草业学报 ›› 2024, Vol. 33 ›› Issue (9): 242-251.DOI: 10.11686/cyxb2023407
• 研究简报 • 上一篇
收稿日期:
2023-10-24
修回日期:
2023-12-22
出版日期:
2024-09-20
发布日期:
2024-06-20
通讯作者:
宋彦涛
作者简介:
E-mail: yantaosong@dlnu.edu.cn基金资助:
Yuan-fei MA(), Yan-tao SONG(), Yun-na WU, Cheng-feng FANG
Received:
2023-10-24
Revised:
2023-12-22
Online:
2024-09-20
Published:
2024-06-20
Contact:
Yan-tao SONG
摘要:
土壤微生物在维持草原生态系统功能方面发挥重要的作用,合理的利用和管理有助于维持草原资源可持续利用。为探究草甸草原土壤微生物对于不同施肥和留茬高度处理的适应性,在呼伦贝尔草甸草原进行了为期5年的野外控制试验,包括2个施肥水平:施肥(F)、不施肥(NF),6个刈割留茬高度:3、6、9、12、15 cm和不刈割(CK),两因子交互共12个处理,测定土壤磷脂脂肪酸(phospholipid fatty acid, PLFA)含量及理化性质。结果表明:不施肥处理下,随着刈割留茬高度的增加,土壤微生物生物量在9 cm时最高,然后趋于平稳;施肥处理下,微生物生物量在不同留茬高度间无明显差异。留茬高度不高于9 cm时,施肥能够提高微生物生物量,补偿低留茬刈割引起的微生物生物量下降,留茬高度高于9 cm时,施肥抑制刈割引起的微生物生物量升高;施肥显著提升了微生物群落中放线菌的相对丰度与群落相异度指数;硝态氮是影响土壤微生物群落组成的主要环境因子。本研究表明呼伦贝尔草甸草原土壤微生物对于刈割留茬高度9 cm的适应性最好,更低的留茬高度则需要通过施肥来补充供给微生物所需的土壤养分,缓解生物量的下降。这些发现为草原资源的可持续利用和生态保护提供了参考依据。
马远飞, 宋彦涛, 乌云娜, 方乘风. 施肥和刈割5年对呼伦贝尔草甸草原土壤微生物特征的影响[J]. 草业学报, 2024, 33(9): 242-251.
Yuan-fei MA, Yan-tao SONG, Yun-na WU, Cheng-feng FANG. Effects of fertilization and mowing for 5 years on soil microbial characteristics in Hulunbuir meadow steppe[J]. Acta Prataculturae Sinica, 2024, 33(9): 242-251.
微生物类群 Microbial group | 磷脂脂肪酸标志物 Phospholipid fatty acid markers |
---|---|
细菌Bacteria | 14:0, 15:0, 16:0, 17:0, 18:0, 20:0, 13:0 anteiso, 13:0 iso, 14:0 anteiso, 14:0 iso, 14:1 ω5c, 15:0 anteiso, 15:0 iso, 16:0 anteiso, 16:0 iso, 16:1 ω7c, 16:1 ω9c, 17:0 anteiso, 17:0 iso, 17:0 cyclo ω7c, 17:1 ω8c, 18:0 iso, 18:1 ω5c, 18:1 ω7c, 19:0 cyclo ω7c |
革兰氏阳性菌Gram-positive bacteria | 13:0 anteiso, 13:0 iso, 14:0 anteiso, 14:0 iso, 15:0 anteiso, 15:0 iso, 16:0 anteiso, 16:0 iso, 17:0 anteiso, 17:0 iso, 18:0 iso |
革兰氏阴性菌Gram-negative bacteria | 14:1 ω5c, 16:1 ω7c, 16:1 ω9c, 17:0 cyclo ω7c, 17:1 ω8c, 18:1 ω5c, 18:1 ω7c, 19:0 cyclo ω7c |
真菌Fungi | 18:1 ω9c, 18:2 ω6c, 18:3 ω6c |
丛枝菌根真菌Arbuscular mycorrhizal fungi | 16:1 ω5c |
放线菌Actinomycetes | 16:0 10-methyl, 17:0 10-methyl, 18:0 10-methyl |
表1 土壤微生物的磷脂脂肪酸标志物
Table 1 Phospholipid fatty acid (PLFA) markers for soil microorganisms
微生物类群 Microbial group | 磷脂脂肪酸标志物 Phospholipid fatty acid markers |
---|---|
细菌Bacteria | 14:0, 15:0, 16:0, 17:0, 18:0, 20:0, 13:0 anteiso, 13:0 iso, 14:0 anteiso, 14:0 iso, 14:1 ω5c, 15:0 anteiso, 15:0 iso, 16:0 anteiso, 16:0 iso, 16:1 ω7c, 16:1 ω9c, 17:0 anteiso, 17:0 iso, 17:0 cyclo ω7c, 17:1 ω8c, 18:0 iso, 18:1 ω5c, 18:1 ω7c, 19:0 cyclo ω7c |
革兰氏阳性菌Gram-positive bacteria | 13:0 anteiso, 13:0 iso, 14:0 anteiso, 14:0 iso, 15:0 anteiso, 15:0 iso, 16:0 anteiso, 16:0 iso, 17:0 anteiso, 17:0 iso, 18:0 iso |
