草业学报 ›› 2025, Vol. 34 ›› Issue (4): 16-26.DOI: 10.11686/cyxb2024223
王守兴1,2(
), 周华坤3, 欧立鹏1,2, 李成先1,2, 王雁鹤1,2, 宁晓春1,2, 谷强1,2, 魏代军1,2, 杨明新1,2,4(
)
收稿日期:2024-06-11
修回日期:2024-08-22
出版日期:2025-04-20
发布日期:2025-02-19
通讯作者:
杨明新
作者简介:Corresponding author. E-mail: YMxin@bjfu.edu.cn基金资助:
Shou-xing WANG1,2(
), Hua-kun ZHOU3, Li-peng OU1,2, Cheng-xian LI1,2, Yan-he WANG1,2, Xiao-chun NING1,2, Qiang GU1,2, Dai-jun WEI1,2, Ming-xin YANG1,2,4(
)
Received:2024-06-11
Revised:2024-08-22
Online:2025-04-20
Published:2025-02-19
Contact:
Ming-xin YANG
摘要:
草地生物多样性是保持草地生态系统功能和稳定性的基础,了解不同草地类型植被和土壤微生物多样性及其影响因素,有助于制定科学的保护和修复策略。以三江源不同草地类型为研究对象,通过野外植被群落调查和扩增子测序相结合,探讨了不同草地类型的植被和土壤微生物多样性特征,并分析了其与土壤环境因子的关系。结果表明,三江源地区的高寒草甸、高寒草原和温性草原在植被群落特征、土壤微生物多样性特征以及土壤理化性质方面存在显著差异。高寒草甸具有较高的植被覆盖度和生物量(P<0.05),而温性草原则具有最大的植被高度(P<0.05)。在土壤真菌方面,高寒草甸Faith’s-pd指数显著大于温性草原和高寒草原(P<0.05),而Simpson和Shannon-Wiener指数显著小于温性草原和高寒草原(P<0.05);在土壤细菌方面,高寒草原的Chao1指数和Faith’s-pd指数显著小于温性草原和高寒草甸(P<0.05),而Simpson和Shannon-Wiener指数差异不显著(P>0.05)。土壤环境因子对不同草地类型的植被和土壤微生物群落具有显著影响,其中土壤pH、有机碳(SOC)含量和全氮(N)含量是主要影响因子。研究结果为三江源地区不同草地类型的生物多样性保护和生态修复提供了理论依据。
王守兴, 周华坤, 欧立鹏, 李成先, 王雁鹤, 宁晓春, 谷强, 魏代军, 杨明新. 三江源不同草地类型植被及土壤微生物多样性与土壤因子特征的研究[J]. 草业学报, 2025, 34(4): 16-26.
Shou-xing WANG, Hua-kun ZHOU, Li-peng OU, Cheng-xian LI, Yan-he WANG, Xiao-chun NING, Qiang GU, Dai-jun WEI, Ming-xin YANG. Vegetation and soil microbial diversity and their relationships with soil factors in different grassland types of the three river headwaters region[J]. Acta Prataculturae Sinica, 2025, 34(4): 16-26.
图1 研究区位置及样地分布基于自然资源部标准地图服务网站GS(2019)1822号标准地图制作,底图无修改。Based on the standard map service website of the Ministry of Natural Resources drawing number: GS (2019)1822, the base drawing has not been modified.
