76a | - |
处理 Treatment | 治疗效果Therapeutic effect | 保护效果Protection effect | ||
---|---|---|---|---|
病情指数 Disease index | 防治效果 Control effect (%) | 病情指数 Disease index | 防治效果 Control effect (%) | |
发酵液原液Fermentation liquid | 8.32±0.93b | 73.12±3.01d | 4.38±0.37c | 84.10±1.35d |
5×稀释液5× diluent | 6.21±1.01c | 79.94±3.25bc | 3.66±0.55cd | 86.71±2.40c |
10×稀释液10× diluent | 6.78±0.77c | 78.10±2.47c | 1.23±0.42e | 95.54±1.47a |
100×稀释液100× diluent | 5.25±1.91d | 83.04±6.18b | 3.71±0.57cd | 86.52±2.08c |
200×稀释液200× diluent | 3.86±0.61e | 87.52±1.96a | 5.47±0.52b | 80.13±1.88e |
50%腐霉利600×稀释液 50% procymidone 600× diluent | 2.92±0.66e | 90.56±2.12a | 3.04±0.69d | 88.96±2.65b |
清水对照Water control | 30.96±0.99a | - | 27.54±2.19a | - |
表2 发酵原液及其稀释液对番茄早疫病的防治效果
Table 2 The control effect of fermentation liquid and its diluent on A. solani
处理 Treatment | 治疗效果Therapeutic effect | 保护效果Protection effect | ||
---|---|---|---|---|
病情指数 Disease index | 防治效果 Control effect (%) | 病情指数 Disease index | 防治效果 Control effect (%) | |
发酵液原液Fermentation liquid | 8.32±0.93b | 73.12±3.01d | 4.38±0.37c | 84.10±1.35d |
5×稀释液5× diluent | 6.21±1.01c | 79.94±3.25bc | 3.66±0.55cd | 86.71±2.40c |
10×稀释液10× diluent | 6.78±0.77c | 78.10±2.47c | 1.23±0.42e | 95.54±1.47a |
100×稀释液100× diluent | 5.25±1.91d | 83.04±6.18b | 3.71±0.57cd | 86.52±2.08c |
200×稀释液200× diluent | 3.86±0.61e | 87.52±1.96a | 5.47±0.52b | 80.13±1.88e |
50%腐霉利600×稀释液 50% procymidone 600× diluent | 2.92±0.66e | 90.56±2.12a | 3.04±0.69d | 88.96±2.65b |
清水对照Water control | 30.96±0.99a | - | 27.54±2.19a | - |
处理 Treatment | 治疗效果Therapeutic effect | 保护效果Protection effect | ||
---|---|---|---|---|
病情指数 Disease index | 防治效果 Control effect (%) | 病情指数 Disease index | 防治效果 Control effect (%) | |
发酵液原液Fermentation liquid | 8.03±0.43b | 80.27±1.04d | 6.30±0.28b | 71.13±1.28e |
5×稀释液5× diluent | 5.03±0.22d | 87.65±0.55b | 3.12±0.15d | 85.72±0.69b |
10×稀释液10× diluent | 6.60±0.40c | 83.80±0.98c | 3.40±0.12d | 84.44±0.56c |
100×稀释液100× diluent | 4.98±0.21d | 87.77±0.51b | 5.27±0.09c | 75.83±0.42d |
200×稀释液200× diluent | 3.26±0.19e | 91.99±0.47a | 3.18±0.27d | 85.43±1.25bc |
50% 腐霉利600×稀释液 50% procymidone 600× diluent | 3.25±0.14e | 92.02±0.33a | 1.43±0.10e | 93.43±0.44a |
清水对照Water control | 40.73±0.74a | - | 21.81±0.48a | - |
表3 发酵原液及其稀释液对番茄灰霉病的防治效果
Table 3 The control effect of fermentation liquid and its diluent on B. cinerea
处理 Treatment | 治疗效果Therapeutic effect | 保护效果Protection effect | ||
---|---|---|---|---|
病情指数 Disease index | 防治效果 Control effect (%) | 病情指数 Disease index | 防治效果 Control effect (%) | |
发酵液原液Fermentation liquid | 8.03±0.43b | 80.27±1.04d | 6.30±0.28b | 71.13±1.28e |
5×稀释液5× diluent | 5.03±0.22d | 87.65±0.55b | 3.12±0.15d | 85.72±0.69b |
10×稀释液10× diluent | 6.60±0.40c | 83.80±0.98c | 3.40±0.12d | 84.44±0.56c |
100×稀释液100× diluent | 4.98±0.21d | 87.77±0.51b | 5.27±0.09c | 75.83±0.42d |
200×稀释液200× diluent | 3.26±0.19e | 91.99±0.47a | 3.18±0.27d | 85.43±1.25bc |
50% 腐霉利600×稀释液 50% procymidone 600× diluent | 3.25±0.14e | 92.02±0.33a | 1.43±0.10e | 93.43±0.44a |
