[1] Zhang X N.Study on drying mechanism and additives storage technology of alfalfa. Hohhot: Inner Mongolia Agricultural University, 2010. 张晓娜. 苜蓿助干机制及添加剂贮藏技术的研究. 呼和浩特: 内蒙古农业大学, 2010. [2] Guo Z M.Effects of alfalfa hay supplementation on milk yield and milk fat of dairy. Journal of Animal Science and Veterinary Medicine, 2010, 29(3): 20-21, 23. 郭志明. 苜蓿干草不同添加量对奶牛产奶量和乳脂率的影响. 畜牧兽医杂志, 2010, 29(3): 20-21, 23. [3] Zhao Y M, Zhong H, Cui Z W, et al. Nutritional properties of different varieties and harvest periods of alfalfa. Prataculturae & Animal Husbandry, 2015, (1): 17-22. 赵燕梅, 钟华, 崔志文, 等. 不同品种、刈割时期苜蓿的营养特性. 草业与畜牧, 2015, (1): 17-22. [4] Yu H, Yao J H, Liu R, et al. Comprehensive evaluation on forage yield nutrition quality and winter surviving rate of different alfalfa varieties. Chinese Journal of Grassland, 2010, 32(3): 108-111. 于辉, 姚江华, 刘荣, 等. 四个紫花苜蓿品种草产量、营养品质及越冬率的综合评价. 中国草地学报, 2010, 32(3): 108-111. [5] Kang J M, Yang Q C, Guo W S, et al. Yield evaluation of ten introduced alfalfa cultivars in Beijing area of China. Chinese Journal of Grassland, 2010, 32(6): 5-10. 康俊梅, 杨青川, 郭文山, 等. 北京地区10个紫花苜蓿引进品种的生产性能研究. 中国草地学报, 2010, 32(6): 5-10. [6] Gao W W, Tong J M, Li Z, et al. Quantification of saponins in 45 different cultivars of alfalfa (Medicago sativa L.). Chinese Agricultural Science Bulletin, 2006, (2): 191-194. 高微微, 佟建明, 李展, 等. 不同品种紫花苜蓿中总皂苷含量的比较研究. 中国农学通报, 2006, (2): 191-194. [7] Costo V, Angelini C, De F I, et al. Uncovering the complexity of transcriptomes with RNA-Seq. Biomed Biotechnol, 2010, 853-916. [8] Lu T T, Lu G J, Fan D L, et al. Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. Genome Research, 2010, 20: 1238-1249. [9] Wang Z Y, Fang B P, Chen J Y, et al. De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweet potato (Ipomoea batatas). BMC genomics, 2010, 11(1): 726. [10] Zhang J N, Liang S, Duan J L, et al. De novo assembly and characterization of the transcriptome during seed development, and generation of genic-SSR markers in peanut (Arachis hypogaea L.). BMC Genomics, 2012, 13(1): 90. [11] Grabherr M G, Haas B J, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 2011, 29(7): 644-652. [12] Mortazavi A, Williams B A, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 2008, 5(7): 621-628. [13] Reiner A, Yekutieli D, Benjamini Y.Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics, 2003, 19(3): 368-375. [14] Conesa A, Götz S, García-Gómez J M, et al. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 2005, 21: 3674-3676. [15] Ye J, Fang L, Zheng H K, et al. Wego: A web tool for plotting go annotations. Nucleic Acids Research, 2006, 34(2): 293-297. [16] Yang S.Feed analysis and feed quality inspection technology. Beijing: China Agricultural University Press, 1999. 杨胜. 饲料分析及饲料质量检测技术. 北京: 北京农业大学出版社, 1999. [17] Chen J.Comparison on agronomic traits and nutritional value of 20 alfalfa varieties in different soil conditions. Changchun: Northeast Normal University, 2017. 陈洁. 不同土壤条件下20个紫花苜蓿品种农艺性状及营养价值的比较. 