Fig.1 Location and distribution of study area plots
| 特征指标Characteristic index | 高寒草原Alpine steppe | 温性草原Temperate steppe | 高寒草甸Alpine meadow |
|---|---|---|---|
| 盖度Coverage (%) | 69.61±8.82b | 58.56±14.70c | 91.13±6.76a |
| 高度Height (cm) | 3.49±0.75c | 19.99±7.24a | 8.31±4.62b |
| 生物量Biomass (g·m-2) | 98.66±17.65c | 197.51±63.61b | 251.41±101.40a |
| Simpson指数Simpson index | 0.87±0.02b | 0.74±0.10c | 0.93±0.02a |
Shannon-Wiener指数 Shannon-Wiener index | 2.15±0.16b | 1.57±0.42c | 2.89±0.27a |
| Pielou 指数Pielou index | 0.95±0.02a | 0.89±0.04b | 0.95±0.02a |
| 优势种Dominant species | 紫花针茅S. purpurea、早熟禾P. annua、青藏薹草Carex moorcroftii | 芨芨草N. splendens、西北针茅S. sareptana | 高山嵩草C. parvula、藏嵩草C. tibetikobresia、高原毛茛Ranunculus tanguticus |
表1 不同草地类型植被群落特征和多样性特征
Table 1 Vegetation characteristics and diversity characteristics of different types of grassland
| 特征指标Characteristic index | 高寒草原Alpine steppe | 温性草原Temperate steppe | 高寒草甸Alpine meadow |
|---|---|---|---|
| 盖度Coverage (%) | 69.61±8.82b | 58.56±14.70c | 91.13±6.76a |
| 高度Height (cm) | 3.49±0.75c | 19.99±7.24a | 8.31±4.62b |
| 生物量Biomass (g·m-2) | 98.66±17.65c | 197.51±63.61b | 251.41±101.40a |
| Simpson指数Simpson index | 0.87±0.02b | 0.74±0.10c | 0.93±0.02a |
Shannon-Wiener指数 Shannon-Wiener index | 2.15±0.16b | 1.57±0.42c | 2.89±0.27a |
| Pielou 指数Pielou index | 0.95±0.02a | 0.89±0.04b | 0.95±0.02a |
| 优势种Dominant species | 紫花针茅S. purpurea、早熟禾P. annua、青藏薹草Carex moorcroftii | 芨芨草N. splendens、西北针茅S. sareptana | 高山嵩草C. parvula、藏嵩草C. tibetikobresia、高原毛茛Ranunculus tanguticus |
图2 不同草地类型土壤微生物群落多样性指数AS: 高寒草原Alpine steppe; TS: 温性草原Temperate steppe; AM: 高寒草甸Alpine meadow; A: 真菌Fungi; B: 细菌Bacteria; 下同The same below. 不同小写字母表示差异显著(P<0.05) The different small letters mean the significant differences at P<0.05.
Fig.2 Diversity indices of soil microbial communities in different grassland types
理化指标 Physicochemical indicators | 高寒草原 Alpine steppe | 温性草原 Temperate steppe | 高寒草甸 Alpine meadow |
|---|---|---|---|
| pH | 8.53±0.13a | 8.56±0.17a | 6.22±0.27b |
| SOC (g·kg-1) | 15.82±4.14b | 8.27±5.80c | 40.86±16.95a |
| N (g·kg-1) | 1.97±0.45b | 1.52±0.64c | 5.02±0.65a |
| P (g·kg-1) | 1.88±0.30a | 1.70±0.33a | 1.68±0.30a |
| K (g·kg-1) | 16.34±1.12c | 18.42±1.67b | 19.48±0.55a |
表2 不同草地类型土壤理化性质
Table 2 Analysis of physical and chemical properties of different types of grassland soils
理化指标 Physicochemical indicators | 高寒草原 Alpine steppe | 温性草原 Temperate steppe | 高寒草甸 Alpine meadow |
|---|---|---|---|
| pH | 8.53±0.13a | 8.56±0.17a | 6.22±0.27b |
| SOC (g·kg-1) | 15.82±4.14b | 8.27±5.80c | 40.86±16.95a |
| N (g·kg-1) | 1.97±0.45b | 1.52±0.64c | 5.02±0.65a |
| P (g·kg-1) | 1.88±0.30a | 1.70±0.33a | 1.68±0.30a |
| K (g·kg-1) | 16.34±1.12c | 18.42±1.67b | 19.48±0.55a |
| 1 | Sala O E, Chapin F S, Armesto J J, et al. Global biodiversity scenarios for the year 2100. Science, 2000, 287(5459): 1770-1774. |
