[1] Wu T, Yao H Y, Mo B T, et al. The category and distribution of arbuscular mycorrhizal fungi from the rhizosphere of eight cultivated leguminous shrubs. Pratacultural Science, 2016, 33(2): 210-218. 吴涛, 姚红艳, 莫本田, 等. 8种豆科灌木栽培种丛枝菌根真菌种类及分布. 草业科学, 2016, 33(2): 210-218. [2] Sun J Q, Liu R J, Li M.Advances in the study of increasing plant stress resistance and mechanisms by arbuscular mycorrhizal fungi. Plant Physiology Journal, 2012, 48(9): 845-852. 孙吉庆, 刘润进, 李敏. 丛枝菌根真菌提高植物抗逆性的效应及其机制研究进展. 植物生理学报, 2012, 48(9): 845-852. [3] Hou S J, Li T, Lin G, et al. The influences of biogas residue and arbuscular mycorrhizal fungi on growth and mineral nutrition of Glycyrrhiza uralensis. Acta Scientiae Circumstantiae, 2016, 36(12): 4453-4460. 侯时季, 李涛, 蔺阁, 等. 施用沼渣和接种丛枝菌根真菌对甘草生长及矿质营养的影响. 环境科学学报, 2016, 36(12): 4453-4460. [4] Oseni T O, Shongwe N S, Masarirambi M T.Effect of arbuscular mycorrhiza (AM) inoculation on the performance of tomato nursery seedlings in vermiculite. International Journal of Agriculture and Biology, 2010, 12(5): 789-792. [5] Asai H, Samson B K, Stephan H M, et al. Biochar amendment techniques for upland rice production in Northern Laos: Soil physical properties, leaf SPAD and grain yield. Field Crops Research, 2009, 111(1/2): 81-84. [6] Laird D A, Fleming P, Davis D D, et al. Impact of biochar amendments on the quality of a typical midwestern agricultural soil. Geoderma, 2010, 158(3/4): 443-449. [7] Zhang W L, Li G H, Gao W D.Effect of biomass charcoal on soil character and crop yield. Chinese Agricultural Science Bulletin, 2009, 25(17): 153-157. 张文玲, 李桂花, 高卫东. 生物质炭对土壤性状和作物产量的影响. 中国农学通报, 2009, 25(17): 153-157. [8] Lu N.Impact of biochar on soil carbon and crop yield productive farmland in north China. Beijing: Chinese Academy of Agricultural Sciences, 2014. 鲁宁. 生物炭对华北高产农田土壤碳和作物产量的影响. 北京: 中国农业科学院, 2014. [9] Zheng W, Guo M, Chow T, et al. Sorption properties of greenwaste biochar for two triazine pesticides. Journal of Hazardous Materials, 2010, 181(1/2/3): 121-126. [10] Jones D L, Edwards-Jones G, Murphy D V.Biochar mediated alterations in herbicide breakdown and leaching in soil. Soil Biology & Biochemistry, 2011, 43(4): 804-813. [11] Deluca T H, Mackenzie M D, Gundale M J, et al. Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil Science Society of America Journal, 2006, 70(2): 448-453. [12] Ishii T, Kadoya K.Effects of charcoal as a soil conditioner on citrus growth and vesicular-arbuscular mycorrhizal development. Journal of the Japanese Society for Horticultural Science, 1994, 63(3): 529-535. [13] Jiang X T, Chi J.Phosphorus adsorption by and forms in Fe-modified biochar. Journal of Agro-Environment Science, 2014, 33(9): 1817-1822. 蒋旭涛, 迟杰. 铁改性生物炭对磷的吸附及磷形态的变化特征. 农业环境科学学报, 2014, 33(9): 1817-1822. [14] Inyang M, Gao B, Ding W, et al. Enhanced lead sorption by biochar derived from anaerobically digested sugarcane bagasse. Separation Science and Technology, 2011, 46(12): 1950-1956. [15] Agrafioti E, Kalderis D, Diamadopoulos E.Ca and Fe modified biochars as adsorbents of arsenic and chromium in aqueous solutions. Journal of Environmental Management, 2014, 146: 444-450. [16] Nzanza B, Marais D, Soundy P.Effect of arbuscular mycorrhizal fungal inoculation and biochar amendment on growth and yield of tomato. International Journal of Agriculture & Biology, 2012, 14(6): 965-969. [17] Yadav J P, Arya V, Yadav S, et al. Cassia occidentalis L.: A review on its ethnobotany, phytochemical and pharmacological profile. Fitoterapia, 2010, 81(4): 223-230. [18] Love A, Banerjee B D, Babu C R.Assessment of oxidative stress markers and concentrations of selected elements in the leaves of Cassia occidentalis growing wild on a coal fly ash basin. Environmental Monitoring and Assessment, 2013, 185(8): 6553-6562. [19] Phillips J M and Hayman D S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 1970, 55(1): 158-161. [20] Liu G S, Jiang N H, Zhang L D, et al.Soil Physical and Chemical Analysis and Description of Soil Profiles. Beijing: Standard Press of China, 1996. 刘光崧, 蒋能慧, 张连第, 等. 土壤理化分析与剖面描述 . 北京: 中国标准出版社, 1996. [21] Liu T W.Forest soil analysis are approved by the national standard. Journal of Hebei Forestry Science and Technology, 1986, (1): 51. 刘廷万. 森林土壤分析方法国家标准通过审定. 