草业学报 ›› 2021, Vol. 30 ›› Issue (12): 117-128.DOI: 10.11686/cyxb2021241
• 研究论文 • 上一篇
张鹤山1(), 高秋2, 张婷婷1, 陆姣云1, 田宏1, 熊军波1, 刘洋1()
收稿日期:
2021-06-17
修回日期:
2021-07-19
出版日期:
2021-11-11
发布日期:
2021-11-11
通讯作者:
刘洋
作者简介:
Corresponding author. E-mail: liuyang430209@163.com基金资助:
He-shan ZHANG1(), Qiu GAO2, Ting-ting ZHANG1, Jiao-yun LU1, Hong TIAN1, Jun-bo XIONG1, Yang LIU1()
Received:
2021-06-17
Revised:
2021-07-19
Online:
2021-11-11
Published:
2021-11-11
Contact:
Yang LIU
摘要:
为评价红三叶种质耐铜能力强弱,筛选出优异种质材料,以30份国内外红三叶材料为对象,研究其萌发期和幼苗生长阶段Cu2+胁迫下的生长发育特性,并采用隶属函数法对红三叶耐铜性进行综合评价。结果表明:随着Cu2+胁迫浓度的增加,红三叶发芽率逐渐降低,胚根变短,变粗;胚根在Cu2+浓度为0.5 mmol·L-1下长度为对照的40%~69%,在Cu2+浓度为8.0 mmol·L-1时停止生长,而发芽率在Cu2+浓度为8.0 mmol·L-1时为对照的61%~93%,相对于发芽率,胚根对Cu2+胁迫更为敏感。红三叶幼苗能够耐受20 mmol·L-1的Cu2+胁迫,但其地上生物量、地下生物量、根总长度、根尖数以及根体积均显著降低。不同浓度间红三叶各性状差异显著(P<0.05),且萌发期(0.5 mmol·L-1)和苗期(20 mmol·L-1)不同红三叶材料间同一性状亦存在显著差异性(P<0.05);胚根长度与胚根直径、地上生物量与地下生物量、地下生物量与根冠比、根总长度和根尖数等性状之间具有显著相关性(P<0.01);依据最小二乘法原理,建立了以胚根长度、幼苗存活率、地下生物量和根总长度4个关键指标为因子的预测模型,其预测值与综合评价值显著相关(R2=0.977)。综合评价结果表明,材料CF022167、CF022178及CF022232具有较高的铜胁迫耐受性,可作为红三叶耐铜性新品种选育的基础材料或在生产中直接利用。
张鹤山, 高秋, 张婷婷, 陆姣云, 田宏, 熊军波, 刘洋. 30份红三叶种质资源耐铜性综合评价[J]. 草业学报, 2021, 30(12): 117-128.
He-shan ZHANG, Qiu GAO, Ting-ting ZHANG, Jiao-yun LU, Hong TIAN, Jun-bo XIONG, Yang LIU. Comprehensive evaluation of copper tolerance of 30 germplasm resources of red clover (Trifolium pratense)[J]. Acta Prataculturae Sinica, 2021, 30(12): 117-128.
