草业学报 ›› 2025, Vol. 34 ›› Issue (3): 41-55.DOI: 10.11686/cyxb2024178
刘淑琪1,2,3(
), 崔东1,2(
), 刘文新1,2, 杨海军2,4, 杨延成1,2, 江智诚1,2, 闫江超1,2, 刘江慧1,2
收稿日期:2024-05-14
修回日期:2024-06-20
出版日期:2025-03-20
发布日期:2025-01-02
通讯作者:
崔东
作者简介:E-mail: cuidongw@126.com基金资助:
Shu-qi LIU1,2,3(
), Dong CUI1,2(
), Wen-xin LIU1,2, Hai-jun YANG2,4, Yan-cheng YANG1,2, Zhi-cheng JIANG1,2, Jiang-chao YAN1,2, Jiang-hui LIU1,2
Received:2024-05-14
Revised:2024-06-20
Online:2025-03-20
Published:2025-01-02
Contact:
Dong CUI
摘要:
在全球气候变化和人为活动加剧影响草地生态系统的背景下,新疆干旱半干旱区毒害草入侵面积日益增加,生物多样性迅速丧失,草地退化严重,威胁着草地生态系统的健康。研究氮沉降、降水变化和刈割对苦豆子型退化草地植物群落特征与土壤理化性质的影响,对未来草地生态系统的可持续管理有理论和实践意义。本研究在以苦豆子为单优物种的退化草原开展了控制试验,共设置8个处理:对照(CK),氮添加,水添加,刈割,氮、水添加交互,氮添加、刈割交互,水添加、刈割交互以及氮、水添加、刈割三因子交互,分析植物物种多样性、初级生产力、株高、盖度、土壤理化性质的变化规律以及苦豆子植被特征与土壤理化因子的关系。结果表明:氮添加增加了苦豆子生物量,刈割显著降低了苦豆子生物量和株高。氮添加,氮水交互,氮添加、刈割交互和氮、水添加、刈割三因子交互处理显著增加了土壤硝态氮含量,氮、水添加和刈割三因子交互处理显著增加了土壤铵态氮含量。通过冗余分析和回归分析表明土壤有机质、全氮、全磷、Ca2+和HCO3-显著影响苦豆子密度。氮添加可以增加土壤无机氮的含量,刈割在一定程度上可以抑制苦豆子的生长,水添加和其他因子交互作用比单独水添加对植物和土壤的影响效果显著,该结果可为苦豆子型退化草地的治理恢复提供新的见解。
刘淑琪, 崔东, 刘文新, 杨海军, 杨延成, 江智诚, 闫江超, 刘江慧. 短期氮、水添加和刈割对苦豆子型退化草地植物群落特征与土壤理化性质的影响[J]. 草业学报, 2025, 34(3): 41-55.
Shu-qi LIU, Dong CUI, Wen-xin LIU, Hai-jun YANG, Yan-cheng YANG, Zhi-cheng JIANG, Jiang-chao YAN, Jiang-hui LIU. Effects of short-term nitrogen addition, watering, and mowing on plant community characteristics and soil physicochemical properties in Sophora alopecuroides degraded grassland[J]. Acta Prataculturae Sinica, 2025, 34(3): 41-55.
图1 研究区位置A: 青绿状态下苦豆子群落S. alopecuroides community in the green state; B: 苦豆子群落开花S. alopecuroides flowering period; C: 苦豆子群落结果Seed setting stage of S. alopecuroides; D: 苦豆子多年生根系S. alopecuroides roots; E: 苦豆子无性繁殖根系S. alopecuroides asexual reproduction roots.
