[1] Wang J, Yao L, Li B, et al. Comparative proteomic analysis of cultured suspension cells of the halophyte halogeton glomeratus by iTRAQ provides insights into response mechanisms to salt stress. Frontiers in Plant Science, 2016, 7: 110. [2] Wang X, Yang J, Liu G, et al. Impact of irrigation volume and water salinity on winter wheat productivity and soil salinity distribution. Agricultural Water Management, 2015, 149: 44-54. [3] Rengasamy P. World salinization with emphasis on Australia. Journal of Experimental Botany, 2006, 57(5): 1017-1023. [4] Yang J S. Development history and prospect of research on saline soil in China. Journal of Soil Science, 2008, 45(5): 837-845. 杨劲松. 中国盐渍土研究的发展历程与展望. 土壤学报, 2008, 45(5): 837-845. [5] Yamaguchi T, Blumwald E. Developing salt-tolerant crop plants: Challenges and opportunities. Trends in Plant Science, 2005, 10: 615-620. [6] Zhao X Y, Bian X Y, Li Z X, et al. Genetic stability analysis of introduced Betula pendula, kirghisorum birch and birch pubescent families in saline-alkali soil of northeastern China. Scandinavian Journal of Forest Research, 2014, 29(7): 639-649. [7] Zhang X X, Shi Z Q, Tian Y J, et al. Salt stress increases content and size of glutenin macropolymers in wheat grain. Food Chemistry, 2016, 197(Pt A): 516-521. [8] Marschner H. The soil-root interface (rhizosphere) in relation to mineral nutrition. Mineral Nutrition of Higher Plants, 1990,9(1/3): 19-27. [9] Kopittke P M. Interactions between Ca, Mg, Na and K: Alleviation of toxicity in saline solutions. Plant & Soil, 2012, 352(1/2): 353-362. [10] Fan Y, Shen W, Cheng F. Reclamation of two saline-sodic soils by the combined use of vinegar residue and silicon-potash fertiliser. Soil Research, 2018, 56(8): 801-809. [11] Wang Y Z, Liu Q, Gao Y N, et al. Advances in response mechanisms of plants to saline-alkali stress. Acta Ecologica Sinica, 2017, 37(16): 5565-5577. 王佺珍, 刘倩, 高娅妮, 等. 植物对盐碱胁迫的响应机制研究进展. 生态学报, 2017, 37(16): 5565-5577. [12] Wu G Q, Wang S M. Calcium regulates K+/Na+ homeostasis in rice (Oryza sativa L.) under saline conditions. Plant Soil & Environment, 2012, 58(3): 121-127. [13] Yue X H, Cao J, Geng J, et al. Effects of salt stress on growth, ion balance and rhizosphere pH of beer barley seedlings. Chinese Journal of Ecology, 2018, 38(20): 7373-7380. 岳小红, 曹靖, 耿杰, 等. 盐分胁迫对啤酒大麦幼苗生长、离子平衡和根际pH变化的影响. 生态学报, 2018, 38(20): 7373-7380. [14] Zhao Y, Wu J, Shang D, et al. Subcellular distribution and chemical forms of cadmium in the edible seaweed, Porpliyra yezoensis. Food Chemistry, 2015, 168: 48-54. [15] Li D, Zhou D. Toxicity and subcellular distribution of cadmium in wheat as affected by dissolved organic acids. Journal of Environmental Sciences, 2012, 24(5): 903-911. [16] Soudek P, Valenová Š, Vavrìková Z, et al. 137 Cs and 90 Sr uptake by sunflower cultivated under hydroponic conditions. Journal of Environmental Radioactivity, 2006, 88(3): 236-250. [17] Hao H P, Li H, Jiang C D, et al. Ion micro-distribution in varying aged leaves in salt-treated cucumber seedlings. Plant Physiology and Biochemistry, 2018, 129(8): 71-76. [18] Yang X Y, Yang J S. Effects of salt stress on growth of ryegrass seed lings and its mitigavite effects of P fertilizer. Soil Notification, 2005, (6): 85-88. 