草业学报 ›› 2021, Vol. 30 ›› Issue (9): 86-96.DOI: 10.11686/cyxb2020322
收稿日期:
2020-07-07
修回日期:
2020-08-25
出版日期:
2021-08-30
发布日期:
2021-08-30
通讯作者:
魏小红
作者简介:
Corresponding author. E-mail: weixh@gsau.edu.cn基金资助:
Ying ZHAO1,2,3(), Xia-qing XIN1(), Xiao-hong WEI1,2,3()
Received:
2020-07-07
Revised:
2020-08-25
Online:
2021-08-30
Published:
2021-08-30
Contact:
Xiao-hong WEI
摘要:
为揭示NO对渗透胁迫下紫花苜蓿含氮化合物及氮代谢过程的调控机制,以紫花苜蓿为材料,通过外源施加NO供体硝普钠(SNP)和NO清除剂(c-PTIO)对紫花苜蓿种子及幼苗进行处理,研究NO在PEG模拟的渗透胁迫下紫花苜蓿氮类化合物含量及氮代谢关键酶活性变化规律中的影响。结果表明:与PEG处理相比,外施0.1 mmol·L-1 SNP,紫花苜蓿萌发期及幼苗期可溶性蛋白含量分别平均提高了 16.91%和8.87%,游离氨基酸含量平均降低14.92%和0.68%;硝酸还原酶(NR)、谷氨酰胺合成酶(GS)及谷氨酸合成酶(GOGAT)活性在萌发期分别提高了23.85%,47.87%,60.06%,在幼苗期分别提高了16.31%,23.56%,72.89%;而萌发期和幼苗期谷氨酸脱氢酶(GDH)活性分别降低了35.89%和33.35%。PEG胁迫下添加c-PTIO加剧了PEG胁迫对紫花苜蓿含氮物质积累的抑制,对NR,GS,GOGAT活性的影响差异不显著,GDH活性在萌发期及幼苗期分别平均升高了18.26%和4.62%。由此说明,外源NO通过调节氮代谢关键酶活性促进PEG胁迫下紫花苜蓿氮素向蛋白质合成的方向转运积累,提高紫花苜蓿抗旱性。
赵颖, 辛夏青, 魏小红. 一氧化氮对干旱胁迫下紫花苜蓿氮代谢的影响[J]. 草业学报, 2021, 30(9): 86-96.
Ying ZHAO, Xia-qing XIN, Xiao-hong WEI. Effects of nitric oxide on nitrogen metabolism in alfalfa under drought stress[J]. Acta Prataculturae Sinica, 2021, 30(9): 86-96.
图1 NO对PEG胁迫下紫花苜蓿萌发期(A)和幼苗期(B)NR活性的影响图中数据为平均值±标准误,同期不同字母表示不同处理间在0.05水平存在显著性的差异(P<0.05),下同。Data are presented as the means±standard error. The different letters in each treatment time indicate significant differences in different treatments at 0.05 levels (P<0.05), the same below.
Fig.1 Effect of NO on NR activity in alfalfa during seed germination (A) and seedling (B) stage under PEG stress
图2 NO对PEG胁迫下紫花苜蓿萌发期(A)和幼苗期(B) GS活性的影响
Fig.2 Effect of NO on GS activity in alfalfa during seed germination (A) and seedling (B) stage under PEG stress
图3 NO对PEG胁迫下紫花苜蓿萌发期(A)和幼苗期(B)GOGAT活性的影响
Fig.3 Effect of NO on GOGAT activity in alfalfa during seed germination (A) and seedling (B) stage under PEG stress
图4 NO对PEG胁迫下紫花苜蓿萌发期(A)和幼苗期(B)GDH活性的影响
Fig.4 Effect of NO on GDH activity in alfalfa during seed germination (A) and seedling (B) stage under PEG stress
图5 NO对PEG胁迫下紫花苜蓿种子萌发期(A)及幼苗期(B)氨基态氮含量的影响
Fig.5 Effect of NO on amino nitrogen content of alfalfa during seed germination (A) and seedling (B) stage under PEG
图6 NO对PEG胁迫下紫花苜蓿种子萌发期(A)及幼苗期(B)总蛋白含量的影响
Fig.6 Effect of NO on total protein content of alfalfa during seed germination (A) and seedling (B) stage under PEG
图7 NO对PEG胁迫下紫花苜蓿种子萌发期(A)及幼苗期(B)可溶性蛋白含量的影响
Fig.7 Effect of NO on soluble protein content of alfalfa during seed germination (A) and seedling (B) stage under PEG
图8 PEG胁迫下外施NO对紫花苜蓿种子萌发期(A)及幼苗期(B)可溶性蛋白电泳图谱的影响泳道1~6:胁迫2 d;泳道7~12:胁迫4 d;泳道13~18:胁迫6 d;泳道19~24:胁迫8 d。同一处理时间上样顺序依次为CK、PEG、SNP、PEG+SNP、c-PTIO、PEG+c-PTIO处理。Lane 1-6: Treated 2 d; Lane 7-12: Treated 4 d; Lane 13-18: Treated 6 d; Lane 19-24: Treated 8 d. The treatment order of the same day was CK、PEG、SNP、PEG+SNP、c-PTIO、PEG+c-PTIO.