河北林业科技, 1986, (1): 51. [22] Fellet G, Marchiol L, Delle Vedove G, et al. Application of biochar on mine tailings: Effects and perspectives for land reclamation. Chemosphere, 2011, 83(9): 1262-1267. [23] Linderman R G.Mycorrhizal interactions with the rhizosphere microflora: The mycorrhizosphere effect. Phytopathologische Zeitschrift, 1988, 78(3): 366-371. [24] Van Zwieten L, Kimber S, Morris S, et al. Effect of biochar from slow pyrolysis of papermill waste on agronomic perform and soil fertility. Plant and Soil, 2010, 327(1): 235. [25] Ma Y R, Yang X H, Ge C H, et al. Study on activating effect of soil available P and K through application of cotton stalk biochar. Xinjiang Agricultural Sciences, 2014, 51(4): 660-666. 马彦茹, 杨新华, 葛春辉, 等. 棉秆生物质炭对两种石灰性土壤速效磷、速效钾的激活效应研究. 新疆农业科学, 2014, 51(4): 660-666. [26] Chen M, Du X G.Effect of biochar on soil properties and yield and quality of tobacco. Soils and Fertilizers Sciences in China, 2015, (1): 80-83. 陈敏, 杜相革. 生物炭对土壤特性及烟草产量和品质的影响. 中国土壤与肥料, 2015, (1): 80-83. [27] Warnock D D, Lehmann J, Kuyper T W, et al. Mycorrhizal responses to biochar in soil-concepts and mechanisms.Plant and Soil, 2007, 300(1/2): 9-20. [28] Teiner C, Glaser B, Teixeira W G, et al. Nitrogen retention and plant uptake on a highly weathered central amazonian ferrasol amended with compost and charcoal. Journal of Plant Nutrition and Soil Science, 2008, 171(6): 893-899. [29] Wang X H, Guo G X, Zheng R L, et al. Effect of biochar on abundance of n-related functional microbial communities in degraded greenhouse soil. Acta Pedologica Sinica, 2013, 50(3): 624-631. 王晓辉, 郭光霞, 郑瑞伦, 等. 生物炭对设施退化土壤氮相关功能微生物群落丰度的影响.土壤学报, 2013, 50(3): 624-631. [30] Kolb S E, Fermanich K J, Dornbush M E.Effect of charcoal quantity on microbial biomass and activity in temperate soils. Soil Science Society of America Journal, 2009, 73(4): 1173-1181. [31] Ezawa T, Yamamoto K, Yoshida S.Enhancement of the effectiveness of indigenous arbuscular mycorrhizal fungi by inorganic soil amendments. Soil Science and Plant Nutrition, 2002, 48(6): 897-900. [32] Wallstedt A, Coughlan A, Munson A D, et al. Mechanisms of interaction between Kalmia angustifolia cover and Picea mariana seedlings. Canadian Journal of Forest Research-revue Canadienne de Recherche Forestiere, 2002, 32(11): 2022-2031. [33] Han Y ,Jr . Douds D D, Boateng A A. Effect of biochar soil-amendments on Allium porrum growth and arbuscular mycorrhizal fungus colonization. Journal of Plant Nutrition, 2016, 39(11): 1654-1662. [34] Solaiman Z M, Blackwell P, Abbott L K, et al. Direct and residual effect of biochar application on mycorrhizal root colonisation, growth and nutrition of wheat. Soil Research, 2010, 48: 546-554. [35] Rondon M A, Lehmann J, Ramirez J, et al. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biology and Fertility of Soils, 2007, 43(6): 699-708. [36] Orfanoudakis M, Wheeler C T, Hooker J E.Both the arbuscular mycorrhizal fungus Gigaspora rosea and Frankia increase root system branching and reduce root hair frequency in Alnus glutinosa. Mycorrhiza, 2010, 20(2): 117-126. [37] Wang X, Pan Q, Chen F, et al. Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza, 2011, 21(3): 173-181. [38] Yao Q, Wang L R, Zhu H H, et al. Effect of arbuscular mycorrhizal fungal inoculation on root system architecture of trifoliate orange (Poncirus trifoliata L. Raf.) seedlings. Scientia Horticulturae, 2009, 121(4): 458-461. [39] Zhou Y N, Wu Q S, Li Y, et al. Effects of arbuscular mycorrhizal fungi on root system morphology and sucrose and glucose contents of Poncirus trifoliate. Chinese Journal of Applied Ecology, 2014, 25(4): 1125-1129. 邹英宁, 吴强盛, 李艳, 等. 丛枝菌根真菌对枳根系形态和蔗糖、葡萄糖含量的影响. 应用生态学报, 2014, 25(4): 1125-1129. [40] Luo Q Y, Wang X J, Lin S S, et al. Mechanism and application of bioremediation to heavy metal polluted soil using arbuscular mycorrhizal fungi. Acta Ecologica Sinica, 2013, 33(13): 3898-3906. 罗巧玉, 王晓娟, 林双双, 等. AM真菌对重金属污染土壤生物修复的应用与机理. 生态学报, 2013, 33(13): 3898-3906. [41] Klironomos J N.Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology, 2003, 84(9): 2292-2301. [42] Sarkar A, Asaeda T, Wang Q, et al. Arbuscular mycorrhizal influences on growth, nutrient uptake, and use efficiency of Miscanthus sacchariflorus growing on nutrient-deficient river bank soil. Flora, 2015, 212: 46-54. [43] Schneider K D, Lynch D H, Dunfield K, et al. Farm system management affects community structure of arbuscular mycorrhizal fungi. Applied Soil Ecology, 2015, 96: 192-200. |