| 2 | Cardinale B J, Duffy J E, Gonzalea A, et al. Biodiversity loss and its impact on humanity. Nature, 2012, 486(7401): 59-67. |
| 3 | Wagg C, Bender S F, Widmer F, et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(14): 5266-5270. |
| 4 | Manule D B, Maestre F T, Reich P B, et al. Carbon content and climate variability drive global soil bacterial diversity patterns. Ecological Monographs, 2016, 86(3): 373-390. |
| 5 | Chen X, Zhang Y P. Impacts of climate, phenology, elevation and their interactions on the net primary productivity of vegetation in Yunnan, China under global warming. Ecological Indicators, 2023, 154: 1-13. |
| 6 | Zhang X C, Jin X M. Vegetation dynamics and responses to climate change and anthropogenic activities in the Three-River Headwaters Region, China. Ecological Indicators, 2021, 131: 1-14. |
| 7 | Zhao X Q, Xu S X, Zhao L, et al. Innovation and practice on biodiversity conservation in Sanjiangyuan National Park. Bulletin of Chinese Academy of Sciences, 2023, 38(12): 1833-1844. |
| 赵新全, 徐世晓, 赵亮, 等. 三江源国家公园生物多样性保护创新及实践. 中国科学院院刊, 2023, 38(12): 1833-1844. | |
| 8 | Zhao X Q. The five integrative management strategies of Sanjiangyuan National Park. Biodiversity Science, 2021, 29(3): 301-303. |
| 赵新全. 三江源国家公园创建“五个一”管理模式. 生物多样性, 2021, 29(3): 301-303. | |
| 9 | Shao Q Q, Liu S C, Ning J, et al. Assessment of ecological benefits of key national ecological projects in China in 2000-2019 using remote sensing. Acta Geographica Sinica, 2022, 77(9): 2133-2153. |
| 邵全琴, 刘树超, 宁佳, 等. 2000-2019年中国重大生态工程生态效益遥感评估. 地理学报, 2022, 77(9): 2133-2153. | |
| 10 | Yang C, Wang W Y, Zhou H K, et al. Coupling and coordination characteristic between plant diversity and soil factors of alpine grasslands in the Three Rivers Source Region. Journal of Gansu Agricultural University, 2022, 57(2): 125-136. |
| 杨冲, 王文颖, 周华坤, 等. 三江源区高寒草地植物多样性与土壤因子的耦合关系. 甘肃农业大学学报, 2022, 57(2): 125-136. | |
| 11 | Chen X, Li Q, Chen D D, et al. Analysis on the difference of microbial function gene in different grasslands of Sanjiangyuan National Park. Ecology and Environmental Sciences, 2020, 29(3): 472-482. |
| 陈昕, 李奇, 陈懂懂, 等. 三江源国家公园不同草地土壤微生物功能基因的差异性分析. 生态环境学报, 2020, 29(3): 472-482. | |
| 12 | Pan Y L, Tang H P, Liu D, et al. Geographical patterns and drivers of plant productivity and species diversity in the Qinghai-Tibet Plateau. Plant Diversity, 2023, DOI: https://doi.org/10.1016/j.pld.2023.06.007. |
| 13 | McSherry M E, Ritchie M E. Effects of grazing on grassland soil carbon: A global review. Global Change Biology, 2013, 19(5): 1347-1357. |
| 14 | Tian L, Zhang Y J, Zhu J T. Decreased surface albedo driven by denser vegetation on the Tibetan Plateau. Environmental Research Letters, 2014, 9(10): 11-23. |
| 15 | Li C X, Hendrik W, Bernhard S, et al. Estimating plant traits of alpine grasslands on the Qinghai-Tibetan Plateau using remote sensing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(7): 2263-2275. |