革兰氏阴性菌Gram-negative bacteria | 14:1 ω5c, 16:1 ω7c, 16:1 ω9c, 17:0 cyclo ω7c, 17:1 ω8c, 18:1 ω5c, 18:1 ω7c, 19:0 cyclo ω7c |
真菌Fungi | 18:1 ω9c, 18:2 ω6c, 18:3 ω6c |
丛枝菌根真菌Arbuscular mycorrhizal fungi | 16:1 ω5c |
放线菌Actinomycetes | 16:0 10-methyl, 17:0 10-methyl, 18:0 10-methyl |
图1 土壤磷脂脂肪酸(PLFAs)图谱F: 施肥Fertilization; NF: 不施肥No fertilization. 3: 留茬3 cm Stubble height 3 cm; 6: 留茬6 cm Stubble height 6 cm; 9: 留茬9 cm Stubble height 9 cm; 12: 留茬12 cm Stubble height 12 cm; 15: 留茬15 cm Stubble height 15 cm; CK: 不刈割No mowing. 下同The same below. 脂肪酸命名采用ω编号命名系统:X:Y ωZc,其中X是指碳原子数量;Y为双键个数;Z为第一个不饱和键或环丙基的位置,后缀c代表顺式异构;iso和anteiso分别表示支链的异构和反异构;methyl表示甲基支链,cyclo表示环丙基支链。The nomenclature of fatty acids follows the ω numbering system, represented as X:Y ωZc, where X indicates the number of carbon atoms, Y indicates the number of double bonds, Z indicates the position of the first unsaturated bond or cyclopropane moiety, and the suffix ‘c’ represents cis isomerism. ‘iso’ and ‘anteiso’ are used to characterize the isomerization of fatty acids. Methyl represents a methyl side chain, while ‘cyclo’ represents a cyclopropane side chain.
Fig.1 Mapping of soil phospholipid fatty acids (PLFAs)
指标 Indicators | 施肥 Fertilization | 刈割留茬高度 Mowing stubble heights | 施肥×刈割留茬高度 Fertilization×mowing stubble heights |
---|---|---|---|
总微生物生物量Total microbial biomass | 0.005 | 0.905 | 1.237 |
细菌Bacteria | 3.446 | 1.389 | 0.313 |
革兰氏阳性菌Gram-positive bacteria | 0.005 | 0.183 | 0.941 |
革兰氏阴性菌Gram-negative bacteria | 1.017 | 1.560 | 1.583 |
真菌Fungi | 1.011 | 0.635 | 0.408 |
丛枝菌根真菌Arbuscular mycorrhizal fungi | 1.265 | 1.712 | 0.668 |
放线菌Actinomycetes | 4.065* | 1.257 | 0.563 |
辛普森指数Simpson index | 1.859 | 1.965 | 0.675 |
相异度指数Dissimilarity index | 5.680* | 0.120 | 3.584 |
表2 土壤微生物生物量、群落组成和多样性指数的双因素方差分析(F值)
Table 2 Two-factor ANOVA analysis of soil microbial biomass, community composition and diversity indices (F value)
指标 Indicators | 施肥 Fertilization | 刈割留茬高度 Mowing stubble heights | 施肥×刈割留茬高度 Fertilization×mowing stubble heights |
---|---|---|---|
总微生物生物量Total microbial biomass | 0.005 | 0.905 | 1.237 |
细菌Bacteria | 3.446 | 1.389 | 0.313 |
革兰氏阳性菌Gram-positive bacteria | 0.005 | 0.183 | 0.941 |
革兰氏阴性菌Gram-negative bacteria | 1.017 | 1.560 | 1.583 |
真菌Fungi | 1.011 | 0.635 | 0.408 |
丛枝菌根真菌Arbuscular mycorrhizal fungi | 1.265 | 1.712 | 0.668 |
放线菌Actinomycetes | 4.065* | 1.257 | 0.563 |
辛普森指数Simpson index | 1.859 | 1.965 | 0.675 |
相异度指数Dissimilarity index | 5.680* | 0.120 | 3.584 |
图3 施肥和刈割对微生物相对丰度的影响箱体内横线为中位数,白色菱形点为平均值。The horizontal line in the box is the median and the white diamond point is the mean.