清水对照Water control | 40.73±0.74a | - | 21.81±0.48a | - |
1 | Jump A S, Mátyás C, Peñuelas J. The altitude-for-latitude disparity in the range retractions of woody species. Trends in Ecology & Evolution, 2009, 24(12): 694-701. |
2 | Karunamoorthi K, Hailu T. Insect repellent plants traditional usage practices in the Ethiopian malaria epidemic-prone setting: an ethnobotanical survey. Journal of Ethnobiology and Ethnomedicine, 2014, 10(22): 1-11. |
3 | Bamuamba K, Gammon D W, Meyers P, et al. Anti-mycobacterial activity of five plant species used as traditional medicines in the Western Cape province. Journal of Ethnopharmacology, 2008, 117(2): 385-390. |
4 | Köhl J, Kolnaar R, Ravensberg W J. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Frontiers in Plant Science, 2019, 10: 845. |
5 | Sturz A V, Christie B R, Nowak J. Bacterial endophytes: potential role in developing sustainable systems of crop production. Critical Reviews in Plant Sciences, 2000, 19(1): 1-30. |
6 | Wilson D. Endophyte: the evolution of a term, and clarification of its use and definition. Oikos, 1995, 73(2): 274-276. |
7 | Tan R X, Zou W X. Endophytes: a rich source of functional metabolites. Natural Product Reports, 2001, 18(4): 448-459. |
8 | Ownley B H, Gwinn K D, Vega F E. Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution. BioControl, 2010, 55(1): 113-128. |
9 | Shahzad R, Waqas M, Khan A L, et al. Indoleacetic acid production and plant growth promoting potential of bacterial endophytes isolated from rice (Oryza sativa L.) seeds. Acta Biologica Hungarica, 2017, 68(2): 175-186. |
10 | Gauvry E, Mathot A G, Couvert O, et al. Effects of temperature, pH and water activity on the growth and the sporulation abilities of Bacillus subtilis BSB1. International Journal of Food Microbiology, 2021, 337: 108915. |
11 | Mukhopadhyay R, Kumar D. Trichoderma: a beneficial antifungal agent and insights into its mechanism of biocontrol potential. Egyptian Journal of Biological Pest Control, 2020, 30: 133. |
12 | Zhu M L, Wang Y H, Dai Y, et al. Effects of different culture conditions on the biofilm formation of Bacillus pumilus HR10. Current Microbiology, 2020, 77(8): 1405-1411. |
13 | Zhang N, Wang D D, Liu Y P, et al. Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains. Plant and Soil, 2014, 374: 689-700. |
14 | Mhatre E, Monterrosa R G, Kovács Á T. From environmental signals to regulators: modulation of biofilm development in Gram-positive bacteria. Journal of Basic Microbiology, 2014, 54(7): 616-632. |
15 | Pal A, Bhattacharjee S, Saha J, et al. Bacterial survival strategies and responses under heavy metal stress: a comprehensive overview. Critical Reviews in Microbiology, 2021, 48(3): 327-355. |
16 | Robles-Kelly C, Rubio J, Thomas M, et al. Effect of drimenol and synthetic derivatives on growth and germination of Botrytis cinerea: evaluation of possible mechanism of action. Pesticide Biochemistry and Physiology, 2017, 141: 50-56. |