| 16 | Wang S Z, Fan J W, Li Y Z, et al. Effects of grazing exclusion on biomass growth and species diversity among various grassland types of the Tibetan Plateau. Sustainability, 2019, 11(6): 1705-1718. |
| 17 | Asitaiken J, Dong Y Q, Zhou S J, et al. Effects of enclosure on vegetation diversity and niche characteristics of different grassland types in Xinjiang. Pratacultural Science, 2023, 40(5): 1168-1185. |
| 阿斯太肯·居力海提, 董乙强, 周时杰, 等. 封育对不同草地类型植物群落多样性及生态位特征的影响-以新疆不同类型草地为例. 草业科学, 2023, 40(5): 1168-1185. | |
| 18 | Upama K C, Samiran B, Thompson K A, et al. Cattle grazing management affects soil microbial diversity and community network complexity in the Northern Great Plains. Science of the Total Environment, 2024, 912: 169353. |
| 19 | Wu L W, Zhang Y, Guo X, et al. Reduction of microbial diversity in grassland soil is driven by long-term climate warming. Nature Microbiology, 2022, 7(7): 1054-1062. |
| 20 | Wei S, Li S W, Wang J H, et al. Effects of grazing on plant species and phylogenetic diversity in alpine grasslands Northern Tibet. Ecological Engineering, 2021, 170: 106331. |
| 21 | Pan J X, Peng Y F, Wang J S, et al. Controlling factors for soil bacterial and fungal diversity and composition vary with vegetation types in alpine grasslands. Applied Soil Ecology, 2023, 184: 104777. |
| 22 | Shen C C, Shi Y, Fan K K, et al. Soil pH dominates elevational diversity pattern for bacteria in high elevation alkaline soils on the Tibetan Plateau. Microbiology Ecology, 2019, 95(2): 3-12. |
| 23 | Zhou H, Zhang D G, Jiang Z H, et al. Changes in the soil microbial communities of alpine steppe at Qinghai-Tibetan Plateau under different degradation levels. Science of the Total Environment, 2019, 651(2): 2281-2291. |
| 24 | Hu L, Wang C T, Wang G X, et al. Changes in the activities of soil enzymes and microbial community structure at different degradation successional stages of alpine meadows in the headwaters region of Thee Rivers, China. Acta Prataculturae Sinica, 2014, 23(3): 8-19. |
| 胡雷, 王长庭, 王根绪, 等. 三江源区不同退化演替阶段高寒草甸土壤酶活性和微生物群落结构的变化. 草业学报, 2014, 23(3): 8-19. | |
| 25 | Liu P X, Wang J B, Sun X F, et al. Climatic suitability of vegetation growth over alpine grassland in the Three-River Headwaters. Acta Agrestia Sinica, 2023, 31(10): 3145-3156. |
| 刘佩霞, 王军邦, 孙晓芳, 等. 三江源区高寒草地植被生长的气候适宜性研究. 草地学报, 2023, 31(10): 3145-3156. | |
| 26 | Zhang Y X, Fan J W, Cao W, et al. Spatial and temporal dynamics of grassland yield and its response to precipitation in the Three Headwater Region from 2006 to 2013. Acta Prataculturae Sinica, 2017, 26(10): 10-19. |
| 张雅娴, 樊江文, 曹巍, 等. 2006-2013年三江源草地产草量的时空动态变化及其对降水的响应. 草业学报, 2017, 26(10): 10-19. | |