序号Code | 材料编号Germplasm code | 来源Origin | 序号Code | 材料编号Germplasm code | 来源Origin |
---|---|---|---|---|---|
1 | CF022168 | 利比亚Libya | 16 | CF022161 | 美国America |
2 | CF022167 | 阿根廷Argentina | 17 | CF022175 | 波兰Poland |
3 | CF022212 | 加拿大Canada | 18 | CF022179 | 美国America |
4 | CF022232 | 日本Japan | 19 | EM00081 | 中国China |
5 | CF002082 | 日本Japan | 20 | CF022325 | 英国Britain |
6 | CF022172 | 匈牙利Hungary | 21 | CF022231 | 英国Britain |
7 | CF022151 | 美国America | 22 | CF022199 | 葡萄牙Portugal |
8 | CF022169 | 阿根廷Argentina | 23 | CF022230 | 中国China |
9 | CF022173 | 匈牙利Hungary | 24 | CF022156 | 日本Japan |
10 | CF022165 | 德国Germany | 25 | CF022181 | 意大利Italy |
11 | CF022150 | 澳大利亚Australia | 26 | CF022234 | 澳大利亚Australia |
12 | CF022235 | 俄罗斯Russia | 27 | CF022211 | 丹麦Denmark |
13 | CF022171 | 匈牙利Hungary | 28 | CF022233 | 澳大利亚Australia |
14 | CF022202 | 罗马尼亚Romania | 29 | CF022178 | 美国America |
15 | CF000802 | 英国Britain | 30 | CF022188 | 匈牙利Hungary |
表1 供试材料信息
Table 1 Information of red clover germplasm resources
序号Code | 材料编号Germplasm code | 来源Origin | 序号Code | 材料编号Germplasm code | 来源Origin |
---|---|---|---|---|---|
1 | CF022168 | 利比亚Libya | 16 | CF022161 | 美国America |
2 | CF022167 | 阿根廷Argentina | 17 | CF022175 | 波兰Poland |
3 | CF022212 | 加拿大Canada | 18 | CF022179 | 美国America |
4 | CF022232 | 日本Japan | 19 | EM00081 | 中国China |
5 | CF002082 | 日本Japan | 20 | CF022325 | 英国Britain |
6 | CF022172 | 匈牙利Hungary | 21 | CF022231 | 英国Britain |
7 | CF022151 | 美国America | 22 | CF022199 | 葡萄牙Portugal |
8 | CF022169 | 阿根廷Argentina | 23 | CF022230 | 中国China |
9 | CF022173 | 匈牙利Hungary | 24 | CF022156 | 日本Japan |
10 | CF022165 | 德国Germany | 25 | CF022181 | 意大利Italy |
11 | CF022150 | 澳大利亚Australia | 26 | CF022234 | 澳大利亚Australia |
12 | CF022235 | 俄罗斯Russia | 27 | CF022211 | 丹麦Denmark |
13 | CF022171 | 匈牙利Hungary | 28 | CF022233 | 澳大利亚Australia |
14 | CF022202 | 罗马尼亚Romania | 29 | CF022178 | 美国America |
15 | CF000802 | 英国Britain | 30 | CF022188 | 匈牙利Hungary |
性状 Traits | 胁迫浓度 Stress concentration (mmol·L-1) | 均值 Mean | 最大值 Maximum | 最小值 Minimum | 标准差 Standard deviation | 变异系数 Coefficient of variation (%) | 差异性 Difference |
---|---|---|---|---|---|---|---|
发芽率GR | 0.5 | 1.00 | 1.14 | 0.88 | 6.263 | 6.28 | 5.14*** |
2.0 | 0.99 | 1.13 | 0.88 | 5.417 | 5.45 | 3.28*** | |
4.0 | 0.94 | 1.11 | 0.82 | 7.565 | 8.01 | 3.50*** | |
8.0 | 0.78 | 0.93 | 0.61 | 8.450 | 10.89 | 2.13** | |
胚根长度RL | 0.5 | 0.54 | 0.69 | 0.40 | 0.070 | 12.74 | 2.09** |
2.0 | 0.19 | 0.33 | 0.10 | 0.060 | 30.78 | 15.13*** | |
4.0 | 0.13 | 0.47 | 0.06 | 0.090 | 70.14 | 6.09*** | |
8.0 | - | - | - | - | - | - | |
胚根直径RD | 0.5 | 1.10 | 1.42 | 0.85 | 0.150 | 13.73 | 2.34* |