Fig.1 Location of the study area
| 功能群Functional groups | 物种Species | N | W | M | NW | NM | WM | NWM | CK |
|---|---|---|---|---|---|---|---|---|---|
| 豆科Fabaceae | 苦豆子S. alopecuroides | 467.61 | 331.94 | 81.05 | 460.47 | 116.89 | 85.21 | 83.64 | 327.49 |
| 苜蓿Medicago sativa | 0.00 | 0.00 | 0.23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
| 柽柳科Tamaricaceae | 多枝柽柳T. ramosissima | 1.67 | 3.15 | 0.38 | 4.12 | 0.33 | 1.72 | 0.00 | 9.67 |
| 禾本科Poaceae | 扁穗雀麦B. catharticus | 38.91 | 34.90 | 35.76 | 25.87 | 34.61 | 37.27 | 33.76 | 39.68 |
| 狗牙根C. dactylon | 0.69 | 0.97 | 0.00 | 0.32 | 0.22 | 0.97 | 0.00 | 0.88 | |
| 旱茅S. delavayi | 0.11 | 0.35 | 0.00 | 0.03 | 0.09 | 0.12 | 0.06 | 0.05 | |
| 羊草Leymus chinensis | 0.00 | 0.00 | 0.00 | 0.00 | 3.13 | 0.00 | 1.14 | 0.00 | |
| 狗尾草S. viridis | 0.00 | 0.00 | 1.21 | 0.03 | 5.18 | 0.00 | 0.00 | 2.44 | |
| 菊科Asteraceae | 大翅蓟O. acanthium | 1.13 | 17.94 | 7.46 | 1.69 | 7.81 | 7.36 | 15.26 | 8.90 |
| 冷蒿A. frigida | 0.34 | 0.27 | 0.00 | 0.00 | 0.00 | 3.27 | 0.00 | 0.45 | |
| 猪毛蒿A. scoparia | 0.07 | 0.49 | 0.11 | 0.01 | 0.00 | 1.77 | 0.00 | 0.00 | |
| 乳苣Lactuca tatarica | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | |
| 小蓬草E. canadensis | 0.19 | 0.81 | 0.84 | 0.16 | 0.00 | 1.48 | 0.46 | 2.94 | |
| 野莴苣Lactuca serriola | 0.00 | 0.00 | 3.10 | 0.00 | 0.25 | 1.91 | 0.00 | 0.33 | |
| 苍耳Xanthium strumarium | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.03 | |
| 唇形科Lamiaceae | 欧夏至草M. vulgare | 5.10 | 6.71 | 1.35 | 0.00 | 0.49 | 0.14 | 0.00 | 0.70 |
| 薄荷Mentha canadensis | 1.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
| 苋科Amaranthaceae | 角果藜Ceratocarpus arenarius | 0.00 | 0.00 | 0.53 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 猪毛菜Kali collinum | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
| 莎草科Cyperaceae | 薹草Carex spp. | 0.18 | 0.00 | 0.00 | 0.16 | 0.00 | 0.00 | 0.00 | 0.00 |
表 1 不同处理草地物种生物量
Table 1 Biomass of grassland species under different treatments (g·m-2)
| 功能群Functional groups | 物种Species | N | W | M | NW | NM | WM | NWM | CK |
|---|---|---|---|---|---|---|---|---|---|
| 豆科Fabaceae | 苦豆子S. alopecuroides | 467.61 | 331.94 | 81.05 | 460.47 | 116.89 | 85.21 | 83.64 | 327.49 |
| 苜蓿Medicago sativa | 0.00 | 0.00 | 0.23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
| 柽柳科Tamaricaceae | 多枝柽柳T. ramosissima | 1.67 | 3.15 | 0.38 | 4.12 | 0.33 | 1.72 | 0.00 | 9.67 |
| 禾本科Poaceae | 扁穗雀麦B. catharticus | 38.91 | 34.90 | 35.76 | 25.87 | 34.61 | 37.27 | 33.76 | 39.68 |
| 狗牙根C. dactylon | 0.69 | 0.97 | 0.00 | 0.32 | 0.22 | 0.97 | 0.00 | 0.88 | |
