[1] Peng Y L, Zhao X Q, Ren X W, et al. Geneotypic differences in response of physiological characteristics and grain yield of maize inbred lines to drought stress at flowering stage. Agricultural Research in the Arid Areas, 2014, 32(3): 9-14. 彭云玲, 赵小强, 任续伟, 等. 开花期干旱胁迫对不同基因型玉米生理特性和产量的影响. 干旱地区农业研究, 2014, 32(3): 9-14. [2] Zhao X Q, Peng Y L, Zhang J W, et al. Mapping QTLs and meta-QTLs for two inflorescence architecture traits in multiple maize populations under watering environments. Molecular Breeding, 2017, 37(7): 91. [3] Zhao X Q, Fang P, Zhang J W, et al. QTL mapping for six ear leaf architecture traits under water-stressed and well-watered conditions in maize (Zea mays L.). Plant Breeding, 2018, 137(1): 60-72. [4] Zhao X Q, Peng Y L, Zhang J W, et al. Identification of QTLs and meta-QTLs for seven agronomic traits in multiple maize populations under well-watered and water-stressed conditions. Crop Science, 2018, 58(2): 507-520. [5] Daryanto S, Wang L, Jacinthe P A. Global synthesis of drought effects on maize and wheat production. PLoS One, 2016, 11: e0156362. [6] Jensen P B. The production of matter in agricultural plants and its limitation. Biology and Medicine, 1949, 21(2): 24. [7] Donald C M. The breeding of crop ideotypes. Euphytica, 1968, 17(3): 385-403. [8] Duvick D N. Genetic progress in yield of United States maize (Zea mays L.). Maydica, 2005, 50: 193-202. [9] Zhu Z H, Zheng W Y, Zhang X K. Principal component analysis and comprehensive evaluation on morphological and agronomic traits of drought tolerance in rapeseed (Brassica napus L.). Scientia Agricultura Sinica, 2011, 44(9): 1775-1787. 朱宗河, 郑文寅, 张学昆. 甘蓝型油菜耐旱相关性状的主成分分析及综合评价. 中国农业科学, 2011, 44(9): 1775-1787. [10] Isidro J, Knox R, Clarke F, et al. Quantitative genetic analysis and mapping of leaf abgle in durum wheat. Planta, 2012, 236(6): 1713-1723. [11] Sohrabi M, Rafii M Y, Hanafi M M, et al. Genetic diversity of upland rice germplasm in Malaysia based on quantitative traits. The Scientific World Journal, 2012, 2012: 416291. [12] Su B H, Li Z F, Qiu L J. Phenotypic and physiological identification of an ideal plant type mutant it1 in soybean (Glycine max (L.) Merr.). Journal of Plant Genetic Resources, 2016, 17(3): 523-528. 苏伯鸿, 李忠峰, 邱丽娟. 一个大豆理想株型突变体it1的表型和生理鉴定. 植物遗传资源学报, 2016, 17(3): 523-528. [13] Zhao X Q. Genetic mechanisms study of drought tolerance related to plant architecture in maize (Zea mays L.). Lanzhou: Gansu Agricultural University, 2018: 48-55. 赵小强. 玉米株型相关耐旱遗传机理研究. 兰州: 甘肃农业大学, 2018: 48-55. [14] Yang D L, Liu Y, Cheng H B, et al. Genetic dissection of flag leaf morphology in wheat (Triticum aestivum L.) under diverse water regimes. BMC Genetics, 2016, 17: 94. [15] He H J, Kou S R, Wang X J. Effects of drought stress on photosynthetic characteristics and yield components of different plant types of corn. Agricultural Research in the Arid, 2011, 29(3): 63-66. 何海军, 寇思荣, 王晓娟. 干旱胁迫对不同株型玉米光合特性及产量性状的影响. 干旱地区农业研究, 2011, 29(3): 63-66. [16] Peng Y L, Zhao X Q, Ren X W, et al. Effect of drought stress on growth of different plant type maize (Zea mays) in the bell-mouthed period. Journal of Desert Research, 2013, 33(5): 1064-1070. 彭云玲, 赵小强, 任续伟, 等. 干旱胁迫对不同株型玉米大喇叭口期生长的影响. 中国沙漠, 2013, 33(5): 1064-1070. [17] Zhao X Q, Peng Y L, Li J Y, et al. Comprehensive evaluation of salt tolerance in 16 maize inbred lines. Agricultural Research in the Arid Areas, 2014, 32(5): 40-45. 赵小强, 彭云玲, 李健英, 等. 16份玉米自交系的耐盐性评价. 干旱地区农业研究, 2014, 32(5): 40-45. [18] Zhao X Q, Fang P, Peng Y L, et al. Genetic analysis and QTL mapping for seven agronomic traits in maize (Zea mays) using two connected populations. Acta Prataculturae Sinica, 2018, 27(9): 152-165. 赵小强, 方鹏, 彭云玲, 等. 基于两个相关群体的玉米7个主要农艺性状遗传分析和QTL定位. 草业学报, 2018, 27(9): 152-165. [19] Shi Y S, Li Y, Wang T Y. Descriptors and data standard for maize (Zea mays). Beijing: China Agriculture Press, 2006: 1-98. 石云素, 黎裕, 王天宇. 玉米种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006: 1-98. [20] Zhao X Q, Fang P, Peng Y L, et al. QTL mapping for six ear-related traits based on two maize (Zea mays) related populations. Journal of Agricultural Biotechnology, 2018, 26(5): 729-742. 赵小强, 方鹏, 彭云玲, 等. 基于两个相关群体的玉米6个穗部性状QTL定位. 