2.0 | 1.56 | 2.08 | 1.12 | 0.190 | 12.33 | 2.14 | |
4.0 | 1.46 | 1.84 | 1.03 | 0.180 | 12.29 | 2.06 | |
8.0 | - | - | - | - | - | - |
表2 红三叶萌发期发芽率及根系特征
Table 2 Germination rate and root characteristics of red clover in the germination stage
性状 Traits | 胁迫浓度 Stress concentration (mmol·L-1) | 均值 Mean | 最大值 Maximum | 最小值 Minimum | 标准差 Standard deviation | 变异系数 Coefficient of variation (%) | 差异性 Difference |
---|---|---|---|---|---|---|---|
发芽率GR | 0.5 | 1.00 | 1.14 | 0.88 | 6.263 | 6.28 | 5.14*** |
2.0 | 0.99 | 1.13 | 0.88 | 5.417 | 5.45 | 3.28*** | |
4.0 | 0.94 | 1.11 | 0.82 | 7.565 | 8.01 | 3.50*** | |
8.0 | 0.78 | 0.93 | 0.61 | 8.450 | 10.89 | 2.13** | |
胚根长度RL | 0.5 | 0.54 | 0.69 | 0.40 | 0.070 | 12.74 | 2.09** |
2.0 | 0.19 | 0.33 | 0.10 | 0.060 | 30.78 | 15.13*** | |
4.0 | 0.13 | 0.47 | 0.06 | 0.090 | 70.14 | 6.09*** | |
8.0 | - | - | - | - | - | - | |
胚根直径RD | 0.5 | 1.10 | 1.42 | 0.85 | 0.150 | 13.73 | 2.34* |
2.0 | 1.56 | 2.08 | 1.12 | 0.190 | 12.33 | 2.14 | |
4.0 | 1.46 | 1.84 | 1.03 | 0.180 | 12.29 | 2.06 | |
8.0 | - | - | - | - | - | - |
性状 Traits | 胁迫浓度 Stress concentration (mmol·L-1) | 均值 Mean | 最大值 Maximum | 最小值 Minimum | 标准差 Standard deviation | 变异系数 Coefficient of variation (%) | 差异性 Difference |
---|---|---|---|---|---|---|---|
存活率SR | 5 | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | - |
20 | 0.87 | 1.00 | 0.72 | 7.43 | 8.50 | 0.68* | |
50 | 0.03 | 0.17 | 0.00 | 5.21 | 175.71 | 0.26 | |
地上生物量AB | 5 | 0.69 | 0.99 | 0.39 | 0.20 | 28.74 | 1.72 |
20 | 0.61 | 0.87 | 0.30 | 0.14 | 23.20 | 1.47* | |
50 | 0.31 | 0.87 | 0.03 | 0.16 | 52.37 | 1.94* | |
地下生物量UB | 5 | 0.57 | 1.13 | 0.21 | 0.25 | 43.16 | 1.18 |
20 | 0.54 | 0.86 | 0.16 | 0.18 | 32.59 | 1.46* | |
50 | 0.10 | 0.48 | 0.02 | 0.11 | 104.65 | 3.14*** | |
根冠比RSR | 5 | 0.83 | 1.30 | 0.32 | 0.24 | 28.82 | 1.52 |
20 | 0.96 | 1.88 | 0.49 | 0.32 | 33.72 | 1.18* | |
50 | 0.61 | 2.47 | 0.08 | 0.66 | 109.40 | 2.61** | |
根总长度TRL | 5 | 0.76 | 0.95 | 0.41 | 0.14 | 18.00 | 0.10 |
20 | 0.62 | 0.94 | 0.36 | 0.14 | 22.92 | 2.30** | |
50 | 0.19 | 0.49 | 0.03 | 0.09 | 49.42 | 2.68** | |
根尖数NRT | 5 | 0.60 | 0.84 | 0.21 | 0.18 | 29.67 | 2.60** |
20 | 0.49 | 0.86 | 0.21 | 0.16 | 32.98 | 1.63* | |
50 | 0.11 | 0.46 | 0.02 | 0.10 | 89.17 | 1.87* | |
根体积RV | 5 | 0.68 | 0.83 | 0.45 | 0.10 | 14.81 | 1.28 |
20 | 0.49 | 0.75 | 0.21 | 0.13 | 27.07 | 1.93* | |
50 | 0.28 | 0.55 | 0.10 | 0.11 | 40.07 | 2.65** |
表3 苗期各指标特征差异性
Table 3 The difference between characteristics of red clover in the seedling stage
性状 Traits | 胁迫浓度 Stress concentration (mmol·L-1) | 均值 Mean | 最大值 Maximum | 最小值 Minimum | 标准差 Standard deviation | 变异系数 Coefficient of variation (%) | 差异性 Difference |