杨晓英, 杨劲松. 盐胁迫对黑麦草幼苗生长的影响及磷肥的缓解作用. 土壤通报, 2005, (6): 85-88. [19] Liu Z Y, Liu Y. Effects of different saline-alkali stress on seed germination and seedling physiological characteristics of platycodon grandiflorum. Jiangsu Agricultural Sciences, 2018, 46(24): 144-147. 刘志洋, 刘岩. 不同盐碱胁迫对桔梗种子萌发和幼苗生理特征的影响. 江苏农业科学, 2018, 46(24): 144-147. [20] Wang J J, Wang D L, Yin Z J, et al. Identification of cold resistance from germination to seedling stage of upland cotton. Scientia Agricultura Sinica, 2016, 49(17): 3332-3346. 王俊娟, 王德龙, 阴祖军, 等. 陆地棉萌发至幼苗期抗冷性的鉴定. 中国农业科学, 2016, 49(17): 3332-3346. [21] Li X F, Zhang Z L. Plant physiology guide. Beijing: Higher Education Press, 1980. 李小方, 张志良. 植物生理学指导. 北京: 高等教育出版社, 1980. [22] Galmés J, Flexas J, Savé R, et al. Water relations and stomatal characteristics of Mediterranean plants with different growth forms and leaf habits: Responses to water stress and recovery. Plant and Soil, 2006, 290(1/2): 139-155. [23] Mao L C, Pang H Q, Wang G Z, et al. Phospholipase D and lipoxygenase activity of cucumber fruit in response to chilling stress. Postharvest Biology and Technology, 2007, 44(1): 42-47. [24] Fu Q, Yang L Y, Lai J L, et al. Tissue accumulation and subcellular distribution of cesium in Vicia faba. Asian Journal of Ecotoxicology, 2015, 10(6): 297-304. 付倩, 杨垒滟, 赖金龙, 等. 蚕豆对铯的吸收蓄积及亚细胞分布研究. 生态毒理学报, 2015, 10(6): 297-304. [25] Shi C, Yang X Q, Yan H B. Scanning electron microscopic observation of the leaves of T. tanguticus under salt stress. Journal of Shanxi Agricultural University (Natural Science Edition), 2017, 37(1): 35-39. 史婵, 杨秀清, 闫海冰. 盐胁迫下唐古特白刺叶片的扫描电镜观察. 山西农业大学学报(自然科学版), 2017, 37(1): 35-39. [26] Yang C, Chong J, Li C, et al. Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions. Plant and Soil, 2007, 294(1/2): 263-276. [27] Liang Z S, Kang S Z, Shao M A, et al. Effects of soil dry and wet alternation on growth rate and water consumption of maize. Journal of Agricultural Engineering, 2000, 16(5): 38-40. 梁宗锁, 康绍忠, 邵明安, 等. 土壤干湿交替对玉米生长速度及其耗水量的影响. 农业工程学报, 2000, 16(5): 38-40. [28] Acosta-Motos J R, Lvarez S, Barba-Espín G, et al. Salts and nutrients present in regenerated waters induce changes in water relations, antioxidative metabolism, ion accumulation and restricted ion uptake in Myrtus communis L. plants. Plant Physiology and Biochemistry, 2014, 85: 41-50. [29] Sui D Z. Effects of salt stress on the growth of willow clones. Nanjing: Nanjing Forestry University, 2006. 隋德宗. 盐胁迫对柳树无性系幼苗生长影响的研究. 南京: 南京林业大学, 2006. [30] Wei X Y, Liang D N, Pang D M, et al. Physiological responses of 14 perennial ryegrass varieties to salt stress at seedling stage. Anhui Agricultural Sciences, 2017, 45(1): 8-12. 