农业生物技术学报, 2018, 26(5): 729-742. [21] Yu L H, Wu S J, Peng Y S, et al. Arabidopsis EDT1/HDG11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the yield. Plant Biotechnology Journal, 2016, 14(1): 72-84. [22] Lichtenthaler H K, Wellburn A R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Analysis, 1983, 11(5): 591-592. [23] Xu F F, Xu P, Hu Z T, et al. Photosynthetic physiological response of cabbage to salt stress. Molecular Plant Breeding, 2018, 16(10): 3327-3332. 徐芬芬, 徐鹏, 胡志涛, 等. 小白菜对盐胁迫的光合生理响应. 分子植物育种, 2018, 16(10): 3327-3332. [24] Guo S L, Zhang J, Qi J S, et al. Analysis of meta-quantitative trait loci and candidate genes related to leaf shape in maize. Chinese Bulletin of Botany, 2018, 53(4): 1-15. 郭书磊, 张君, 齐建双, 等. 玉米叶形相关性状的meta-QTL及候选基因分析. 植物学报, 2018, 53(4): 1-15. [25] Pan Q C, Xu Y C, Li K, et al. The genetic basis of plant architecture in 10 maize recombinant inbred line populations. Plant Physiology, 2017, 175(2): 858-873. [26] Ku L X, Zhang J, Guo S L, et al. Integrated multiple population analysis of leaf architecture traits in maize (Zea mays L.). Journal Experimental Botany, 2012, 63(1): 261-274. [27] Ku L X, Zhao W M, Zhang J, et al. Quantitative trait loci mapping of leaf angle and leaf orientation value in maize (Zea mays L.). Theoretical and Applied Genetics, 2010, 121(5): 951-959. [28] Ribaut J, Betran J, Mnneveux P. Drought tolerance in maize//Handbook of maize: Its biology. New York: Springer, 2009: 311-344. [29] Jeff L B. Handbook of maize: Its Biology. New York: Springer, 2010: 324. [30] Dong H F, Li H, Huo C B, et al. Correlative degree analysis between maize drought-resistance traits and plant-type traits. Journal of Maize Sciences, 2011, 19(6): 87-90. 董红芬, 李洪, 霍成斌, 等. 玉米抗旱性状与株型性状的关联度分析. 玉米科学, 2011, 19(6): 87-90. [31] Wang J. QTL identification of sword leaf and yield related traits under drought stress in rice. Harbin: Northeast Agricultural University, 2012. 王晋. 干旱胁迫对水稻剑叶和产量相关性状的QTL定位研究. 哈尔滨: 东北农业大学, 2012. [32] Zhao X Q, Ren B, Peng Y L, et al. Epistatic and QTL×environment interaction effects for ear related traits in two maize (Zea mays) populations under eight watering environments. Acta Agronomica Sinica, 2019, 45(5): 676-691. 赵小强, 任斌, 彭云玲, 等. 8种水旱环境下两个玉米群体穗部性状QTL间的上位性及环境互作效应分析. 作物学报, 2019, 45(5): 676-691. [33] Gao Y, Wu M Q, Zhang M J, et al. Roles of a maize phytochrome-interacting factors protein ZmPIF3 in regulation of drought stress responses by controlling stomatal closure in transgenic rice without yield penalty. Plant Molecular Biology, 2018, 97(4/5): 311-323. [34] Yu H Q, Wu Z H, Shen X Y, et al. Changes of stomatal density, length, width and microstructure of maize leaves under drought stress. Journal of Jilin Agricultural University, 2003, 25(3): 239-242. 于海秋, 武志海, 沈秀瑛, 等. 水分胁迫下玉米叶片气孔密度、大小及显微结构的变化. 吉林农业大学学报, 2003, 25(3): 239-242. [35] Li Z Z, Zhang L, Li S, et al. Responses of stomata and kranz anatomy of maize leaves to soil water shortages. Chinese Journal of Applied Ecology, 2014, 25(10): 2944-2950. 李真真, 张莉, 李思, 等. 玉米叶片气孔及花环和维管束结构对水分胁迫的响应. 应用生态学报, 2014, 25(10): 2944-2950. [36] Mihye J, In-Kyu K, Kil C, et al. Physiological responses to drought stress of transgenic Chinese cabbage expressing Arabidopsis H+-pyrophosphatase. Journal of Plant Biotechnology, 2013, 40(3): 156-162. [37] Yang B Y, Zhong F L, Lin Y Z. Nutritional quality and photosynthetic characteristics of purple cabbage under drought stress. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(5): 912-921. 杨碧云, 钟凤林, 林义章. 干旱对紫色小白菜光合特性及营养品质的影响. 西北植物学报, 2018, 38(5): 912-921. [38] Rajasekar M, Pabert G A, Manivavvan P. The effect of triazole induced photosynthetic pigments and biochemical constituents of Zea mays L. (maize) under drought stress. Applied Nanoscience, 2016, 6(5): 727-735. [39] Hazem M K, Govindijee, Karolina B, et al. Effects of salt stress on photosystem II efficiency and CO2 assimilation of two syrian and barley landraces. Environmental and Experimental Botany, 2011, 73(3): 64-72. [40] Toshiyuki T, Masahiro Y, Toshio Y. Canopy temperature on clear and cloudy days can be used to estimate varietal differences in stomatal conductance in rice. Field Crops Research, 2010, 115(2): 165-170. |