---|---|---|---|---|---|---|---|
存活率SR | 5 | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | - |
20 | 0.87 | 1.00 | 0.72 | 7.43 | 8.50 | 0.68* | |
50 | 0.03 | 0.17 | 0.00 | 5.21 | 175.71 | 0.26 | |
地上生物量AB | 5 | 0.69 | 0.99 | 0.39 | 0.20 | 28.74 | 1.72 |
20 | 0.61 | 0.87 | 0.30 | 0.14 | 23.20 | 1.47* | |
50 | 0.31 | 0.87 | 0.03 | 0.16 | 52.37 | 1.94* | |
地下生物量UB | 5 | 0.57 | 1.13 | 0.21 | 0.25 | 43.16 | 1.18 |
20 | 0.54 | 0.86 | 0.16 | 0.18 | 32.59 | 1.46* | |
50 | 0.10 | 0.48 | 0.02 | 0.11 | 104.65 | 3.14*** | |
根冠比RSR | 5 | 0.83 | 1.30 | 0.32 | 0.24 | 28.82 | 1.52 |
20 | 0.96 | 1.88 | 0.49 | 0.32 | 33.72 | 1.18* | |
50 | 0.61 | 2.47 | 0.08 | 0.66 | 109.40 | 2.61** | |
根总长度TRL | 5 | 0.76 | 0.95 | 0.41 | 0.14 | 18.00 | 0.10 |
20 | 0.62 | 0.94 | 0.36 | 0.14 | 22.92 | 2.30** | |
50 | 0.19 | 0.49 | 0.03 | 0.09 | 49.42 | 2.68** | |
根尖数NRT | 5 | 0.60 | 0.84 | 0.21 | 0.18 | 29.67 | 2.60** |
20 | 0.49 | 0.86 | 0.21 | 0.16 | 32.98 | 1.63* | |
50 | 0.11 | 0.46 | 0.02 | 0.10 | 89.17 | 1.87* | |
根体积RV | 5 | 0.68 | 0.83 | 0.45 | 0.10 | 14.81 | 1.28 |
20 | 0.49 | 0.75 | 0.21 | 0.13 | 27.07 | 1.93* | |
50 | 0.28 | 0.55 | 0.10 | 0.11 | 40.07 | 2.65** |
性状 Traits | 浓度间 Concentrations (C) | 种质间 Accessions (A) | 互作 C×A |
---|---|---|---|
发芽率GR | 227.93*** | 6.72*** | 2.35*** |
胚根长度RL | 1149.30*** | 5.04*** | 3.86*** |
胚根直径RD | 123.64*** | 5.25*** | 0.61 |
存活率SR | 5405.46*** | 1.61* | 1.86** |
地上生物量AB | 156.53*** | 4.26*** | 3.32*** |
地下生物量UB | 145.09*** | 2.62*** | 2.37*** |
根冠比RSR | 7.47** | 1.91** | 1.39 |
根总长度TRL | 481.87*** | 4.54*** | 1.99*** |
根尖数NRT | 268.65*** | 6.56*** | 1.40* |
根体积RV | 253.31*** | 3.78*** | 2.43*** |
表4 10个耐铜性指标方差分析
Table 4 Analysis of variance of 10 copper resistance indexes
性状 Traits | 浓度间 Concentrations (C) | 种质间 Accessions (A) | 互作 C×A |
---|---|---|---|
发芽率GR | 227.93*** | 6.72*** | 2.35*** |
胚根长度RL | 1149.30*** | 5.04*** | 3.86*** |
胚根直径RD | 123.64*** | 5.25*** | 0.61 |
存活率SR | 5405.46*** | 1.61* | 1.86** |
地上生物量AB | 156.53*** | 4.26*** | 3.32*** |
地下生物量UB | 145.09*** | 2.62*** | 2.37*** |
根冠比RSR | 7.47** | 1.91** | 1.39 |
根总长度TRL | 481.87*** | 4.54*** | 1.99*** |
根尖数NRT | 268.65*** | 6.56*** | 1.40* |
根体积RV | 253.31*** | 3.78*** | 2.43*** |
性状 Traits | 发芽率 GR | 胚根长度 RL | 胚根直径RD | 存活率 SR | 地上生物量 AB | 地下生物量 UB | 根冠比RSR | 根总长度TRL | 根尖数NRT |
---|---|---|---|---|---|---|---|---|---|
胚根长度RL | -0.032 | ||||||||
胚根直径RD | -0.063 | -0.508** | |||||||
存活率SR | -0.190 | 0.134 | 0.075 | ||||||
地上生物量AB | -0.182 | 0.272 | -0.250 | 0.311 | |||||
地下生物量UB | -0.267 | 0.233 | -0.183 | 0.232 | 0.591** | ||||