魏晓艳, 梁丹妮, 庞丁铭, 等. 14个多年生黑麦草品种幼苗期对盐胁迫的生理响应. 安徽农业科学, 2017, 45(1): 8-12. [31] Ma D P. Exogenous NO and spermine improve the salt tolerance of tall fescue. Zhengzhou: Zhengzhou University, 2007. 麻德平. 外源NO和精胺提高高羊茅草耐盐性研究. 郑州: 郑州大学, 2007. [32] Lynch J, Cramer G R, Luchli A. Salinity reduces membrane-associated calcium in corn root protoplasts. Plant Physiology, 1987, 83(2): 390-394. [33] Liu J X, Hu H B, Wang X. Mitigative effects of exogenous nitric oxide on growth inhibition and oxidative damage of ryegrass seedling roots under salt stress. Plant Research, 2008, 28(1): 7-13. 刘建新, 胡浩斌, 王鑫. 外源NO对盐胁迫下黑麦草幼苗根生长抑制和氧化损伤的缓解效应. 植物研究, 2008, 28(1): 7-13. [34] Liu J, Feng C Q, Jin J, et al. Study on absorption selectivity and transport selectivity of salt separators from Xinjiang Poplar. Journal of Arid Land Resources and Environment, 2007, (11): 118-122. 刘静, 冯长青, 金娟, 等. 新疆杨对盐分离子吸收选择性和运输选择性的研究. 干旱区资源与环境, 2007, (11): 118-122. [35] Zhang J L. Improvement of salt tolerance of potato using the Na+/H+ antiporter gene (AtNHX1) of Arabidopsis tonoplast. Lanzhou: Gansu Agricultural University, 2006. 张俊莲. 利用拟南芥液泡膜Na+/H+逆向转运蛋白基因(AtNHX1)改良马铃薯耐盐性的研究. 兰州: 甘肃农业大学, 2006. [36] Xia J C, Zhang X L. Study on signal transduction mechanism related to salt stress in plants. Anhui Agricultural Sciences, 2014, 42(34): 12023-12027. 夏金婵, 张小莉. 植物盐胁迫相关信号转导机制的研究. 安徽农业科学, 2014, 42(34): 12023-12027. [37] Ghanem M E, Elteren J V, Albacete A, et al. Impact of salinity on early reproductive physiology of tomato (Solanum lycopersicum) in relation to a heterogeneous distribution of toxic ions in flower organs. Functional Plant Biology, 2009, 36(2): 125-136. [38] Liu M, Wang T Z, Zhang W H. Sodium extrusion associated with enhanced expression of SOS1 underlies different salt tolerance between Medicago falcata and Medicago truncatula seedlings. Environmental & Experimental Botany, 2015, 110: 46-55. [39] Esau K. Anatomy of seed plants. Bulletin of the Torrey Botanical Club, 1960, 90(2): 362, 364. [40] Zhang Y M, Tian C X. Anatomical mechanism of melilotus of ficinalis tolerance to NaHCO3 aline alkaline stress. Acta Prataculturae Sinica, 2016, 25(9): 83-95. 张咏梅, 田晨霞. 黄花草木樨耐NaHCO3盐碱胁迫的解剖学解释. 草业学报, 2016, 25(9): 83-95. [41] Poljakoff-Mayber A, Mayer A M, Gedalovich E, et al. Changes induced by salinity to the anatomy and morphology of excised pea roots in culture. Annals of Botany, 1986, 57(6): 811-818. [42] Wang J, Huang W, Liu T. Study on root morphological structure of several spring wheat seeds under different water stresses. Journal of Desert Research, 2000, (1): 80-82. 王静, 黄薇, 刘桐. 不同水分胁迫下几种春小麦种子根形态结构的研究. 中国沙漠, 2000, (1): 80-82. [43] Xiao X H, Li X H, Liu Y, et al. Differences in ion accumulation in wild soybean (Glycine Soja) under high saline stress. Acta Agronomica Sinica, 2011, 37(7): 1289-1300. 肖鑫辉, 李向华, 刘洋, 等. 高盐碱胁迫下野生大豆(Glycine soja)体内离子积累的差异. 作物学报, 2011, 37(7): 1289-1300. |