长春: 东北师范大学, 2017. [18] Mizrachi E, Hefer C A, Ranik M, et al. De novo assembled expressed gene catalog of a fast-growing eucalyptus tree produced by Illuminam RNA-Seq. BMC genomics, 2010, 11(1): 681. [19] Wang Z, Fang B, Chen J, et al. De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweet potato (Ipomoea batatas). BMC genomics, 2010, 11: 726. [20] Iorizzo M, Senalik D A, Grzebelus D, et al. De novo assembly and characterization of the carrot transcriptome reveals novel genes, new markers, and genetic diversit. BMC genomics, 2011, 12: 389. [21] Gahlan P, Singh H R, Shankar R, et al. De novo sequencing and characterization of Picrorhiza kurrooa transcriptome at two temperatures showed major transcriptome adjustments. BMC genomics, 2012, 13: 126. [22] Liu X Q, Zhang H, Gong P, et al. Transcriptome analysis of secondary cell wall synthesis regulation at different developmental stages in alfalfa (Medicago sativa L.). Scientia Agricultura Sinica, 2018, 51(11): 2049-2059. 刘希强, 张涵, 龚攀, 等. 紫花苜蓿不同发育时期次生壁合成调控的转录组分析. 中国农业科学, 2018, 51(11): 2049-2059. [23] Zhang S H.De novo transcriptome sequencing and comparison of gene expression between fall dormant and non-fall dormant Medicago sativa L. Zhengzhou: Henan Agricultural University, 2013. 张森浩. 秋眠及非秋眠紫花苜蓿转录组测序及秋眠相关差异基因的筛选. 郑州: 河南农业大学, 2013. [24] Yang Y, Xu M, Luo Q, et al. De novo transcriptome analysis of Liriodendron chinense petals and leaves by Illumina sequencing. Gene, 2014, 534(2): 155-162. [25] Chen L, Li L N, Dai Y P, et al. De novo transcriptome sequencing and analysis of carotenoids biosynthesis related gene expression in Osmauthus serrulatus. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016, 40(5): 21-28. 陈林, 李龙娜, 戴亚平, 等. 短丝木犀转录组测序及类胡萝卜素生物合成相关基因表达分析. 南京林业大学学报(自然科学版), 2016, 40(5): 21-28. [26] Mu H N, Li H G, Wang L G, et al. Transcriptome sequencing and analysis of sweet osmanthus (Osmanthus fragrans Lour.). Genes genomics, 2014, 36(6): 777-788. [27] Li Q Y, Zhong C L, Jiang Q B, et al. Sequencing and organization differentially expressed genes analysis of Michelia macclurei transcriptome. Molecular Plant Breeding, 2017, 15(11): 4396-4404. 李清莹, 仲崇禄, 姜清彬, 等. 火力楠转录组测序与组织差异表达基因分析. 分子植物育种, 2017, 15(11): 4396-4404. [28] Wu X Y, Yan Y, Liu X L.Analysis of the transcriptome of Swertia mileensis based on high-throughput sequencing. Chinese Journal of Modern Applied Pharmacy, 2018, 35(3): 363-369. 吴昕怡, 严媛, 刘小莉. 基于高通量测序的青叶胆转录组研究. 中国现代应用药学, 2018, 35(3): 363-369. [29] Qi X.The analysis of the differentially expressed genes in alfalfa under cold stress at transcriptome level. Beijing: Chinese Academy of Agricultural Science, 2017. 齐晓. 紫花苜蓿在转录组水平响应低温胁迫的差异表达基因研究. 北京: 中国农业科学院, 2017. [30] Jiang C.Analysis of the alfalfa (Medicago sativa L.) transcriptome and physiological property in response to salinity stres. Tai’an: Shandong Agricultural University, 2014. 江超. 紫花苜蓿耐盐生理特性及转录组分析. 泰安: 山东农业大学, 2014. [31] Deng M J, Dong Y P, Zhao Z L, et al. Illumina-based de novo sequencing and characterization of the transcriptome of Paulowuia plant. Scientia Silvae Sinicae, 2013, 49(6): 30-36. 邓敏捷, 董焱鹏, 赵振利, 等. 基于Illumina高通量测序的泡桐转录组研究. 林业科学, 2013, 49(6): 30-36. [32] Zhang X S, Pei J J, Zhao L G, et al. Transcriptome analysis of different Osmanthus reveals insight into the difference of Osmanthus oil components. Natural Product Research and Development, 2016, 28(4): 529-535. 张雪松, 裴建军, 赵林果, 等. 不同品种桂花转录组分析及桂花精油成分差异的初步探讨. 天然产物研究与开发, 2016, 28(4): 529-535. [33] Gao Y, Chen G H, Chen X J, et al. Regulation of cellulose biosynthesis in plant cell wall. Biotechnology Bulletin, 2014, (1): 1-7. 高艳, 陈光辉, 陈秀娟, 等. 植物细胞壁纤维素生物合成的调控. 生物技术通报, 2014, (1): 1-7. |