| 旱茅S. delavayi | 0.11 | 0.35 | 0.00 | 0.03 | 0.09 | 0.12 | 0.06 | 0.05 | |
| 羊草Leymus chinensis | 0.00 | 0.00 | 0.00 | 0.00 | 3.13 | 0.00 | 1.14 | 0.00 | |
| 狗尾草S. viridis | 0.00 | 0.00 | 1.21 | 0.03 | 5.18 | 0.00 | 0.00 | 2.44 | |
| 菊科Asteraceae | 大翅蓟O. acanthium | 1.13 | 17.94 | 7.46 | 1.69 | 7.81 | 7.36 | 15.26 | 8.90 |
| 冷蒿A. frigida | 0.34 | 0.27 | 0.00 | 0.00 | 0.00 | 3.27 | 0.00 | 0.45 | |
| 猪毛蒿A. scoparia | 0.07 | 0.49 | 0.11 | 0.01 | 0.00 | 1.77 | 0.00 | 0.00 | |
| 乳苣Lactuca tatarica | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | |
| 小蓬草E. canadensis | 0.19 | 0.81 | 0.84 | 0.16 | 0.00 | 1.48 | 0.46 | 2.94 | |
| 野莴苣Lactuca serriola | 0.00 | 0.00 | 3.10 | 0.00 | 0.25 | 1.91 | 0.00 | 0.33 | |
| 苍耳Xanthium strumarium | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.03 | |
| 唇形科Lamiaceae | 欧夏至草M. vulgare | 5.10 | 6.71 | 1.35 | 0.00 | 0.49 | 0.14 | 0.00 | 0.70 |
| 薄荷Mentha canadensis | 1.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
| 苋科Amaranthaceae | 角果藜Ceratocarpus arenarius | 0.00 | 0.00 | 0.53 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 猪毛菜Kali collinum | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
| 莎草科Cyperaceae | 薹草Carex spp. | 0.18 | 0.00 | 0.00 | 0.16 | 0.00 | 0.00 | 0.00 | 0.00 |
图3 不同处理对苦豆子型退化草地初级生产力、株高、盖度和多样性指数以及苦豆子生物量、株高、盖度和密度的影响图中数据为平均值±标准误差,不同小写字母表示不同处理之间差异显著(P<0.05)。下同。Data in the figure are means±standard error, and different lowercase letters indicate significant differences among treatments (P<0.05). The same below.
Fig.3 Effects of different treatments on primary productivity, plant height, plant coverage, and diversity index of S. alopecuroides degraded grassland and on biomass, plant height, coverage and density of S. alopecuroides
图4 土壤理化因子之间的相关性分析SOM: 土壤有机质Soil organic matter; TN: 全氮Total nitrogen; TP: 全磷Total phosphorus; TK: 全钾Total potassium; NN: 硝态氮Nitrate nitrogen; AN: 铵态氮Ammonia nitrogen; AP: 速效磷Available phosphorus; AK: 速效钾Available potassium; TS: 全盐Total salt; EC: 电导率Electrical conductivity. 下同The same below. *, P<0.05; **, P<0.01; ***, P<0.001.
Fig.4 Correlation analysis among soil physicochemical factors
图7 植物群落特征和土壤理化因子的冗余分析PP: 初级生产力Primary productivity; PAH: 植被平均高度Plant average height; PAC: 植被平均盖度Plant average coverage; BI: 苦豆子生物量Biomass of S. alopecuroides; SPAH: 苦豆子株高Plant height of S. alopecuroides; SPAC: 苦豆子盖度Coverage of S. alopecuroides; DE: 苦豆子密度Density of S. alopecuroides.
Fig.7 Redundancy analysis of plant community characteristics and soil physicochemical factors
图8 环境因子解释率排序a: 土壤养分解释率排序Soil nutrient explanatory rate ranking; b: 土壤盐分解释率排序Soil salt explanatory rate ranking; **, P<0.01; ***, P<0.001.