Fig.3 Effect of fertilization and mowing on relative abundance of microorganisms
项目 Item | 细菌 Bacteria | 革兰氏阳性菌 Gram-positive bacteria | 革兰氏阴性菌 Gram-negative bacteria | 真菌 Fungi | 丛枝菌根真菌 Arbuscular mycorrhizal fungi | 放线菌 Actinomycetes |
---|---|---|---|---|---|---|
总微生物生物量Total microbial biomass | -0.428*** | -0.632*** | 0.158* | 0.311*** | 0.645*** | 0.099 |
辛普森指数Simpson index | 0.515*** | 0.498*** | 0.070 | -0.313*** | -0.671*** | -0.237*** |
表3 土壤微生物生物量和多样性与群落组成的皮尔逊相关系数
Table 3 Correlation coefficients of soil microbial biomass and diversity with community composition
项目 Item | 细菌 Bacteria | 革兰氏阳性菌 Gram-positive bacteria | 革兰氏阴性菌 Gram-negative bacteria | 真菌 Fungi | 丛枝菌根真菌 Arbuscular mycorrhizal fungi | 放线菌 Actinomycetes |
---|---|---|---|---|---|---|
总微生物生物量Total microbial biomass | -0.428*** | -0.632*** | 0.158* | 0.311*** | 0.645*** | 0.099 |
辛普森指数Simpson index | 0.515*** | 0.498*** | 0.070 | -0.313*** | -0.671*** | -0.237*** |
图5 微生物群落组成与土壤理化性质的冗余分析B: 细菌Bacteria; GP: 革兰氏阳性菌Gram-positive bacteria; GN: 革兰氏阴性菌Gram-negative bacteria; F: 真菌Fungi; AMF: 丛枝菌根真菌Arbuscular mycorrhizal fungi; AC: 放线菌Actinomycetes. NO3--N: 硝态氮Nitrate nitrogen; AP: 有效磷Available phosphorus; TN: 总氮Total nitrogen; TP: 总磷Total phosphorus; SOC: 有机碳Soil organic carbon; NH4+-N: 铵态氮Ammonium nitrogen.
Fig.5 Redundancy analysis of microbial community composition and soil physicochemical properties
1 | Liu Y Y, Ren H Y, Zhou R L, et al. Estimation and dynamic analysis of the service value of grassland ecosystem in China. Acta Agrestia Sinica, 2021, 29(7): 1522-1532. |
刘洋洋, 任涵玉, 周荣磊, 等. 中国草地生态系统服务价值估算及其动态分析. 草地学报, 2021, 29(7): 1522-1532. | |
2 | Fang J Y, Geng X Q, Zhao X, et al. How many areas of grasslands are there in China? Chinese Science Bulletin, 2018, 63(17): 1731-1739. |
方精云, 耿晓庆, 赵霞, 等. 我国草地面积有多大? 科学通报, 2018, 63(17): 1731-1739. | |
3 | Hurst C J. Microbes: The foundation stone of the biosphere. Berlin: Springer, 2021. |
4 | Tang Y S, Wei C F, Yan T M, et al. Biological indicator of soil quality: A review. Soils, 2007, 39(2): 157-163. |
唐玉姝, 魏朝富, 颜廷梅, 等. 土壤质量生物学指标研究进展. 土壤, 2007, 39(2): 157-163. | |
5 | Wang Z F. Characteristics of soil nutrients and enzyme activity under different types of land use in wetland of Sanjiang plain. Research of Soil and Water Conservation, 2019, 26(2): 43-48. |
王振芬. 三江平原湿地不同土地利用方式对土壤养分及酶活性的影响. 水土保持研究, 2019, 26(2): 43-48. | |
6 | Du N N, Qiu L P, Zhang X C, et al. Effect of land use on mineralization of soil carbon and nitrogen in semi-arid grasslands. Agricultural Research in the Arid Areas, 2017, 35(5): 73-78. |
杜宁宁, 邱莉萍, 张兴昌, 等. 半干旱区土地利用方式对土壤碳氮矿化的影响. 干旱地区农业研究, 2017, 35(5): 73-78. | |
7 | Bai Y F, Pan Q M, Xing Q. Fundamental theories and technologies for optimizing the production functions and ecological functions in grassland ecosystems. Chinese Science Bulletin, 2016, 61(2): 201-212. |