17 | You J Q, Zhang J, Wu M D, et al. Multiple criteria-based screening of Trichoderma isolates for biological control of Botrytis cinerea on tomato. Biological Control, 2016, 101: 31-38. |
18 | Liu S M, Che Z P, Chen G Q. Multiple-fungicide resistance to carbendazim, diethofencarb, procymidone, and pyrimethanil in field isolates of Botrytis cinerea from tomato in Henan Province, China. Crop Protection, 2016, 84: 56-61. |
19 | Tomazoni E Z, Pauletti G F, da silva Ribeiro R T, et al. In vitro and in vivo activity of essential oils extracted from Eucalyptus staigeriana, Eucalyptus globulus and Cinnamomum camphora against Alternaria solani Sorauer causing early blight in tomato. Scientia Horticulturae, 2017, 223: 72-77. |
20 | Zhou M. The realistic challenge and countermeasure analysis of the development of biological pesticide in China. Chinese Journal of Biological Control, 2021, 37(1): 184-192. |
周蒙. 中国生物农药发展的现实挑战与对策分析. 中国生物防治学报, 2021, 37(1): 184-192. | |
21 | Sha Y X, Huang Z Y, Ma R. Control efficacy of Pseudomonas alcaliphila strain Ej2 against rice blast and its effect on endogenous hormones in rice. Scientia Agricultura Sinica, 2022, 55(2): 320-328. |
沙月霞, 黄泽阳, 马瑞. 嗜碱假单胞菌 Ej2 对稻瘟病的防治效果及对水稻内源激素的影响. 中国农业科学, 2022, 55(2): 320-328. | |
22 | Zhu L Y, Cui G B, Sun W D, et al. Isolation, identification, and biocontrol activity of an endophytic strain Bacillus amyloliquefaciens CGB15 from sugarcane. Acta Microbiologica Sinica, 2022, 62(5): 1698-1710. |
朱録媛, 崔国兵, 孙文达, 等. 甘蔗内生解淀粉芽孢杆菌CGB15的分离、鉴定及生防活性. 微生物学报, 2022, 62(5): 1698-1710. | |
23 | Ren L, Zhou J B, Yin H, et al. Antifungal activity and control efficiency of endophytic Bacillus velezensis ZJ1 strain and its volatile compounds against Alternaria solani and Botrytis cinerea. Journal of Plant Pathology, 2022, 104: 575-589. |
24 | Ren L, Liu X F, Zhou J B, et al. Antagonism of endophytic bacteria ZJ1 from Buddleja lindleyana Fortune and identification of antifungal lipopetide metabolites. Acta Agrestia Sinica, 2021, 29(3): 434-442. |
任璐, 刘晓峰, 周建波, 等. 醉鱼草内生细菌ZJ1的抑菌作用及其脂肽类抑菌代谢产物鉴定. 草地学报, 2021, 29(3): 434-442. | |
25 | He C P, Huang Z Q, Wu W H, et al. Lethal temperature of Fusarium oxysporum f.sp. niveum and its nutrition resource of optimum carbon and nitrogen. Chinese Journal of Tropical Crops, 2008, 29(5): 648-652. |
贺春萍, 黄志强, 吴伟怀, 等. 一株西瓜尖孢镰刀菌的致死温度和最适碳氮营养源. 热带作物学报, 2008, 29(5): 648-652. | |
26 | Lajhar S A, Brownlie J, Barlow R. Characterization of biofilm-forming capacity and resistance to sanitizers of a range of E. coli O26 pathotypes from clinical cases and cattle in Australia. BMC Microbiology, 2018, 18(1): 1-15. |
27 | Zang R, Huang L L, Kang Z S, et al. Biological characteristics and pathogenicity of different isolates of Cytospora spp. from apple trees in Shaanxi province. Acta Phytopathologica Sinica, 2007, 37(4): 343-351. |
臧睿, 黄丽丽, 康振生, 等. 陕西苹果树腐烂病菌(Cytospora spp.)不同分离株的生物学特性与致病性研究. 植物病理学报, 2007, 37(4): 343-351. | |
28 | Jing Z Q, Guo Z J, Xu S J, et al. Screening, identification as Bacillus amyloliquefaciens strain HZ-6-3 and evaluation of inhibitory activity against tomato gray mold, of a bacterial isolate. Acta Prataculturae Sinica, 2020, 29(2): 31-41. |