根冠比RSR | -0.223 | -0.091 | 0.117 | 0.112 | -0.056 | 0.661*** | |||
根总长度TRL | 0.342 | 0.338 | -0.301 | -0.053 | 0.207 | 0.353 | 0.172 | ||
根尖数NRT | 0.008 | 0.403* | -0.285 | 0.190 | 0.336 | 0.621*** | 0.337 | 0.648*** | |
根体积RV | -0.116 | -0.148 | -0.161 | 0.118 | 0.006 | 0.318 | 0.347 | -0.073 | -0.095 |
表5 10个耐铜性状相关性分析
Table 5 Analysis of correlation of 10 copper resistance indexes
性状 Traits | 发芽率 GR | 胚根长度 RL | 胚根直径RD | 存活率 SR | 地上生物量 AB | 地下生物量 UB | 根冠比RSR | 根总长度TRL | 根尖数NRT |
---|---|---|---|---|---|---|---|---|---|
胚根长度RL | -0.032 | ||||||||
胚根直径RD | -0.063 | -0.508** | |||||||
存活率SR | -0.190 | 0.134 | 0.075 | ||||||
地上生物量AB | -0.182 | 0.272 | -0.250 | 0.311 | |||||
地下生物量UB | -0.267 | 0.233 | -0.183 | 0.232 | 0.591** | ||||
根冠比RSR | -0.223 | -0.091 | 0.117 | 0.112 | -0.056 | 0.661*** | |||
根总长度TRL | 0.342 | 0.338 | -0.301 | -0.053 | 0.207 | 0.353 | 0.172 | ||
根尖数NRT | 0.008 | 0.403* | -0.285 | 0.190 | 0.336 | 0.621*** | 0.337 | 0.648*** | |
根体积RV | -0.116 | -0.148 | -0.161 | 0.118 | 0.006 | 0.318 | 0.347 | -0.073 | -0.095 |
材料编号 Germplasm code | 综合评价 Comprehensive evaluation | 回归模型 Regression model | 材料编号 Germplasm code | 综合评价 Comprehensive evaluation | 回归模型 Regression model | ||||
---|---|---|---|---|---|---|---|---|---|
关联系数 Correlation | 排序 Order | 预测值 Predicted value | 预测排序 Order | 关联系数 Correlation | 排序 Order | 预测值 Predicted value | 预测排序 Order | ||
CF022167 | 0.698 | 1 | 0.469 | 1 | CF022212 | 0.501 | 16 | 0.364 | 16 |
CF022178 | 0.643 | 2 | 0.428 | 2 | CF022325 | 0.494 | 17 | 0.364 | 17 |
CF022232 | 0.636 | 3 | 0.421 | 4 | CF022199 | 0.491 | 18 | 0.355 | 19 |
CF022202 | 0.615 | 4 | 0.414 | 5 | CF022171 | 0.483 | 19 | 0.361 | 18 |
CF022230 | 0.604 | 5 | 0.422 | 3 | CF022151 | 0.483 | 20 | 0.346 | 21 |
CF022231 | 0.602 | 6 | 0.404 | 7 | CF000802 | 0.481 | 21 | 0.352 | 20 |
CF022233 | 0.588 | 7 | 0.413 | 6 | CF022150 | 0.478 | 22 | 0.344 | 22 |
CF002082 | 0.583 | 8 | 0.398 | 8 | CF022168 | 0.478 | 23 | 0.341 | 23 |
CF022235 | 0.570 | 9 | 0.388 | 9 | CF022211 | 0.470 | 24 | 0.327 | 24 |
EM00081 | 0.529 | 10 | 0.380 | 11 | CF022175 | 0.455 | 25 | 0.324 | 25 |
CF022156 | 0.521 | 11 | 0.380 | 12 | CF022181 | 0.431 | 26 | 0.307 | 27 |
CF022172 | 0.507 | 12 | 0.386 | 10 | CF022179 | 0.422 | 27 | 0.311 | 26 |
CF022173 | 0.505 | 13 | 0.374 | 13 | CF022169 | 0.398 | 28 | 0.296 | 28 |
CF022188 | 0.503 | 14 | 0.369 | 14 | CF022161 | 0.391 | 29 | 0.296 | 29 |
CF022165 | 0.502 | 15 | 0.365 | 15 | CF022234 | 0.390 | 30 | 0.287 | 30 |
表6 红三叶耐铜性综合评价值及预测值
Table 6 Comprehensive evaluation and prediction value based on 4 important traits of copper tolerance in red clover