Fig.8 Effects of NO on soluble protein electrophoresis atlas in alfalfa during seed germination (A) and seedling (B) stage under PEG stress
1 | Jin L, Li X, Wei X D, et al. Physiological basis on the yield in japonica rice with different N application efficiency during the later development stage. Acta Agriculture Boreali-Sinica, 2013, 28(5): 175-186. |
金磊, 李霞, 魏晓东, 等. 不同氮效率粳稻生育后期产量形成的生理基础. 华北农学报, 2013, 28(5): 175-186. | |
2 | Dong Z D, Yi Y, Zhang M W, et al. Difference of activities of nitrogen metabolism enzymes in flag leaves and grain after anthesis of semi-winter and spring wheat varieties. Journal of Triticeae Crops, 2015, 35(8): 1098-1106. |
董召娣, 易媛, 张明伟, 等. 春性和半冬性小麦花后旗叶和籽粒氮代谢关键酶活性的差异. 麦类作物学, 2015, 35(8): 1098-1106. | |
3 | Zhang H M, Li J J, Hei G G, et al. Effects of exogenous betaine on the secondary metabolites of Pinellia ternata under drought stress. Acta Prataculturae Sinica, 2014, 23(4): 229-236. |
张红敏, 李姣姣, 黑刚刚, 等. 外源甜菜碱处理对干旱胁迫下半夏氮代谢及相关酶活性的影响. 草业学报, 2014, 23(4): 229-236. | |
4 | Wang X G, Tamiev D T, Alagurajan J, et al. The role of the NADH-dependent nitrite reductase, Nir, from Escherichia coli in fermentative ammonification. Archives of Microbiology, 2019, 201(4): 519-530. |
5 | Xiong B L, Wang S W, Wang X Y, et al. Effects of nitrogenous fertilizer on leaf senescence of maize and the associate with carbon/nitrogen balance under drought stress. Journal of Maize Science, 2016, 24(3): 138-146. |
熊炳霖, 王仕稳, 王鑫月, 等. 干旱胁迫下氮肥对玉米叶片衰老影响及与碳氮平衡的关系. 玉米科学, 2016, 24(3): 138-146. | |
6 | Qiao H H, Li H B, Zheng T B, et al. Effects of drought stress and rehydration on carbon and nitrogen translocation in potato tuber swelling stage. Agricultural Research in the Arid Areas, 2019, 37(4): 154-162. |
乔焕焕, 李红兵, 郑太波, 等. 干旱与复水对马铃薯块茎彭大期碳氮运转的影响. 干旱地区农业研究, 2019, 37(4): 154-162. | |
7 | Qu C Y, Zhang Y X, Jin X J, et al. Effect of exogenous ABA on yield and key enzyme activities of nitrogen metabolism of soybean under drought stress. Chinese Agricultural Science Bulletin, 2017, 33(34): 26-31. |
屈春媛, 张玉先, 金喜军, 等. 干旱胁迫下外源ABA对鼓粒期大豆产量及氮代谢关键酶活性的影响. 中国农学通报, 2017, 33(34): 26-31. | |
8 | Zhong C, Cao X, Bai Z, et al. Nitrogen metabolism correlates with the acclimation of photosynthesis to short-term water stress in rice (Oryza sativa L.). Plant Physiology and Biochemistry, 2018, 125: 52-62. |
9 | Zhong C, Cao X, Hu J, et al. Nitrogen metabolism in adaptation of photosynthesis to water stress in rice grown under different nitrogen levels. Frontiers in Plant Science, 2017, 8: 1079-1093. |
