[1] Wang L M, Ma N, Li S, et al. Nutritional properties of quinoa and its application prospects. Science and Technology of Food Industry, 2014, 35(1): 381-384, 389. 王黎明, 马宁, 李颂, 等. 藜麦的营养价值及其应用前景. 食品工业科技, 2014, 35(1): 381-384, 389. [2] Jacobsen S E, Mujica A, Jensen C R.The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Reviews International, 2003, 19(1/2): 99-109. [3] Wilson C, Read J J, Abo- Kassem E.Effect of mixed-salt salinity on growth and ion relations of a quinoa and a wheat variety. Journal of Plant Nutrition, 2002, 25(12): 2689-2704. [4] Jacobsen S E, Liu F, Jensen C R.Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.). Scientia Horticulturae, 2009, 122(2): 281-287. [5] Raney J A, Reynolds D J, Elzinga D B, et al. Transcriptome analysis of drought induced stress in Chenopodium quinoa. American Journal of Plant Sciences, 2014, 5(3): 338-357. [6] Jacobsen S E, Monteros C, Christiansen J L, et al. Plant responses of quinoa (Chenopodium quinoa Willd.) to frost at various phenological stages. European Journal of Agronomy, 2005, 22(2): 131-139. [7] Gu X, Huang J, Wei Y M, et al. Development prospect and research progress of Chenopodium quinoa. Chinese Agricultural Science Bulletin, 2015, 31(30): 201-204. 顾娴, 黄杰, 魏玉明, 等. 藜麦研究进展及发展前景. 中国农学通报, 2015, 31(30): 201-204. [8] Wang C J, Zhao X W, Lu G O, et al. A review of characteristics and utilization of Chenopodium quinoa. Journal of Zhejiang Agricultural and Forestry University, 2014, 31(2): 296-301. 王晨静, 赵习武, 陆国权, 等. 藜麦特性及开发利用研究进展. 浙江农林大学学报, 2014, 31(2): 296-301. [9] Yu Z Y, Liang S M.Analysis of irrigation water using efficiency in arid and semi-arid areas in northwest China based on Miami model. Journal of Arid Land Resource and Environment, 2017, 31(9): 49-55. 于智媛, 梁书民. 基于Miami模型的西北干旱半干旱地区灌溉用水效果评价——以甘宁蒙为例. 干旱区资源与环境, 2017, 31(9): 49-55. [10] Chang R Q, Wang L X, Li X P.Soil nutrition barriers in the southern area of ningxia. Agricultural Research in the Arid Areas, 1997, 15(2): 63-68. 常庆瑞, 王立祥, 李新平. 宁南地区土壤营养障碍性分析. 干旱地区农业研究, 1997, 15(2): 63-68. [11] Liu W Y, Yang F R, Huang J, et al. Response of seedling growth and the activity of antioxidant enzymes of Chenopodium quinoato salt stress. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(9): 1797-1804. 刘文瑜, 杨发荣, 黄杰, 等. NaCl胁迫对藜麦幼苗生长和抗氧化酶活性的影响. 西北植物学报, 2017, 37(9): 1797-1804. [12] Yang H W, Liu W Y, Shen B Y, et al. Seed germination and physiological characteristics of Chenopodium quinoa under salt stress. Acta Prataculturae Sinica, 2017, 26(8): 146-153. 杨宏伟, 刘文瑜, 沈宝云, 等. NaCl胁迫对藜麦种子萌发和幼苗生理特性的影响. 草业学报, 2017, 26(8): 146-153. [13] Zhang Z W, Pang C H, Zhang Y Q, et al. Effect of iso-osmotic NaCl and PEG stress and rewatering on seed germination and seedling growth of quinoa. Crops, 2017, (1): 119-126. 张紫薇, 庞春花, 张永清, 等. 等渗NaCl和PEG胁迫及复水处理对藜麦种子萌发及幼苗生长的影响. 作物杂志, 2017, (1): 119-126. [14] Shabala L, Mackay A, Tian Y, et al. Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa). Physiologia Plantarum, 2012, 146(1): 26-38. [15] Adolf V I, Jacobsen S E, Shabala S.Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd). Environmental & Experimental Botany, 2013, 92: 43-54. [16] Han D H, Zhang Y, Jin L.Effects of basic salt and mixed salt-alkali stress tolerance on seed germination and seedling physiological characteristic of Astraglus membranaceus var. mongholicus. Chinese Traditional and Herbal Drugs, 2013, 43(12): 1661-1666. 韩多红, 张勇, 晋玲. 碱性盐及混合盐碱胁迫对蒙古黄芪种子萌发和幼苗生理特性的影响. 中草药, 2013, 43(12): 1661-1666. [17] Li R, Shi F, Fukuda K.Interactive effects of various salt and alkali stresses on growth, organic solutes, and cation accumulation in a halophyte Spartina alterniflora (Poaceae). Environmental and Experimental Botany, 2010, 68(1): 66-74. [18] Zhang X L, Liu X J, Qi M X, et al. Alfalfa seeding root characteristics under complex saline-alkali stress. Chinese Journal of Eco-Agricultural, 2013, 21(3): 340-346. 张晓磊, 刘晓静, 齐敏兴, 等. 混合盐碱对紫花苜蓿苗期根系特征的影响. 中国生态农业学报, 2013, 21(3): 340-346. [19] Song J, Feng G, Zhang F S.Salinity and temperature effects on germination for three salt-resistant euhalophytes, Halostachys caspica, Kalidium foliatum and Halocnemum strobilaceum. Plant and Soil, 2006, 279(1/2): 201-207. [20] Song J, Feng G, Tian C Y, et al. Strategies for adaptation of Suaeda physophora, Haloxylon ammodendron and Haloxylon persicum to a saline environment during seed germination stage. Annals of Botany, 2005, 96(1): 399-405. [21] Gulnar Yasin, Yang R R, Zeng Y L.Effects of salt-alkali mixed stresses on seed germination of the halophyte Chenopodium glaucum L. Chinese Journal of Ecology, 2014, 33(1): 76-82. 古丽内尔·亚森, 杨瑞瑞, 曾幼玲. 混合盐碱胁迫对灰绿藜(Chenopodium glaucum L.)种子萌发的影响. 生态学杂志, 2014, 33(1): 76-82. [22] Li B B, Wei X H, Hu Y.The causes of Gentiana straminea Maxim. seeds dormancy and the methods for its breaking. Acta Ecologica Sinica, 2013, 33(15): 4631-4638. 李兵兵,魏小红,徐严. 麻花秦艽种子休眠机制及破除方法. 生态学报, 2013, 33(15): 4631-4638 [23] Liu W Y, Yang H W, Wei X H, et al. Effect of exogenous nitric oxide on seed germination, physiological characteristics and active oxygen metabolism of Medicago truncatula under NaCl stress. Acta Prataculturae Sinaca, 2015, 24(2): 85-95. 刘文瑜, 杨宏伟, 魏小红, 等. 外源NO调控盐胁迫下蒺藜苜蓿种子萌发生理特性及抗氧化酶的研究. 草业学报, 2015, 24(2): 85-95. [24] Shi J, Fu X Z, Peng T, et al. Spermine pretreatment confers dehydration tolerance of citrus in vitro plants via modylation of antioxidative capacity and stomatal response. Tree Phusuology, 2010, 30(7): 914-922. [25] Chen J X, Wang X F.Guide of plant physiological experiments. Guangzhou: South China University of Technology Press, 2006. 陈建勋, 王晓峰. 植物生理学实验指导. 广州: 华南理工大学出版社, 2006. [26] Halliwell B, Foyer C H.Properties and physiological function of a glutathione reductase purified from spinach leaves by affinity chromatography. Planta, 1978, 139(16): 9-17. [27] Hu N S, Wan X G.Isoenzyme technology and its application. Changsha: Hunan Science and Technology Press, 1985: 3-105. 胡能书, 万贤国. 同工酶技术及其应用. 长沙: 湖南科学技术出版社, 1985: 3-105. [28] Liang H W, Liu S, Chen F J, et al. Changes of peroxidase and esterase isoenzymes in the process of germination of silver magpie trees. Seed, 2006, 25(5): 38-40. 梁宏伟, 刘姝, 陈发菊, 等. 银鹊树种子萌发过程中的过氧化物酶和酯酶同工酶的变化.