白永飞, 潘庆民, 邢旗. 草地生产与生态功能合理配置的理论基础与关键技术. 科学通报, 2016, 61(2): 201-212. | |
8 | Grman E, Lau J A, Schoolmaster D R, et al. Mechanisms contributing to stability in ecosystem function depend on the environmental context. Ecology Letters, 2010, 13(11): 1400-1410. |
9 | Wang D J, Zhou H K, Yao B Q, et al. Effects of nutrient addition on degraded alpine grasslands of the Qinghai-Tibetan Plateau: A meta-analysis. Agriculture, Ecosystems and Environment, 2020, 301: 106970. |
10 | Flores-Fernández C N, Chávez-Hidalgo E, Santos M, et al. Molecular characterization of protease producing Idiomarina species isolated from Peruvian saline environments. Microbiology and Biotechnology Letters, 2019, 47(3): 401-411. |
11 | Zhao G Q, Wang S P, Cui X Y, et al. Effects of nitrogen and phosphorus application on soil microbial biomass carbon and nitrogen contents on an alpine grassland on Tibetan Plateau. Journal of University of Chinese Academy of Sciences, 2018, 35(3): 417-424. |
赵国强, 王淑平, 崔骁勇, 等. 青藏高原高寒草原土壤微生物量对氮磷肥添加的响应. 中国科学院大学学报, 2018, 35(3): 417-424. | |
12 | Pan S Y, Kong B B, Yao T H, et al. Effects of clipping and fertilizing on the relationship between functional diversity and aboveground net primary productivity in an alpine meadow. Chinese Journal of Plant Ecology, 2015, 39(9): 867-877. |
潘石玉, 孔彬彬, 姚天华, 等. 刈割和施肥对高寒草甸功能多样性与地上净初级生产力关系的影响. 植物生态学报, 2015, 39(9): 867-877. | |
13 | Collins S L, Knapp A M, Briggs J M, et al. Modulation of diversity by grazing and mowing in native tallgrass prairie. Science, 1998, 280(5364): 745-747. |
14 | Ziter C, Macdougall A S. Nutrients and defoliation increase soil carbon inputs in grassland. Ecology, 2013, 94(1): 106-116. |
15 | Li J P, Zheng Z R, Zhao N X, et al. Relationship between ecosystem multifuntionality and species diversity in grassland ecosystems under land-use types of clipping, enclosure and grazing. Chinese Journal of Plant Ecology, 2016, 40(8): 735-747. |
李静鹏, 郑志荣, 赵念席, 等. 刈割、围封、放牧三种利用方式下草原生态系统的多功能性与植物物种多样性之间的关系. 植物生态学报, 2016, 40(8): 735-747. | |
16 | Zhu Y G, Peng J J, Wei Z, et al. Linking the soil microbiome to soil health. Scientia Sinica Vitae, 2020, 51(1): 1-11. |
朱永官, 彭静静, 韦中, 等. 土壤微生物组与土壤健康. 中国科学: 生命科学, 2020, 51(1): 1-11. | |
17 | Rillig M C, Ryo M, Lehmann A, et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science, 2019, 366(6467): 886-890. |
18 | Bao S D. Soil agrochemical analysis. Beijing: China Agriculture Press, 2000. |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. | |
19 | Li L P, Zhang J B, Xing W Q, et al. Modernization of soil nutrient analysis. Soils, 2004(3): 243-250. |
李立平, 张佳宝, 邢维芹, 等. 土壤养分分析的现代化. 土壤, 2004(3): 243-250. | |
20 | Bossio D A, Scow K M. Impacts of carbon and flooding on soil microbial communities: Phospholipid fatty acid profiles and substrate utilization patterns. Microbial Ecology, 1998, 35(3): 265-278. |