材料编号 Germplasm code | 综合评价 Comprehensive evaluation | 回归模型 Regression model | 材料编号 Germplasm code | 综合评价 Comprehensive evaluation | 回归模型 Regression model | ||||
---|---|---|---|---|---|---|---|---|---|
关联系数 Correlation | 排序 Order | 预测值 Predicted value | 预测排序 Order | 关联系数 Correlation | 排序 Order | 预测值 Predicted value | 预测排序 Order | ||
CF022167 | 0.698 | 1 | 0.469 | 1 | CF022212 | 0.501 | 16 | 0.364 | 16 |
CF022178 | 0.643 | 2 | 0.428 | 2 | CF022325 | 0.494 | 17 | 0.364 | 17 |
CF022232 | 0.636 | 3 | 0.421 | 4 | CF022199 | 0.491 | 18 | 0.355 | 19 |
CF022202 | 0.615 | 4 | 0.414 | 5 | CF022171 | 0.483 | 19 | 0.361 | 18 |
CF022230 | 0.604 | 5 | 0.422 | 3 | CF022151 | 0.483 | 20 | 0.346 | 21 |
CF022231 | 0.602 | 6 | 0.404 | 7 | CF000802 | 0.481 | 21 | 0.352 | 20 |
CF022233 | 0.588 | 7 | 0.413 | 6 | CF022150 | 0.478 | 22 | 0.344 | 22 |
CF002082 | 0.583 | 8 | 0.398 | 8 | CF022168 | 0.478 | 23 | 0.341 | 23 |
CF022235 | 0.570 | 9 | 0.388 | 9 | CF022211 | 0.470 | 24 | 0.327 | 24 |
EM00081 | 0.529 | 10 | 0.380 | 11 | CF022175 | 0.455 | 25 | 0.324 | 25 |
CF022156 | 0.521 | 11 | 0.380 | 12 | CF022181 | 0.431 | 26 | 0.307 | 27 |
CF022172 | 0.507 | 12 | 0.386 | 10 | CF022179 | 0.422 | 27 | 0.311 | 26 |
CF022173 | 0.505 | 13 | 0.374 | 13 | CF022169 | 0.398 | 28 | 0.296 | 28 |
CF022188 | 0.503 | 14 | 0.369 | 14 | CF022161 | 0.391 | 29 | 0.296 | 29 |
CF022165 | 0.502 | 15 | 0.365 | 15 | CF022234 | 0.390 | 30 | 0.287 | 30 |
1 | Gu J G, Zhou Q X, Wang X. Reused path of heavy metal pollution in soils and its research advance. Journal of Basic Science and Engineering, 2003, 11(2): 43-51. |
2 | Li T, Wu R, Li J, et al. Evaluation of soil heavy metal pollution in greenhouses with different planting years. Journal of Henan Agricultural Sciences, 2016, 45(12): 62-66. |
李曈, 吴荣, 李杰, 等. 不同使用年限大棚土壤重金属污染评价. 河南农业科学, 2016, 45(12): 62-66. | |
3 | Inmaculada Y. Copper in plants: Acquisition, transport and interactions. Functional Plant Biology, 2009, 36(5): 409-430. |
4 | Taylor A A, Tsuji J S, Garry M R, et al. Critical review of exposure and effects: Implications for setting regulatory health criteria for ingested copper. Environmental Management, 2020, 65(1): 131-159. |
5 | Brunetto G, Wellington B D M G, Terzano R, et al. Copper accumulation in vineyard soils: Rhizosphere processes and agronomic practices to limit its toxicity. Chemosphere, 2016, 162(11): 293-307. |
6 | Cao Z H, Hu Z Y. Copper contamination in paddy soils irrigated with waste water. Chemosphere, 2000, 41(1): 3-6. |
7 | Kopittke P M, Blamey F P, Asher C J, et al. Trace metal phytotoxicity in solution culture: A review. Journal of Experimental Botany, 2010, 61(4): 945-954. |