种子, 2006, 25(5): 38-40. [29] Aravind P, Varaprasad M N.Modulation of cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and glutathione metabolism. Plant physiology and Biochemistry, 2005, 43(2): 107-116. [30] Shen Z B, Pan D F, Wang J L, et al. Effects of saline-alkaloid stress on seed germination and seedling growth of grass. Acta Agrestia Sinica, 2012, 20(5): 914-920. 申忠宝, 潘多峰, 王建丽, 等. 混合盐碱胁迫对5种禾草种子萌发及幼苗生长的影响. 草地学报, 2012, 20(5): 914-920. [31] Zhang Y, Han D H, Jin L, et al. Effects of different salt-alkaline stress on seed germination and physiological characteristics of Hedysarum polybotrys. China Journal of Chinese Materia Medica, 2012, 37(20): 3036-3040. 张勇, 韩多红, 晋玲, 等. 不同盐碱胁迫对红芪种子萌发和幼苗生理特性的影响. 中国中药杂志, 2012, 37(20): 3036-3040. [32] Xu T J, Dong Z Q, Lan H L, et al. Effects of PASP-KT-NAA on photosynthesis and antioxidant enzyme activities of maize seedlings under low temperature stress. Acta agronomica sinica, 2012, 38(2):352-359. 徐田军, 董志强, 兰洪亮, 等. 低温胁迫下聚糠萘合剂对玉米幼苗光合作用和抗氧化酶活性的影响. 作物学报, 2012, 38(2): 352-359. [33] Tan S D, Zhu M Y, Dang H S, et al. Physiological response of bermudagrass (Cynodon dactylon L. Pers) to deep submergence stress in the three gorges reservoir area. Acta Ecologica Sinica, 2009, 29(7): 3685-3691. 谭淑端, 朱明勇, 党海山, 等. 三峡库区狗牙根对深淹胁迫的生理响应. 生态学报, 2009, 29(7): 3685-3691. [34] Zhang M, Liu J, Yang Z M, et al. Effects of high temperature stress on the activities and isozymes of antioxidant enzymes in kentucky bluegrass. Acta Agrestia sinica, 2014, 22(6): 1308-1317. 张梅, 刘君, 杨志民, 等. 高温胁迫对草地早熟禾抗氧化酶活性及其同工酶图谱的影响.草地学报, 2014, 22(6): 1308-1317. [35] Bai J H.The physiological mechanisms of oat responding to salt and alkali stress. Hohhot: Inner Mongolia Agricultural University, 2016. 白健慧. 燕麦对盐碱胁迫的生理响应机制研究. 呼和浩特: 内蒙古农业大学, 2016. [36] Chowdhury M A, Slinkard A E.Genetic diversity in grasspea (Lathyrus sativus L.). Genetic Resources and Crop Evolution, 2000, 47(2): 163-169. [37] Toyomasu T, Zennyoxi A.On the application of isoenzyme electrophoresis to identification of strains in Leurinus edodes. Mushroom Science, 1981, 11: 675-684. [38] Liu C J, Chao S, Gale M D.The genetical control of tissue-specific peroxidases, per-1, per-2, per-3, per-4, and per-5 in wheat. Theoretical and Applied Genetics, 1990, 79(3): 305-313. [39] Sun J, Wang X Z.Effects of salts stress on gene expression of peroxidase isozyme in wheat. Journal of Triticeae Crops, 2006, 42-44. 孙静, 王宪泽. 盐胁迫对小麦过氧化物酶同工酶基因表达的影响. 麦类作物学报, 2006, 26(1): 42-44. [40] Guo L H, Chen S N, Wang D B, et al. Changes in activity of glutathione reductase and it’s isozyme of maize seedlings during heat shock and heat stress. Journal of Yunnan University. 2006, 28(3): 262-266. 郭丽红, 陈善娜, 王德斌, 等. 热激和热胁迫过程中玉米幼苗谷胱甘肽还原酶活性和同工酶的变化. 云南大学学报, 2006, 262-266. [41] Wang W X, Wang X F, Yan Q H.Changes of antioxidant enzymes during salt stress on seedling leaves of tomato (Lycopersicon esculentum L.). Journal of Sichuan Agricultural University, 2013, 31(2): 169-175. 王维香, 汪晓峰, 严庆海. 盐胁迫对番茄幼苗(Lycopersicon esculentum L.)抗氧化酶活性和同工酶的影响. 四川农业大学学报, 2013, 31(2): 169-175. [42] Zhao F Y, Hu F, Han M M, et al. Relationship between H2O2 and changes of glutathione reductase activity and isoenzyme pattern induced by stress. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(3): 543-551. 赵凤云, 胡凡, 韩明明, 等. 胁迫诱导谷胱甘肽还原酶活性和同工酶谱的变化与H2O2的关系. 西北植物学报, 2011, 31(3): 543-551. |