| 27 | Zhou H K, Li S, Sun J, et al. Characteristics of plant community and soil physical and chemical properties in alpine meadow along altitude gradient in the headwaters region of Three-River on Tibetan Plateau. Acta Agrestia Sinica, 2023, 31(6): 1735-1743. |
| 周华坤, 李珊, 孙建, 等. 三江源区高寒草甸植物群落与土壤理化性质沿海拔梯度的变化特征. 草地学报, 2023, 31(6): 1735-1743. | |
| 28 | Yang M X, Chen K Y, Li C X, et al. Effects of grassland degradation on soil fungal communities in alpine steppes of the Three-River Headwaters Region during different growth periods. Pratacultural Science, 2024, 41(1): 15-25. |
| 杨明新, 陈科宇, 李成先, 等. 三江源区高寒草原退化对不同生长期土壤真菌群落的影响. 草业科学, 2024, 41(1): 15-25. | |
| 29 | Zhang Y S, Zhao X Q, Zhao S X, et al. Correlation between evapotranspiration and climate factors in warm steppe in source region of Yangtze, Yellow and Yalu Tsangpo Rivers. Journal of Desert Research, 2010, 30(2): 363-368. |
| 张耀生, 赵新全, 赵双喜, 等. 三江源区温性草原蒸散量与主要影响因子的相关分析. 中国沙漠, 2010, 30(2): 363-368. | |
| 30 | Yang M X, Yang X C, Zhao Y, et al. Estimated carbon storage and influencing factors of alpine grassland in the source region of the Yellow River. Acta Ecologica Sinica, 2023, 43(9): 3546-3557. |
| 杨明新, 杨秀春, 赵云, 等. 黄河源园区高寒草地碳储量估算及其影响因素. 生态学报, 2023, 43(9): 3546-3557. | |
| 31 | Wang Y F, Xue K, Hu R H, et al. Vegetation structural shift tells environmental changes on the Tibetan Plateau over 40 years. Science Bulletin, 2023, 68(17): 1928-1937. |
| 32 | Bao S D. Soil agrochemical analysis (Third Edition). Beijing: China Agriculture Press, 2013: 25-114. |
| 鲍士旦. 土壤农化分析(第3版). 北京:中国农业出版社, 2013: 25-114. | |
| 33 | Wagner M R, Lundberg D S, Devin C D, et al. Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecology Letters, 2014, 17(6): 717-726. |
| 34 | Zhao S, Liu D Y, Ning L, et al. Bio-organic fertilizer application significantly reduces the Fusarium oxysporum population and alters the composition of fungi communities of watermelon Fusarium wilt rhizosphere soil. Biology and Fertility of Soils, 2014, 50(5): 765-774. |
| 35 | Fang J Y, Wang X P, Shen Z H, et al. Methods and protocols for plant community inventory. Biodiversity Science, 2009, 17(6): 533-548. |
| 方精云, 王襄平, 沈泽昊, 等. 植物群落清查的主要内容、方法和技术规范. 生物多样性, 2009, 17(6): 533-548. | |
| 36 | Chao A. Non parametric estimation of the number of classes in a population. Scandinavian Journal of Statistics, 1984, 11(4): 265-270. |
| 37 | Tuomisto H. A consistent terminology for quantifying species diversity? Yes, it does exist. Oecologia, 2010, 164(4): 853-860. |
| 38 | Tang L, Dong S K, Liu S L, et al. The relationship between soil physical properties and alpine plant diversity on Qinghai Tibet Plateau. Eurasian Journal of Soil Science, 2015, 4(2): 88-93. |
| 39 | Yang X T, Fan J, Gai J M, et al. Soil physical and chemical properties and vegetation characteristics of different types of grassland in Qilian Mountains, China. Chinese Journal of Applied Ecology, 2022, 33(4): 878-886. |
| 杨学亭, 樊军, 盖佳敏, 等. 祁连山不同类型草地的土壤理化性质与植被特征. 应用生态学报, 2022, 33(4): 878-886. | |