Fig.8 Ranking of environmental factors explanatory rate
图9 苦豆子生物量、株高、盖度和密度与土壤理化因子的关系
Fig.9 Relationship between biomass, plant height, coverage and density of S. alopecuroides and soil physicochemical factors
| 1 | Suttie J M, Reynolds S G, Batello C. Grasslands of the world. Rome: Food and Agriculture Organization of the United Nations, 2005. |
| 2 | O’Mara F P. The role of grasslands in food security and climate change. Annals of Botany, 2012, 110(6): 1263-1270. |
| 3 | Gibbs H K, Salmon J M. Mapping the world’s degraded lands. Applied Geography, 2015, 57: 12-21. |
| 4 | Lark T J, Spawn S A, Bougie M, et al. Cropland expansion in the United States produces marginal yields at high costs to wildlife. Nature Communications, 2020, 11(1): 4295. |
| 5 | Wang D L, Wang L, Xin X P, et al. Systematic restoration for degraded grasslands: Concept, mechanisms and approaches. Scientia Agricultura Sinica, 2020, 53(13): 2532-2540. |
| 王德利, 王岭, 辛晓平, 等. 退化草地的系统性恢复:概念、机制与途径. 中国农业科学, 2020, 53(13): 2532-2540. | |
| 6 | Zhou W, Yang H, Huang L, et al. Grassland degradation remote sensing monitoring and driving factors quantitative assessment in China from 1982 to 2010. Ecological Indicators, 2017, 83: 303-313. |
| 7 | Ash A J, Corfield J P, Mcivor J G, et al. Grazing management in tropical savannas: utilization and rest strategies to manipulate rangeland condition. Rangeland Ecology & Management, 2011, 64(3): 223-239. |
| 8 | Long R J, Dong S K, Hu Z Z. Grassland degradation and ecological restoration in Western China. Grassland and Turf, 2005(6): 3-7. |
| 龙瑞军, 董世魁, 胡自治. 西部草地退化的原因分析与生态恢复措施探讨. 草原与草坪, 2005(6): 3-7. | |
| 9 | Wang J L. Research on species diversity and integrated control technology of poisonous weeds in Xinjiang grazing grassland. Yangzhou: Yangzhou University, 2020. |
| 王军亮. 新疆放牧草地毒害草种属多样性与综合防控措施研究.扬州: 扬州大学, 2020. | |
| 10 | Huang R J, Zhang C Y, Wen Y T, et al. Predicting the habitats of Achnatherum inebrians in China under current (1970—2000) and future climate conditions. Acta Agrestia Sinica, 2022, 30(10): 2712-2720. |
| 黄睿杰, 张春艳, 温雨婷, 等. 当前(1970—2000)与未来气候变化情境下中国醉马芨芨草潜在分布预测. 草地学报, 2022, 30(10): 2712-2720. | |
| 11 | Catorci A, Cesaretti S, Malatesta L, et al. Effects of grazing vs mowing on the functional diversity of sub-Mediterranean productive grasslands. Applied Vegetation Science, 2014, 17(4): 658-669. |
| 12 | Catorci A, Cesaretti S, Gatti R, et al. Trait-related flowering patterns in submediterranean mountain meadows. Plant Ecology, 2012, 213(8): 1315-1328. |
| 13 | Kőrösi Á, Szentirmai I, Batáry P, et al. Effects of timing and frequency of mowing on the threatened scarce large blue butterfly-a fine-scale experiment. Agriculture, Ecosystems & Environment, 2014, 196(1793): 24-33. |
| 14 | Cao H Y. Effects of mowing on plant community characteristics, soil physicochemical properties and greenhouse gas flux in meadow steppe in Inner Mongolia. Hohhot: Inner Mongolia University, 2023. |
| 曹贺颖. 刈割对内蒙古草甸草原植物群落特征、土壤理化性质及温室气体通量的影响. 呼和浩特: 内蒙古大学, 2023. | |
| 15 | Bardgett R D, Wardle D A. Herbivore-mediated linkages between aboveground and belowground communities. Ecology, 2003, 84(9): 2258-2268. |