10 | Xiong D, Yu T, Liu X, et al. Heterogeneity of photosynthesis within leaves is associated with alteration of leaf structural features and leaf N content per leaf area in rice. Functional Plant Biology, 2015, 42(7): 687-696. |
11 | Yue Y H, Qi X, Wang Y R, et al. Persistence of 35 Medicago sativa varieties at the 10th year after establishment. Acta Prataculturae Sinica, 2014, 23(1): 58-64. |
岳彦红, 齐晓, 王彦荣, 等. 35个10龄紫花苜蓿品种的持久性比较. 草业学报, 2014, 23(1): 58-64. | |
12 | Liu Y N, Shi Y H, Yan X B, et al. Effect of alfalfa hay substituting part of the concentrate on the production of dairy cows and economic profit. Acta Prataculturae Sinica, 2013, 22(6): 190-197. |
刘艳娜, 史莹华, 严学兵, 等. 苜蓿青干草替代部分精料对奶牛生产性能及经济效益的影响. 草业学报, 2013, 22(6): 190-197. | |
13 | Santantonio N, Pierce C A, Steiner R L, et al. Genetic mapping of water use efficiency and carbon and nitrogen metabolism in drought-stressed alfalfa. Crop Science, 2018, 59: 1-15. |
14 | Wang B R. The respond of alfalfa yield and soil quality to nitrogen and phosphorus fertilizer applied in the loess plateau semi-arid areas. Lanzhou: Lanzhou University, 2015. |
王冰如. 黄土高原半干旱区苜蓿草地产量及土壤质量对氮磷肥施加的响应. 兰州: 兰州大学, 2015. | |
15 | Arasimowicz M, Floryszak-Wieczorek J. Nitric oxide as a bioactive signalling molecule in plant stress responses. Plant Science, 2007, 172(5): 876-887. |
16 | Zhu G L. Plant physiology experimental guidance. Beijing: Peking University Press, 1990. |
朱广廉. 植物生理学实验指导. 北京: 北京大学出版社, 1990. | |
17 | Jiang Y B, Yang Y R, Zheng Q H. Effects of exogenous nitric oxide on antioxidase and chlorophyll fluorescence of seedling of alfalfa under drought stress. Agricultural Research in the Arid Areas, 2008, 2: 65-68. |
姜义宝, 杨玉荣, 郑秋红. 外源一氧化氮对干旱胁迫下苜蓿幼苗抗氧化酶活性和叶绿素荧光特性的影响. 干旱地区农业研究, 2008, 2: 65-68. | |
18 | Ma W J,Wei X H, Su M F, et al. Responses of non-structural carbohydrate metabolism of Medicago sativa seedlings to nitric oxide under drought stress. Acta Ecologica Sinica, 2019, 39(21): 8068-8077. |
马文静, 魏小红, 宿梅飞, 等. 干旱胁迫下紫花苜蓿幼苗非结构性碳水化合物代谢对NO的响应. 生态学报, 2019, 39(21): 8068-8077. | |
19 | Ma W J. Effects of exogenous nitric oxide on phenylpropanoid metabolism and regulation of miRNA in alfalfa seedlings under drought stress. Lanzhou: Gansu Agricultural University, 2019. |
马文静. 外源NO对干旱胁迫下紫花苜蓿幼苗苯丙烷类代谢及miRNA调控的影响. 兰州: 甘肃农业大学, 2019. | |
20 | Zhao Y, Yi Q, Wei X H, et al. Role of NO-mediated Ca2+ signaling in regulation of photosynthesis and resistance to osmotic stress in alfalfa seedlings. Acta Prataculturae Sinica, 2018, 27(5): 130-140. |
赵颖, 弋钦, 魏小红, 等. NO介导的Ca2+信号对渗透胁迫下紫花苜蓿幼苗光合特征及抗性的影响. 草业学报, 2018, 27(5): 130-140. | |