荆卓琼, 郭致杰, 徐生军, 等. 解淀粉芽孢杆菌HZ-6-3的筛选鉴定及其防治番茄灰霉病效果的评价. 草业学报, 2020, 29(2): 31-41. | |
29 | Wang F K, Zheng G B. Method for identification of resistance to early blight of tomato. Acta Phytopathologica Sinica, 1992, 22(2): 168. |
王发科, 郑贵彬. 番茄早疫病抗病性鉴定方法. 植物病理学报, 1992, 22(2): 168. | |
30 | Xing Y X, Wei C Y, Mo Y, et al. Nitrogen-fixing and plant growth-promoting ability of two endophytic bacterial strains isolated from sugarcane stalks. Sugar Tech, 2016, 18: 373-379. |
31 | Qi H Y, Wang D, Han D, et al. Unlocking antagonistic potential of Bacillus amyloliquefaciens KRS005 to control gray mold. Frontiers in Microbiology, 2023, 14: 1189354. |
32 | Feng B, Chen D, Jin R, et al. Bioactivities evaluation of an endophytic bacterial strain Bacillus velezensis JRX-YG39 inhabiting wild grape. BMC Microbiology, 2022, 22(1): 1-9. |
33 | Sun Y F, Liu Z, Li H Y, et al. Biocontrol effect and mechanism of Bacillus laterosporus Bl13 against early blight disease of tomato. Chinese Journal of Applied Ecology, 2021, 32(1): 299-308. |
孙一凡, 刘喆, 李海洋, 等. 侧孢芽孢杆菌Bl13对番茄早疫病防治效果及机制. 应用生态学报, 2021, 32(1): 299-308. | |
34 | Xie Z Y, Guo E H, Sun Y B, et al. The growth-promotion effect of Bacillus subtilis strain B1409 on tomato and pepper and its control activity against Alternaria solani and Phytophthora capsici. Journal of Plant Protection, 2018, 45(3): 520-527. |
谢梓语, 郭恩辉, 孙宇波, 等. 枯草芽孢杆菌B1409对番茄和辣椒的防病促生作用. 植物保护学报, 2018, 45(3): 520-527. |
[1] | 孟超楠, 赵玉洁, 陈佳欣, 张旖璐, 王彦佳, 冯丽荣, 孙玉刚, 郭长虹. 2株青贮玉米根际固氮菌的筛选鉴定及促生作用研究[J]. 草业学报, 2024, 33(3): 174-185. |
[2] | 苗阳阳, 张艳蕊, 宋标, 刘旭桐, 张安琪, 吕金泽, 张浩, 张小华, 欧阳佳慧, 李旺, 曲善民. 碱蓬根际和内生细菌菌株对盐碱胁迫下苜蓿生长的影响[J]. 草业学报, 2022, 31(9): 107-117. |
[3] | 李晨芹, 李军乔, 王鑫慈, 牛永昆, 曲俊儒. 蕨麻根腐病病原菌的分离鉴定及其生物学特性研究[J]. 草业学报, 2022, 31(4): 113-123. |
[4] | 蒋晶晶, 杜蕙, 陈爱昌, 李雪萍, 李敏权, 漆永红. 甘肃省党参菌核病病原菌鉴定及其生物学特性研究[J]. 草业学报, 2022, 31(12): 181-190. |
[5] | 赵欣桐, 陈晓东, 李子吉, 张巨明, 刘天增. 植物内生肠杆菌对狗牙根耐盐性的调控研究[J]. 草业学报, 2021, 30(9): 127-136. |
[6] | 杨凯, 史娟, 袁玉涛, 王立婷. 白三叶草叶片感染白粉病的细胞生理变化及其病原鉴定[J]. 草业学报, 2021, 30(10): 92-104. |
[7] | 王春明, 元维伟, 张小杰, 周天旺, 郭成, 金社林. 二月兰叶斑病病原甘蓝链格孢的分离鉴定及生物学特性研究[J]. 草业学报, 2020, 29(5): 88-97. |
[8] | 荆卓琼, 郭致杰, 徐生军, 何苏琴. 解淀粉芽孢杆菌HZ-6-3的筛选鉴定及其防治番茄灰霉病效果的评价[J]. 草业学报, 2020, 29(2): 31-41. |
[9] | 高亚敏, 罗慧琴, 姚拓, 张建贵, 李海云, 杨琰珊, 兰晓君. 高寒退化草地委陵菜根围丛枝菌根菌(AMF)分离鉴定及促生效应[J]. 草业学报, 2020, 29(1): 145-154. |
[10] | 孙海荣, 车昭碧, 陈乙实, 鲁为华, 王树林, 李娜娜, 辛怀璐. 荒漠植物囊果草生物学特性及其种群分布格局的生态适应意义[J]. 草业学报, 2019, 28(7): 198-207. |
[11] | 杨成德, 崔月贞, 冯中红, 薛莉, 金梦军. 内生枯草芽孢杆菌265ZY4对温度和紫外光胁迫下紫花针茅生化特征的影响[J]. 草业学报, 2019, 28(6): 101-108. |
[12] | 李建宏, 李雪萍, 李昌宁, 韩冰, 徐万里, 姚拓. 一株植物根际促生菌Gnyt1的特性研究及分类地位的确定[J]. 草业学报, 2019, 28(5): 55-67. |
[13] | 丁爱强, 徐先英, 张雯, 刘江, 富丽, 付贵全. 不同退化程度柽柳灌丛的土壤理化和生物学特性[J]. 草业学报, 2019, 28(2): 1-11. |
[14] | 李晶,李娜,丁品,杨海兴,刘锦霞,武建荣,杜文静,张建军. 黄帚橐吾提取物对保护地辣椒4种病原真菌的抑制活性及其病害防效[J]. 草业学报, 2018, 27(4): 56-68. |
[15] | 江绪文, 李贺勤, 谭勇. 藿香内生细菌HX-2的鉴定、耐性及对宿主植物的促生作用[J]. 草业学报, 2018, 27(1): 161-168. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||