| 16 | Lafage D, Maugenest S, Bouzillé J B, et al. Disentangling the influence of local and landscape factors on alpha and beta diversities: opposite response of plants and ground-dwelling arthropods in wet meadows. Ecological Research, 2015, 30(6): 1025-1035. |
| 17 | Niu S L, Wu M Y, Han Y, et al. Nitrogen effects on net ecosystem carbon exchange in a temperate steppe. Global Change Biology, 2010, 16(1): 144-155. |
| 18 | Zhang J F, Xu Y Q. Responses of plant biomass and net primary production to nitrogen fertilization and increased precipitation in re-grassed croplands in Duolun County of Inner Mongolia, China. Chinese Journal of Eco-Agriculture, 2016, 24(2): 192-200. |
| 张金凤, 徐雨晴. 水氮添加对内蒙古多伦县退耕还草地生物量、生产力及其分配的影响. 中国生态农业学报, 2016, 24(2): 192-200. | |
| 19 | Li Q, Jiang Y, Liang W J, et al. Long-term effect of fertility management on the soil nematode community in vegetable production under greenhouse conditions. Applied Soil Ecology, 2010, 46(1): 111-118. |
| 20 | Yang H J, Li Y, Wu M Y, et al. Plant community responses to nitrogen addition and increased precipitation: the importance of water availability and species’ traits. Global Change Biology, 2011, 17(9): 2936-2944. |
| 21 | Xu Z, Wan S, Ren H, et al. Effects of water and nitrogen addition on species turnover in temperate grasslands in northern China. PLoS One, 2012, 7(6): e39762. |
| 22 | Collins S L, Sinsabaugh R L, Crenshaw C, et al. Pulse dynamics and microbial processes in aridland ecosystems. Journal of Ecology, 2008, 96(3): 413-420. |
| 23 | Peng S S, Piao S L, Shen Z H, et al. Precipitation amount, seasonality and frequency regulate carbon cycling of a semi-arid grassland ecosystem in Inner Mongolia, China: a modeling analysis. Agricultural and Forest Meteorology, 2013, 178/179: 46-55. |
| 24 | Borken W, Matzner E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Global Change Biology, 2009, 15(4): 808-824. |
| 25 | Johnson L, Kuske R, Carney D, et al. Increased temperature and altered summer precipitation have differential effects on biological soil crusts in a dryland ecosystem. Global Change Biology, 2012, 18(8): 2583-2593. |
| 26 | Stevens C J, Dise N B, Mountford J O, et al. Impact of nitrogen deposition on the species richness of grasslands. Science, 2004, 303(5665): 1876-1879. |
| 27 | Clark C M, Tilman D. Loss of plant species after chronic low level nitrogen deposition to prairie grasslands. Nature, 2008, 451(7179): 712-715. |
| 28 | Bobbink R, Hicks K, Galloway J, et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications, 2010, 20(1): 30-59. |
| 29 | Schimel D S, Braswell B H, Parton W J. Equilibration of the terrestrial water nitrogen, and carbon cycles. Proceedings of the National Academy of Sciences, 1997, 94(16): 8280-8283. |
| 30 | Sun X, Zhang X, Zhang S, et al. Soil nematode responses to increases in nitrogen deposition and precipitation in a temperate forest. PLoS One, 2013, 8(12): e82468. |
| 31 | Cui D. Study on the ecological stoichiometric characteristics of plant and soil in different diffusion stages of Sophora alopecuroides population in Yili river valley. Urumqi: Xinjiang University, 2018. |