21 | Xin X Q, Wei X H, Han T, et al. Research on exogenous NO and reverse regulation to the dynamic changes of antioxidant enzymes and isoenzymes in alfalfa seed germination under PEG stress. Acta Prataculturae Sinica, 2018, 27(10): 105-112. |
辛夏青, 魏小红, 韩厅, 等. 外源NO及反向调控PEG胁迫下苜蓿萌发种子抗氧化酶及其同工酶动态的研究. 草业学报, 2018, 27(10): 105-112. | |
22 | Li H S. Physiological and biochemical experimental principles and techniques. Beijing: Higher Education Press, 2001. |
李合生. 植物生理生化实验原理与技术. 北京: 高等教育出版社, 2001. | |
23 | Zou Q. Plant physiology experimental guidance. Beijing: China Agricultural Press, 2006. |
邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2006. | |
24 | Singh R P, Srivastava H S. Increase in glutamate synthase (NADH) activity in maize seedling in response to nitrate and ammonium nitrogen. Physiologia Plantarum, 1986, 66: 413-416. |
25 | Chen J X, Wang X F. Guide of plant physiological experiments. Guangzhou: South China University of Technology Press, 2006. |
陈建勋, 王晓峰. 植物生理学实验指导. 广州: 华南理工大学出版社, 2006. | |
26 | Han T, Xin X Q, Wei X H. Effects of exogenous NO on antioxidant enzymes and isozymes in alfalfa seedlings under PEG stress. Molecular Plant Breeding, 2019, 17(10): 3399-3405. |
韩厅, 辛夏青, 魏小红. 外源NO对PEG胁迫下苜蓿幼苗抗氧化酶及同工酶的影响. 分子植物育种, 2019, 17(10): 3399-3405. | |
27 | David W L. Carbon and nitrogen assimilation in relation to yield: Mechanism the key to understanding production systems. Journal of Experiment Botany, 2002, 53(370): 773-787. |
28 | Urbanczyk-Wochniak E, Fernie A R. Metabolic profiling reveals altered nitrogen nutrient regimes have diverse effects on the metabolism of hydroponically-grown tomato (Solanum lycopersicum) plants. Journal Experimental Botany, 2005, 56(386): 309-321. |
29 | Luo F. Effects of nitrogen and phosphorus stress on nitrogen metabolism in rice during the vegetative growth stage. Wuhan: Huazhong Agricultural University, 2011. |
罗凤. 氮磷胁迫对水稻营养生长期氮代谢的影响分析. 武汉: 华中农业大学, 2011. | |
30 | Xu C M, Wang D Y, Chen S, et al. Effects of aeration on root physiology and nitrogen metabolism in rice. Rice Science, 2013, 20(2): 148-153. |
31 | Begona G M, Mena-Petite A, Lacuesta M, et al. Glutamine synthetase from mesophyll and bundle sheath maize cells: Isoenzyme complements and different sensitivities to phosphinothricin. Plant Cell Reports, 2000, 19(11): 1127-1134. |
32 | Gu Y, Hu W H, Xu B J, et al. Effects of nitrogen on photosynthetic characteristics and enzyme activity of nitrogen metabolism in maize under-mulch-drip irrigation. Acta Ecologica Sinica, 2013, 33(23): 7399-7407. |
谷岩, 胡文河, 徐百军, 等. 氮素营养水平对膜下滴灌玉米穗位叶光合及氮代谢酶活性的影响. 生态学报, 2013, 33(23): 7399-7407. | |