| 40 | Dong S K, Tang L, Zhang X F, et al. Relationship between plant species diversity and functional diversity in alpine grasslands. Acta Ecologica Sinica, 2017, 37(5): 1472-1483. |
| 董世魁, 汤琳, 张相锋, 等. 高寒草地植物物种多样性与功能多样性的关系. 生态学报, 2017, 37(5): 1472-1483. | |
| 41 | Shao J X, Liu Y H, Ma H, et al. Meta-analysis of physical and chemical properties of shallow soils in degraded alpine grasslands. Acta Agrestia Sinica, 2022, 30(6): 1370-1378. |
| 邵建翔, 刘育红, 马辉, 等. 退化高寒草地浅层土壤理化性质Meta分析. 草地学报, 2022, 30(6): 1370-1378. | |
| 42 | Fu L J, Yan Y, Li X Q, et al. Rhizosphere soil microbial community and its response to different utilization patterns in the semi-arid alpine grassland of northern Tibet. Frontiers in Microbiology, 2022, 13: 931795. |
| 43 | Zhao W, Yin Y L, Li S X, et al. The characteristics of soil fungal community in degraded alpine meadow in the Three Rivers Source Region, China. Chinese Journal of Applied Ecology, 2021, 32(3): 869-877. |
| 赵文, 尹亚丽, 李世雄, 等. 三江源区退化高寒草甸土壤真菌群落特征. 应用生态学报, 2021, 32(3): 869-877. | |
| 44 | Zhao X G, Zhang S T, Niu K C. Relationships between soil fungal diversity, plant community functional traits, and soil attributes in Tibetan alpine meadows. Chinese Journal of Applied and Environmental Biology, 2020, 26(1): 1-9. |
| 赵兴鸽, 张世挺, 牛克昌. 青藏高原高寒草甸土壤真菌多样性与植物群落功能性状和土壤理化特性的关系. 应用与环境生物学报, 2020, 26(1): 1-9. | |
| 45 | Li H Y, Yao T, Zhang J G, et al. Relationship between soil bacterial community and environmental factors in the degraded alpine grassland of eastern Qilian Mountains, China. Chinese Journal of Applied Ecology, 2018, 29(11): 3793-3801. |
| 李海云, 姚拓, 张建贵, 等. 东祁连山退化高寒草地土壤细菌群落与土壤环境因子间的相互关系. 应用生态学报, 2018, 29(11): 3793-3801. | |
| 46 | Han W Y, Chen L, Su X K, et al. Effects of soil physico-chemical properties on plant species diversity along an elevation gradient over alpine grassland on the Qinghai-Tibetan Plateau, China. Frontiers in Plant Science, 2022, 13(4): 822268-822281. |
| 47 | Ahmad B I, Mudasir F, Qadir R U, et al. Predicting potential distribution and range dynamics of Aquilegia fragrans under climate change: Insights from ensemble species distribution modelling. Environmental Monitoring and Assessment, 2023, 195(5): 623-641. |
| 48 | Zhang X Y, Feng M, Liu Q G, et al. Distribution patterns and driving factors of grassland plant diversity along a precipitation gradient on the Qinghai-Tibet Plateau. Chinese Journal of Ecology, 2024, 43(6): 1674-1680. |
| 张小燕, 冯明, 刘倩光, 等. 青藏高原草地植物多样性沿降水梯度的分布格局及影响因素. 生态学杂志, 2024, 43(6): 1674-1680. | |
| 49 | Zuo X A, Sun S S, Wang S K, et al. Contrasting relationships between plant-soil microbial diversity are driven by geographic and experimental precipitation changes. Science of the Total Environment, 2023, 861: 160654. |
| 50 | Yang P N, Li X L, Li C Y, et al. Response of soil microbial diversity to long-term enclosure in degraded patches of alpine meadow in the source zone of the Yellow River. Environmental Science, 2023, 44(4): 2293-2303. |