| 崔东. 伊犁河谷苦豆子种群不同扩散阶段的植物与土壤生态化学计量学特征研究. 乌鲁木齐: 新疆大学, 2018. | |
| 32 | Duan L, Hao J M, Xie S D, et al. Estimating critical loads of sulfur and nitrogen for Chinese soils by steady state method. Environmental Science, 2002, 23(2): 7-12. |
| 段雷, 郝吉明, 谢绍东, 等. 用稳态法确定中国土壤的硫沉降和氮沉降临界负荷. 环境科学, 2002, 23(2): 7-12. | |
| 33 | Xu Z W, Li M H, Niklaus E Z, et al. Plant functional diversity modulates global environmental change effects on grassland productivity. Journal of Ecology, 2018, 106(5): 1941-1951. |
| 34 | Zhu W W, Wang P, Xu Y X, et al. Soil enzyme activities and their influencing factors in a desert steppe of northwestern China under changing precipitation regimes and nitrogen addition. Chinese Journal of Plant Ecology, 2021, 45(3): 309-320. |
| 朱湾湾, 王攀, 许艺馨, 等. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素. 植物生态学报, 2021, 45(3): 309-320. | |
| 35 | Zhao F C, Chen H F, Wang Y H, et al. Response of rhizosphere soil properties to changed precipitation and nitrogen addition in a salinized grassland. Acta Agrestia Sinica, 2022, 30(9): 2430-2437. |
| 赵芳草, 陈鸿飞, 王一昊, 等. 盐渍化草地根际土壤理化性质对降水改变和氮添加的响应. 草地学报, 2022, 30(9): 2430-2437. | |
| 36 | Bao S D. Soil analysis in agricultural chemistry. Beijing: China Agriculture Press, 2008. |
| 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2008. | |
| 37 | Tilman D. Resource competition and community structure. Princeton: Princeton University Press, 1982. |
| 38 | DeMalach N, Zaady E, Kadmon R. Contrasting effects of water and nutrient additions on grassland communities: A global meta-analysis. Global Ecology and Biogeography, 2017, 26(8): 983-992. |
| 39 | Suonan J, Lu X W, Li X N, et al. Nitrogen addition strengthens the stabilizing effect of biodiversity on productivity by increasing plant trait diversity and species asynchrony in the artificial grassland communities. Frontiers in Plant Science, 2023, 14: 1301461. |
| 40 | Kozlowski T T. Water deficits and plant growth. New York: Academic Press, 1968. |
| 41 | Patrick L, Cable J, Potts D, et al. Effects of an increase in summer precipitation on leaf, soil, and ecosystem fluxes of CO2 and H2O in a sotol grassland in Big Bend National Park, Texas. Oecologia, 2007, 151(4): 704-718. |
| 42 | Wang X, Xu Z, Lv X, et al. Responses of litter decomposition and nutrient release rate to water and nitrogen addition differed among three plant species dominated in a semi-arid grassland. Plant and Soil, 2017, 418: 241-253. |
| 43 | Lawlor D W. Photosynthesis, productivity and environment. Journal of Experimental Botany, 1995, 46: 1449-1461. |
| 44 | Lea P J, Morot-Gaudry J F. Plant nitrogen. Berlin, Heidelberg: Springer, 2001. |
| 45 | Lemaire G, Khaity M, Onillon B, et al. Dynamics of accumulation and partitioning of N in leaves, stems and roots of lucerne (Medicago sativa L.) in a dense canopy. Annals of Botany, 1992, 70(5): 429-435. |
| 46 | Theobald J C, Mitchell R A, Parry M A, et al. Estimating the excess investment in ribulose-1,5-bisphosphate carboxylase/oxygenase in leaves of spring wheat grown under elevated CO2. Plant Physiology, 1998, 118(3): 945-955. |
