欢迎访问《草业学报》官方网站,今天是 分享到:

草业学报 ›› 2020, Vol. 29 ›› Issue (5): 1-12.DOI: 10.11686/cyxb2019374

• 研究论文 • 上一篇    下一篇

草地土壤C∶N∶P化学计量及微生物呼吸对氮沉降响应的Meta分析

杨乃瑞, 胡玉福*, 舒向阳*, 曾建, 张祥林, 申屠瑜程, 何佳, 程琪, 李杰, 李智, 余颖   

  1. 四川农业大学资源学院,四川 成都611130
  • 收稿日期:2019-08-27 出版日期:2020-05-20 发布日期:2020-05-20
  • 通讯作者: * E-mail: huyufu@sicau.edu.cn, 18202809282@163.com
  • 作者简介:杨乃瑞(1997-),男,四川成都人,在读硕士。E-mail: yangnairuier@163.com
  • 基金资助:
    国家自然科学基金面上项目(41771552),国家级大学生创新创业训练计划项目(201710626035),四川省科技计划项目:川西北高寒沙地不同治理模式与年限生态恢复成效评价研究(18ZDYF3210)和国家支撑计划项目:川西北藏区高寒沙地适生治沙灌草品种选育研究及示范(2015BAC05B01)资助

Meta-analysis of the response to nitrogen deposition of soil nitrogen fractions, grassland soil C∶N∶P stoichiometry and microbial respiration

YANG Nai-rui, HU Yu-fu*, SHU Xiang-yang*, ZENG Jian, ZHANG Xiang-lin, SHENTU Yu-cheng, HE Jia, CHENG Qi, LI Jie, LI Zhi, YU Ying   

  1. College of Resources, Sichuan Agricultural University, Chengdu 611130, China
  • Received:2019-08-27 Online:2020-05-20 Published:2020-05-20
  • Contact: * E-mail: huyufu@sicau.edu.cn, 18202809282@163.com

摘要: 为了全面揭示全球草地土壤C∶N∶P化学计量和微生物呼吸对氮沉降的响应机制,本研究共收集整理了国内外92篇公开的文献资料,采用整合分析(Meta-analysis)方法分析了氮沉降对草地土壤C∶N∶P化学计量和微生物呼吸的影响,同时研究了不同氮沉降速率、试验周期和气候条件下各指标对氮沉降的响应差异。结果表明,氮沉降显著增加了土壤全氮(7.1%)、有效氮(36.3%)、铵态氮(51.3%)、硝态氮(98.1%)和微生物量C∶P(53.6%),但显著降低了土壤pH(-5.9%)、微生物量氮(-11.5%)和微生物量磷(-19.4%);随着氮沉降速率的提高,土壤全氮(4.1%)、土壤N∶P(10.6%)、可溶性有机氮(41.8%)、铵态氮(31.3%)和硝态氮(20.8%)的效应值均显著增加,而土壤pH(-5.8%)、微生物量碳(-13.2%)、微生物量氮(-11.5%)、微生物量磷(-18.0%)、微生物量C∶P(-26.5%)和微生物呼吸(-10.6%)的效应值显著降低;随着试验周期的增加,土壤铵态氮(22.8%)的效应值显著增加,而土壤pH(-2.5%)、微生物量碳(-12.2%)、微生物量氮(-21.4%)和微生物呼吸(-25.3%)的效应值显著降低。另外,年平均温度和年平均降水量显著影响微生物呼吸对氮沉降的响应,而对土壤和微生物碳氮磷对氮沉降的响应无显著影响。

关键词: 氮沉降, 草地, 碳氮磷化学计量, 整合分析

Abstract: This research studied the general response to nitrogen deposition, of soil N fractions, grassland C∶N∶P stoichiometry and microbial respiration. Data from 92 published articles from within China and abroad were analyzed by meta-analysis and the effects of nitrogen deposition rate, experimental duration and climatic conditions on nitrogen behavior were studied. It was found that, nitrogen deposition significantly increased soil total nitrogen (7.1%), available nitrogen (36.3%), ammonium nitrogen (51.3%), nitrate nitrogen (98.1%) and microbial biomass C∶P (53.6%), and significantly decreased soil pH (-5.9%), microbial biomass nitrogen (-11.5%), and microbial biomass phosphorus (-19.4%). With increase in nitrogen deposition rate, increases were seen in the size of the effect on total nitrogen (4.1%), soil N∶P (10.6%), dissolved organic nitrogen (41.8%), ammonium nitrogen (31.3%) and nitrate nitrogen (20.8%), while decreases were seen in soil pH (-5.8%), microbial biomass carbon (-13.2%), microbial biomass nitrogen (-11.5%), microbial biomass phosphorus (-18.0%), microbial biomass C∶P (-26.5%) and microbial respiration (-10.6%). As the experimental duration increased, the size of the nitrogen deposition effect on soil ammonium nitrogen (22.8%) significantly increased, while the effect on soil pH (-2.5%), microbial biomass carbon (-12.2%), microbial biomass nitrogen (-21.4%), and microbial respiration (-25.3%) significantly decreased. In addition, the mean annual temperature and precipitation significantly affected the response of microbial respiration to nitrogen deposition, but had no effect on the response of soil and microbial carbon, nitrogen and phosphorus to nitrogen deposition.

Key words: nitrogen deposition, grassland, C:N:P stoichiometry, meta-analysis