33 | Li C F, Wang K J, Liu P, et al. Effects of nitrogen supply levels on matter production and nitrogen metabolism of male sterility maize. Journal of Plant Nutrition and Fertilizer, 2009, 15(1): 99-104. |
李丛峰, 王空军, 刘鹏, 等. 供氮水平对雄性不育玉米物质生产和氮代谢的影响. 植物营养与肥料学报, 2009, 15(1): 99-104. | |
34 | Zhang Z M, Dai L X, Hu C H, et al. Effect of water on protein, protein composition and related enzyme activity in different types of maize. Journal of Plant Ecology, 2007, 31(4): 720-728. |
张智猛, 戴良香, 胡昌浩, 等. 灌浆期不同水分处理对玉米籽粒蛋白质及其组分和相关酶活性的影响. 植物生态学报, 2007, 31(4): 720-728. | |
35 | Song J M, Tian J C, Zhao S J. Relationship between photosynthetic carbon and nitrogen metabolism in plants and its regulation. Plant Physiology Communications, 1998, 34(3): 230-238. |
宋建民, 田纪春, 赵世杰. 植物光合碳和氮代谢之间的关系及其调节. 植物生理学通讯, 1998, 34(3): 230-238. | |
36 | Lawlor D W. Carbon and nitrogen assimilation in relation to yield: Mechanisms are the key to understanding production systems. Journal of Experimental Botany, 2002, 53(370):773-787. |
37 | Chow F. Nitrate assimilation: The role of in vitro nitrate reductase assay as nutritional predictor//Applied Photosynthesis. Rijeka: InTech, 2012. |
38 | Skopelitis D S, Paranychianakis N V, Paschalidis K A, et al. Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. Plant Cell, 2006, 18(10): 2767-2781. |
39 | Huang G C, Tian B. The physiological role of glutamate dehydrogenase in higher plants. Chinese Bulletin of Botany, 2001, 18(4): 396-401. |
黄国存, 田波. 高等植物中的谷氨酸脱氢酶及其生理作用. 植物学通报, 2001, 18(4): 396-401. | |
40 | Tercé-Laforgue T, Clément G, Marchi L, et al. Resolving the role of plant NAD-Glutamate dehydrogenase: III. overexpressing individually or simultaneously the two enzyme subunits under salt stress induces changes in the leaf metabolic profile and increases plant biomass production. Plant Cell Physiology, 2015, 56(10): 1918-1929. |
41 | Lasa B, Frechilla S, Aparicio-Tejo P M, et al. Role of glutamate dehydrogenase and phosphoenolpyruvate carboxylase activity in ammonium nutrition tolerance in roots. Plant Physiology and Biochemistry, 2002, 40(11): 969-976. |
42 | Brugière N, Dubois F, Limami A M, et al. Glutamine synthetase in the phloem plays a major role in controlling praline production. Plant Cell, 1999, 11(10): 1995-2011. |
43 | Zhou W H, Shi S L, Kou J T. Effects of exogenous nitric oxide on the growth and nitrogen metabolism of alfalfa seedlings under salt stress. Journal of Applied Ecology, 2012, 23(11): 3003-3008. |
周万海, 师尚礼, 寇江涛. 盐胁迫下外源NO对苜蓿幼苗生长及氮代谢的影响. 应用生态学报, 2012, 23(11): 3003-3008. | |
44 | Zhou W H, Shi S L, Kou J T. Effect of nitric oxide on alfalfa seed germination under NaCl stress. Journal of Nuclear Agricultural Sciences, 2012, 26(4): 710-716. |