| 47 | Lawlor D W, Young A T. Photosynthesis by flag leaves of wheat in relation to protein, ribulose bis phosphate carboxylase activity and nitrogen supply. Journal of Experimental Botany, 1989, 40(1): 43-52. |
| 48 | Lu Y D, Feng J, Shao Z, et al. Responses of plant communities, species composition, and diversity to mowing and long-term grazing in the Songnen meadow steppe. Pratacultural Science, 2024, 41(2): 271-283. |
| 卢彦达, 丰吉, 邵泽, 等. 松嫩草甸草原植物群落物种组成和多样性对刈割和长期放牧的响应. 草业科学, 2024, 41(2): 271-283. | |
| 49 | Ren Y L. Effects of precipitation change on inorganic nitrogen and net nitrogen mineralization rate at a plantation of Mongolian pine. Acta Scientiarum Naturalium Universitatis Pekinensis, 2012, 48(6): 925-932. |
| 任艳林.降水变化对樟子松人工林土壤无机氮和净氮矿化速率的影响. 北京大学学报(自然科学版), 2012, 48(6): 925-932. | |
| 50 | Yan Z Q, Qi Y C, Peng Q, et al. Advances in the effects of simulated precipitation and nitrogen deposition on grassland biomass. Acta Agrestia Sinica, 2017, 25(6): 1165-1170. |
| 闫钟清, 齐玉春, 彭琴, 等. 模拟降水和氮沉降增加对草地生物量影响的研究进展. 草地学报, 2017, 25(6): 1165-1170. | |
| 51 | Wu X D, Jiang Q, Ren X B, et al. Effects of precipitation on carbon, nitrogen and microbial characteristics of biological soil crusts in a desert steppe of Northern China. Acta Prataculturae Sinica, 2021, 30(7): 34-43. |
| 吴旭东, 蒋齐, 任小玢, 等. 降水水平对荒漠草原生物土壤结皮碳、氮和微生物的影响. 草业学报, 2021, 30(7): 34-43. | |
| 52 | Yang Y, Zhang N, Jiang L L, et al. Effects of simulated precipitation on soil edaphic physicochemical factors and microbial community characteristics in Bird Island of Qinghai Lake on the Tibetan Plateau. Acta Agrestia Sinica, 2021, 29(5): 1043-1052. |
| 杨阳, 章妮, 蒋莉莉, 等. 青海湖高寒草地土壤理化性质及微生物群落特征对模拟降水的响应. 草地学报, 2021, 29(5): 1043-1052. | |
| 53 | Liu X C, Zhang S T. Nitrogen addition shapes soil enzyme activity patterns by changing pH rather than the composition of the plant and microbial communities in an alpine meadow soil. Plant and Soil, 2019, 440: 11-24. |
| 54 | Wei X X, Wu J Q, Li G, et al. Response of soil nitrogen components to nitrogen addition in wet meadow in the Tibetan Plateau. Acta Agrestia Sinica, 2021, 29(4): 677-683. |
| 魏星星, 吴江琪, 李广, 等. 青藏高原湿草甸土壤氮组分对氮添加浓度的响应. 草地学报, 2021, 29(4): 677-683. | |
| 55 | Xiao L, Liu G B, Li P, et al. Direct and indirect effects of elevated CO2 and nitrogen addition on soil microbial communities in the rhizosphere of Bothriochloa ischaemum. Journal of Soils and Sediments, 2019, 19(11): 3679-3687. |
| 56 | Liu H Y, He P, Cai J P, et al. Effects of simulated nitrogen deposition on soil pH and electric conductivity in a typical grassland of Inner Mongolia. Chinese Journal of Soil Science, 2016, 47(1): 85-91. |
| 刘贺永, 何鹏, 蔡江平, 等. 模拟氮沉降对内蒙古典型草地土壤pH和电导率的影响. 土壤通报, 2016, 47(1): 85-91. | |
| 57 | Tong Y S, Zhang C P, Dong Q M, et al. Effects of different forms of nitrogen addition on soil physical and chemical properties and microbial community structure of perennial alpine cultivated grassland. Environmental Science, 2024, 45(6): 3595-3604. |
| 童永尚, 张春平, 董全民, 等. 不同形态氮添加对多年生高寒栽培草地土壤理化性质和微生物群落结构的影响. 环境科学, 2024, 45(6): 3595-3604. | |