21 | Lai J S, Zou Y, Zhang J L, et al. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca. hp R package. Methods in Ecology and Evolution, 2022, 13(4): 782-788. |
22 | Willers C, Rensburg P J J V, Claassens S. Phospholipid fatty acid profiling of microbial communities-a review of interpretations and recent applications. Journal of Applied Microbiology, 2015, 119(5): 1207-1218. |
23 | Shi Y, Wang Z Q, Zhang X Y, et al. Effects of nitrogen and phosphorus addition on soil microbial community composition in temperate typical grassland in Inner Mongolia. Acta Ecologica Sinica, 2014, 34(17): 4943-4949. |
施瑶, 王忠强, 张心昱, 等. 氮磷添加对内蒙古温带典型草原土壤微生物群落结构的影响. 生态学报, 2014, 34(17): 4943-4949. | |
24 | Zhang L, Dang J, Liu W, et al. Effects of continuous enclosure and fertilization on soil microbial community structure in alpine meadow. Chinese Journal of Applied Ecology, 2012, 23(11): 3072-3078. |
张莉, 党军, 刘伟, 等. 高寒草甸连续围封与施肥对土壤微生物群落结构的影响. 应用生态学报, 2012, 23(11): 3072-3078. | |
25 | Treseder K K. Nitrogen additions and microbial biomass: A meta-analysis of ecosystem studies. Ecology Letters, 2008, 11(10): 1111-1120. |
26 | Li J S, Shao X Q, Huang D, et al. The addition of organic carbon and nitrogen accelerates the restoration of soil system of degraded alpine grassland in Qinghai-Tibet Plateau. Ecological Engineering, 2020, 158: 106084. |
27 | Guo M Y, Zhao K T, You J C, et al. Soil microbial characteristic and soil respiration in grassland under different use patterns. Acta Agrestia Sinica, 2012, 20(1): 42-48. |
郭明英, 朝克图, 尤金成, 等. 不同利用方式下草地土壤微生物及土壤呼吸特性. 草地学报, 2012, 20(1): 42-48. | |
28 | Spencer D F, Enloe S F, Pitcairn M J, et al. Impacts of mowing and bud destruction on Centaurea solstitialis growth, flowering, root dynamics and soil moisture. Weed Research, 2014, 54(2): 140-150. |
29 | Zou Y K, Zhang J N, Yang D L, et al. Phospholipid fatty acid analysis of microbial community structure under different land use patterns in soil ecosystems of Leymus chinensis steppes. Acta Prataculturae Sinica, 2011, 20(4): 27-33. |
邹雨坤, 张静妮, 杨殿林, 等. 不同利用方式下羊草草原土壤生态系统微生物群落结构的PLFA分析. 草业学报, 2011, 20(4): 27-33. | |
30 | Sünnemann M, Alt C, Kostin J E, et al. Low-intensity land-use enhances soil microbial activity, biomass and fungal-to-bacterial ratio in current and future climates. Journal of Applied Ecology, 2021, 58(11): 2614-2625. |
31 | Wei L L, Lu C Y, Ding J, et al. Functional relationships between arbuscular mycorrhizal symbionts and nutrient dynamics in plant-soil-microbe system. Acta Ecologica Sinica, 2016, 36(14): 4233-4243. |
韦莉莉, 卢昌熠, 丁晶, 等. 丛枝菌根真菌参与下植物-土壤系统的养分交流及调控. 生态学报, 2016, 36(14): 4233-4243. | |
32 | Inselsbacher E, Umana N H N, Stange F C, et al. Short-term competition between crop plants and soil microbes for inorganic N fertilizer. Soil Biology and Biochemistry, 2010, 42(2): 360-372. |