周万海, 师尚礼, 寇江涛. 一氧化氮对NaCl胁迫下苜蓿种子萌发的影响. 核农学报, 2012, 26(4): 710-716. | |
45 | Shao R X, Shangguan Z P. Effects of exogenous nitric oxide at different concentrations on the growth and physiology of winter wheat seedlings. Acta Ecologica Sinica, 2008, 28(1): 302-309. |
邵瑞鑫, 上官周平. 外源NO调控小麦幼苗生长与生理的浓度. 生态学报, 2008, 28(1): 302-309. | |
46 | Wei X H, Wang L M, Long R J, et al. Effects of exogenous nitric oxide, salicylic acid and hydrogen peroxide on free amino acid and soluble protein contents in tobacco leaves. Journal of Plant Physiology and Molecular Biology, 2006, 32(2): 257-260. |
魏小红, 王利民, 龙瑞军, 等. 外源一氧化氮、水杨酸和过氧化氢对烟草叶片游离氨基酸和可溶性蛋白含量的影响. 植物生理与分子生物学学报, 2006, 32(2): 257-260. | |
47 | Wendehenne D, Pugin A, Klessig D F, et al. Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends in Plant Sciences, 2001, 6(4): 177-183. |
48 | Tian J. Physiological regulation function and proteomics research of exogenous spermidine on alleviating high temperature stress of cucumber seedlings. Nanjing: Nanjing Agricultural University, 2012. |
田婧. 外源亚精胺缓解黄瓜幼苗高温胁迫伤害的生理调节机制和蛋白质组学研究. 南京: 南京农业大学, 2012. |
[1] | 汪雪, 刘晓静, 赵雅姣, 王静. 根系分隔方式下紫花苜蓿/燕麦间作氮素利用及种间互馈特征研究[J]. 草业学报, 2021, 30(8): 73-85. |
[2] | 古丽娜扎尔·艾力null, 陶海宁, 王自奎, 沈禹颖. 基于APSIM模型的黄土旱塬区苜蓿——小麦轮作系统深层土壤水分及水分利用效率研究[J]. 草业学报, 2021, 30(7): 22-33. |
[3] | 周倩倩, 张亚见, 张静, 殷涂童, 盛下放, 何琳燕. 产硫化氢细菌的筛选及阻控苜蓿吸收铅和改良土壤的作用[J]. 草业学报, 2021, 30(7): 44-52. |
[4] | 蔡元, 罗玉柱, 臧荣鑫, 李春阳, 扎西英派. 妊娠早期饲粮中添加N-氨甲酰谷氨酸对母羊早期胚胎存活及相关血液指标的影响[J]. 草业学报, 2021, 30(6): 170-179. |
[5] | 臧真凤, 白婕, 刘丛, 昝看卓, 龙明秀, 何树斌. 紫花苜蓿形态和生理指标响应干旱胁迫的品种特异性[J]. 草业学报, 2021, 30(6): 73-81. |
[6] | 谢展, 穆麟, 张志飞, 陈桂华, 刘洋, 高帅, 魏仲珊. 乳酸菌或有机酸盐与尿素复配添加对紫花苜蓿混合青贮的影响[J]. 草业学报, 2021, 30(5): 165-173. |
[7] | 王吉祥, 宫焕宇, 屠祥建, 郭侲洐, 赵嘉楠, 沈健, 栗振义, 孙娟. 耐亚磷酸盐紫花苜蓿品种筛选及评价指标的鉴定[J]. 草业学报, 2021, 30(5): 186-199. |
[8] | 罗巧玉, 王彦龙, 陈志, 马永贵, 任启梅, 马玉寿. 水分逆境对发草脯氨酸及其代谢途径的影响[J]. 草业学报, 2021, 30(5): 75-83. |
[9] | 张小芳, 魏小红, 刘放, 朱雪妹. PEG胁迫下紫花苜蓿幼苗内源激素对NO的响应[J]. 草业学报, 2021, 30(4): 160-169. |
[10] | 候怡谣, 李霄, 龙瑞才, 杨青川, 康俊梅, 郭长虹. 过量表达紫花苜蓿MsHB7基因对拟南芥耐旱性的影响[J]. 草业学报, 2021, 30(4): 170-179. |
[11] | 刘凯强, 刘文辉, 贾志锋, 梁国玲, 马祥. 干旱胁迫对‘青燕1号’燕麦产量及干物质积累与分配的影响[J]. 草业学报, 2021, 30(3): 177-188. |
[12] | 马欣, 罗珠珠, 张耀全, 刘家鹤, 牛伊宁, 蔡立群. 黄土高原雨养区不同种植年限紫花苜蓿土壤细菌群落特征与生态功能预测[J]. 草业学报, 2021, 30(3): 54-67. |
[13] | 沙栢平, 谢应忠, 高雪芹, 蔡伟, 伏兵哲. 地下滴灌水肥耦合对紫花苜蓿草产量及品质的影响[J]. 草业学报, 2021, 30(2): 102-114. |
[14] | 李冬, 申洪涛, 王艳芳, 王悦华, 王丽君, 赵世民, 刘领. 外源褪黑素对干旱胁迫下烟草幼苗光合碳同化和内源激素的影响[J]. 草业学报, 2021, 30(1): 130-139. |
[15] | 李振松, 万里强, 李硕, 李向林. 苜蓿根系构型及生理特性对干旱复水的响应[J]. 草业学报, 2021, 30(1): 189-196. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||