| 58 | Feng X J, Simpson A J, Schlesinger W H, et al. Altered microbial community structure and organic matter composition under elevated CO2 and N fertilization in the duke forest. Global Change Biology, 2010, 16(7): 2104-2116. |
| 59 | Long M, Wu H H, Smith M D, et al. Nitrogen deposition promotes phosphorus uptake of plants in a semi-arid temperate grassland. Plant and Soil, 2016, 408: 475-484. |
| 60 | Yang L X, Chen S F, An J J, et al. Relationships among community diversity and soil organic matter, total nitrogen under different vegetation types in the Gully Region of Loess Region. Acta Agrestia Sinica, 2014, 22(2): 291-298. |
| 杨丽霞, 陈少锋, 安娟娟, 等. 陕北黄土丘陵区不同植被类型群落多样性与土壤有机质、全氮关系研究. 草地学报, 2014, 22(2): 291-298. | |
| 61 | Chenchouni H. Edaphic factors controlling the distribution of inland halophytes in an ephemeral salt lake “Sabkha ecosystem” at North African semi-arid lands. Science of the Total Environment, 2017, 575: 660-671. |
| 62 | Luo Y Y, Meng Q T, Zhang J H, et al. Species diversity and biomass in relation to soil properties of alpine meadows in the eastern Tibetan Plateau in different degradation stages. Journal of Glaciology and Geocryology, 2014, 36(5): 1298-1305. |
| 罗亚勇, 孟庆涛, 张静辉, 等. 青藏高原东缘高寒草甸退化过程中植物群落物种多样性、生产力与土壤特性的关系. 冰川冻土, 2014, 36(5): 1298-1305. | |
| 63 | Cui Q, He T H, Quan X S, et al. Effects of soil salinity characteristics on plant community in Ordos salt marsh wetland. Journal of Salt Lake Research, 2022, 30(1): 25-32. |
| 崔乔, 何彤慧, 全晓塞, 等. 鄂尔多斯盐沼湿地土壤盐分特征对植物群落的影响. 盐湖研究, 2022, 30(1): 25-32. |
| [1] | 杜文盼, 赵桂琴, 柴继宽, 杨莉, 张建贵, 史怡超, 张官禄. 根系分隔方式对燕麦/豌豆间作地上生物量、土壤养分及根系性状的影响[J]. 草业学报, 2024, 33(8): 25-36. |
| [2] | 申迪, 曾子铭, 庞凯悦, 柴沙驼, 聂洪辛, 李毓敏, 廖扬, 王迅, 黄伟华, 刘书杰, 杨英魁, 王书祥. 低精料日粮和高精料日粮对牦牛生长性能和瘤胃菌群结构的影响[J]. 草业学报, 2024, 33(5): 155-165. |
| [3] | 何升然, 刘晓静, 赵雅姣, 汪雪, 王静. 紫花苜蓿/甜高粱间作对根际土壤特性及微生物群落特征的影响[J]. 草业学报, 2024, 33(5): 92-105. |
| [4] | 雷颖, 罗杰, 郭旭曼, 秘二停, 刘锦春. 小生境尺度下喀斯特弃耕地植物多样性、生物量及其影响因素[J]. 草业学报, 2024, 33(2): 28-38. |
| [5] | 常怡然, 史佳梅, 许冬梅, 康如龙, 马媛. 荒漠草原不同自然种群蒙古冰草生物量和养分权衡特征[J]. 草业学报, 2024, 33(11): 186-197. |
| [6] | 石昊, 杨彩红, 夏菲, 王军强, 魏巍, 王敬龙, 薛云尹, 郑晒坤, 吴皓阳, 冉林灵, 严双, 姜晓敏. 短期增温对修复过程中藏北高寒退化草地生产力的初期影响[J]. 草业学报, 2024, 33(11): 30-45. |
| [7] | 郁国梁, 马紫荆, 吕自立, 刘彬. 海拔和植物群落共同调节天山中段南坡巴伦台地区天然草场土壤化学计量特征[J]. 草业学报, 2023, 32(9): 68-78. |
| [8] | 路欣, 祁娟, 师尚礼, 车美美, 李霞, 独双双, 赛宁刚, 贾燕伟. 阔叶类草抑制剂与氮素配施对高寒草甸土壤特性的影响[J]. 草业学报, 2023, 32(7): 38-48. |
| [9] | 刘欢, 董凯, 仁增旺堆, 王敬龙, 刘云飞, 赵桂琴. 藏沙蒿与多年生禾草混播对西藏沙化草地植被及土壤真菌群落特征的影响[J]. 草业学报, 2023, 32(6): 45-57. |
| [10] | 李思媛, 崔雨萱, 孙宗玖, 刘慧霞, 冶华薇. 封育对蒿类荒漠草地土壤有机碳及土壤微生物生物量生态化学计量特征的影响[J]. 草业学报, 2023, 32(6): 58-70. |
| [11] | 许开宏, 施招, 马磊超, 王平, 陈昂, 王兴, 成明, 肖粤新, 王荣谭. 基于机载激光雷达与高景一号数据的草原地上生物量反演研究[J]. 草业学报, 2023, 32(5): 40-49. |
| [12] | 郭芮, 伏帅, 侯蒙京, 刘洁, 苗春丽, 孟新月, 冯琦胜, 贺金生, 钱大文, 梁天刚. 基于Sentinel-2数据的青海门源县天然草地生物量遥感反演研究[J]. 草业学报, 2023, 32(4): 15-29. |
| [13] | 史正军, 潘松, 冯世秀, 袁峰均. 园林废弃物地表覆盖处理对植物生长及土壤细菌群落的影响[J]. 草业学报, 2023, 32(4): 153-160. |
| [14] | 郑甲成, 余婕, 李凡, 黄小奕, 李杰勤, 陈海州, 王歆, 詹秋文, 徐兆师. SbER10_X1调控饲用高粱光合作用和生物产量的功能特性分析[J]. 草业学报, 2023, 32(4): 91-100. |
| [15] | 刘选帅, 孙延亮, 安晓霞, 马春晖, 张前兵. 施磷和接种解磷菌对紫花苜蓿光合特性及生物量的影响[J]. 草业学报, 2023, 32(3): 189-199. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||