| 杨鹏年, 李希来, 李成一, 等. 黄河源区斑块化退化高寒草甸土壤微生物多样性对长期封育的响应. 环境科学, 2023, 44(4): 2293-2303. | |
| 51 | Shangguan Z J, Jing X, Wang H, et al. Plant biodiversity responds more strongly to climate warming and anthropogenic activities than microbial biodiversity in the Qinghai-Tibetan alpine grasslands. Journal of Ecology, 2023, 112(1): 110-125. |
| 52 | Laurent P, Claire C, Andreas K, et al. The interplay between microbial communities and soil properties. Nature Reviews Microbiology, 2023, 22(4): 226-239. |
| 53 | Lauber C L, Hamady M, Knight R, et al. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 2009, 75(15): 5111-5120. |
| 54 | Xue K, Zhang B, Zhou S T, et al. Soil microbial communities in alpine grasslands on the Tibetan Plateau and their influencing factors. Chinese Science Bulletin, 2019, 64(27): 2915-2927. |
| 薛凯, 张彪, 周姝彤, 等. 青藏高原高寒草地土壤微生物群落及影响因子. 科学通报, 2019, 64(27): 2915-2927. | |
| 55 | Xu H, Ding M J, Zhang H, et al. Interaction effects of vegetation and soil factors on microbial communities in alpine steppe under degradation. Environmental Science, 2024, 45(7): 4251-4265. |
| 徐欢, 丁明军, 张华, 等. 高寒草原退化过程中植被和土壤因子对微生物群落的交互影响. 环境科学, 2024, 45(7): 4251-4265. |
| [1] | 龚昕, 霍新茹, 李雯, 杨彦东, 刘超, 秦伟春, 沈艳, 王国会, 马红彬. 宁夏罗山山地草原植被群落特征及其空间分异[J]. 草业学报, 2025, 34(2): 1-15. |
| [2] | 吕娜, 高吉喜, 李政海, 尤春赫, 刘晓曼, 张彪, 莫宇, 朱萨宁, 彭阳, 杨雪. 植物生长中期施肥对草甸草原群落特征与物种多样性的影响[J]. 草业学报, 2025, 34(2): 109-122. |
| [3] | 马远飞, 宋彦涛, 乌云娜, 方乘风. 施肥和刈割5年对呼伦贝尔草甸草原土壤微生物特征的影响[J]. 草业学报, 2024, 33(9): 242-251. |
| [4] | 郑荣春, 南志标, 段廷玉. 四个品种红三叶种带真菌多样性研究[J]. 草业学报, 2024, 33(8): 170-180. |
| [5] | 刘倩, 丁彦芬, 宋杉杉, 许文婕, 杨威. 南京明城墙绿带草本层自生植物群落数量分类与排序分析[J]. 草业学报, 2024, 33(5): 1-15. |
| [6] | 李俊瑶, 蒋星驰, 胡晋瑜, 魏栋光, 赵学勇, 王少昆. 生物有机肥施加对荒漠草原植被-土壤-微生物的影响[J]. 草业学报, 2024, 33(3): 34-45. |
| [7] | 段鹏, 韦鎔宜, 王芳萍, 姚步青, 赵之重, 胡碧霞, 宋词, 杨萍, 王婷. 不同养分添加对黄河源区退化高寒湿地土壤微生物碳源利用的影响[J]. 草业学报, 2024, 33(2): 138-153. |
| [8] | 张晨阳, 金梦军, 许永锋, 杨成德. 基于宏基因组分析玉米连作对土壤微生物群落结构的影响[J]. 草业学报, 2024, 33(12): 160-174. |
| [9] | 石昊, 杨彩红, 夏菲, 王军强, 魏巍, 王敬龙, 薛云尹, 郑晒坤, 吴皓阳, 冉林灵, 严双, 姜晓敏. 短期增温对修复过程中藏北高寒退化草地生产力的初期影响[J]. 草业学报, 2024, 33(11): 30-45. |
| [10] | 王金兰, 王小军, 刘启林, 梁国玲, 琚泽亮, 石红梅, 汪小兵, 文培, 青梅然丁null, 李文. 不同燕麦品种在三江源区的生产性能和营养品质综合评价[J]. 草业学报, 2024, 33(10): 83-95. |
| [11] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸物种多样性与系统发育多样性沿海拔梯度分布格局及驱动因子[J]. 草业学报, 2023, 32(7): 12-22. |
| [12] | 张振粉, 黄荣, 李向阳, 姚博, 赵桂琴. 基于Illumina MiSeq高通量测序的燕麦种带细菌多样性及功能分析[J]. 草业学报, 2023, 32(7): 96-108. |
| [13] | 刘彩凤, 段媛媛, 王玲玲, 王乙茉, 郭正刚. 高原鼠兔干扰对高寒草甸植物物种多样性与土壤生态化学计量比间关系的影响[J]. 草业学报, 2023, 32(6): 157-166. |
| [14] | 刘欢, 董凯, 仁增旺堆, 王敬龙, 刘云飞, 赵桂琴. 藏沙蒿与多年生禾草混播对西藏沙化草地植被及土壤真菌群落特征的影响[J]. 草业学报, 2023, 32(6): 45-57. |
| [15] | 李思媛, 崔雨萱, 孙宗玖, 刘慧霞, 冶华薇. 封育对蒿类荒漠草地土壤有机碳及土壤微生物生物量生态化学计量特征的影响[J]. 草业学报, 2023, 32(6): 58-70. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||