33 | Li F S, Minggagud H, Jarvie S, et al. Mowing mitigates the adverse effects of fertilization on plant diversity and changes soil bacterial and fungal community structure in the Inner Mongolia grassland. Agriculture, Ecosystems & Environment, 2023, 346: 108358. |
34 | Zhou Z H, Zheng M H, Xia J Y, et al. Nitrogen addition promotes soil microbial beta diversity and the stochastic assembly. Science of the Total Environment, 2022, 806: 150569. |
35 | Cui H Y, Sun W, Delgado-Baquerizo M, et al. The effects of mowing and multi-level N fertilization on soil bacterial and fungal communities in a semiarid grassland are year-dependent. Soil Biology and Biochemistry, 2020, 151: 108040. |
36 | Shi M M, Zhang Y C, Zhang D Y, et al. Plant traits and soil properties in pasture mini-patches in an alpine meadow. Acta Prataculturae Sinica, 2015, 24(9): 197-205. |
石明明, 张永超, 张典业, 等. 高寒草甸草地微斑块植物特征及其土壤性质的研究. 草业学报, 2015, 24(9): 197-205. | |
37 | Shi C J, Li Y L, Cheng J W, et al. Spatial heterogeneity of plant and soil systems at the patch scale in a typical steppe in Inner Mongolia. Pratacultural Science, 2019, 36(6): 1498-1507. |
石椿珺, 李艳龙, 程建伟, 等. 内蒙古典型草原群落内部植物和土壤空间异质性. 草业科学, 2019, 36(6): 1498-1507. | |
38 | Lepš J. Scale- and time-dependent effects of fertilization, mowing and dominant removal on a grassland community during a 15-year experiment. Journal of Applied Ecology, 2014, 51(4): 978-987. |
[1] | 张盼, 李霄霄, 严发能, 何远乐, 白朕卿, 吴佳文. 甜高粱刈割后再生及碳水化合物的分配规律[J]. 草业学报, 2024, 33(5): 69-79. |
[2] | 秦瑞敏, 程思佳, 马丽, 张中华, 魏晶晶, 苏洪烨, 史正晨, 常涛, 胡雪, 阿的哈则, 袁访, 李珊, 周华坤. 围封和施肥对高寒草甸群落特征和植被碳氮库的影响[J]. 草业学报, 2024, 33(4): 1-11. |
[3] | 李俊瑶, 蒋星驰, 胡晋瑜, 魏栋光, 赵学勇, 王少昆. 生物有机肥施加对荒漠草原植被-土壤-微生物的影响[J]. 草业学报, 2024, 33(3): 34-45. |
[4] | 段鹏, 韦鎔宜, 王芳萍, 姚步青, 赵之重, 胡碧霞, 宋词, 杨萍, 王婷. 不同养分添加对黄河源区退化高寒湿地土壤微生物碳源利用的影响[J]. 草业学报, 2024, 33(2): 138-153. |
[5] | 石正海, 刘文辉, 张永超, 秦燕, 米文博, 罗峰, 刘曼, 起惠芳. 季节性氮磷配施提升环湖寒生羊茅生产性能[J]. 草业学报, 2024, 33(1): 149-158. |
[6] | 韩其飞, 尹龙, 李超凡, 张润钢, 王文彪, 崔正南. 天山北坡典型草地施肥阈值及不确定性分析[J]. 草业学报, 2024, 33(1): 19-32. |
[7] | 杨斯琪, 鲍雅静, 叶佳琦, 吴帅, 张萌, 徐梦冉, 赵钰, 吕晓涛, 韩兴国. 氮添加和刈割条件下羊草光合-CO2响应过程及模型比较研究[J]. 草业学报, 2023, 32(9): 160-172. |
[8] | 李思媛, 崔雨萱, 孙宗玖, 刘慧霞, 冶华薇. 封育对蒿类荒漠草地土壤有机碳及土壤微生物生物量生态化学计量特征的影响[J]. 草业学报, 2023, 32(6): 58-70. |
[9] | 江奥, 敬路淮, 泽让东科, 田黎明. 放牧影响草地凋落物分解研究进展[J]. 草业学报, 2023, 32(4): 208-220. |
[10] | 王琪, 郑佳华, 赵萌莉, 张军. 刈割强度对大针茅草原植物群落特征和土壤理化性质的影响[J]. 草业学报, 2023, 32(2): 26-34. |
[11] | 李变变, 张凤华, 赵亚光. 刈割高度对油莎豆氮代谢及产量和品质的影响[J]. 草业学报, 2023, 32(2): 84-96. |
[12] | 韦文敬, 石兆勇, 张梦歌, 杨爽, 杨文雅. 基于数据库的菌根与施肥对草地植物叶片性状影响的分析[J]. 草业学报, 2023, 32(10): 104-114. |
[13] | 周娟娟, 魏巍. 施肥和刈割协同对藏北高原禾草混播群落动态和超产的影响[J]. 草业学报, 2023, 32(10): 28-39. |
[14] | 陈卫东, 张玉霞, 张庆昕, 刘庭玉, 王显国, 王东儒. 末次刈割时间对苜蓿根颈抗氧化系统及抗寒性的影响[J]. 草业学报, 2022, 31(9): 129-138. |
[15] | 齐昊昊, 庞晓攀, 周俗, 郭正刚. 高原鼠兔刈割对青海湖流域高寒草甸植物种间关联的影响[J]. 草业学报, 2022, 31(8): 61-71. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||