8 | Wei B G, Yang L S. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal, 2010, 94(2): 99-107. |
9 | Li F, Liu S Y, Li Y, et al. Spatiotemporal variability and source apportionment of soil heavy metals in a industrially developed city. Environmental Science, 2019, 40(2): 934-944. |
李锋, 刘思源, 李艳, 等. 工业发达城市土壤重金属时空变异与源解析. 环境科学, 2019, 40(2): 934-944. | |
10 | Li W Q, Khan M A, Yamaguchi S, et al. Effects of heavy metals on seed germination and seedling growth of Arabidopsis thaliana. Plant Growth Regulation, 2005, 46(1): 45-50. |
11 | Yadav P, Kaur R, Kanwar M K, et al. Ameliorative role of castasterone on copper metal toxicity by improving redox homeostasis in Brassica juncea L. Journal of Plant Growth Regulation, 2017, 37(4): 1-16. |
12 | Shu W S, Yang K Y, Zhang Z Q, et al. Flora and heavy metals in dominant plants growing on an ancient copper spoil heap on Tonglushan in Hubei Province, China. Chinese Journal of Applied and Environmental Biology, 2001, 7(1): 7-12. |
束文圣, 杨开颜, 张志权, 等. 湖北铜绿山古铜矿冶炼渣植被与优势植物的重金属含量研究. 应用与环境生物学报, 2001, 7(1): 7-12. | |
13 | Wang M, Li S S, Li X Y, et al. An overview of current status of copper pollution in soil and remediation efforts in China. Earth Science Frontiers, 2018, 25(5): 305-313. |
王萌, 李杉杉, 李晓越, 等. 我国土壤铜的污染现状与修复研究进展. 地学前缘, 2018, 25(5): 305-313. | |
14 | Mirlean N, Roisenberg A, Chies J O. Metal contamination of vineyard soils in wet subtropics (Southern Brazil). Environmental Pollution, 2007, 149(1): 10-17. |
15 | Wang Q Y, Zhou D M, Long C. Microbial and enzyme properties of apple orchard soil as affected by long-term application of copper fungicide. Soil Biology and Biochemistry, 2009, 41(7): 1504-1509. |
16 | Wang Q Y, Liu J S, Wang Y, et al. Accumulations of copper in apple orchard soils: Distribution and availability in soil aggregate fractions. Journal of Soils and Sediments, 2015, 15(5): 1075-1082. |
17 | Mahar A, Wang P, Ali A, et al. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicology and Environmental Safety, 2016, 126: 111-121. |
18 | Huang J, Zhu X Y, Lu J, et al. Effects of different land use types on microbial community diversity in the Shizishan mining area. Environmental Science, 2019, 40(12): 5550-5560. |
黄健, 朱旭炎, 陆金, 等. 狮子山矿区不同土地利用类型对土壤微生物群落多样性的影响. 环境科学, 2019, 40(12): 5550-5560. | |
19 | Fan J, He Z, Ma L Q, et al. Accumulation and availability of copper in citrus grove soils as affected by fungicide application. Journal Soils and Sediments, 2011, 11(4): 639-648. |
20 | Fan J, He Z, Ma L Q, et al. Impacts of calcium water treatment residue on the soil-water-plant system in citrus production. Plant and Soil, 2014, 374(1/2): 993-1004. |
21 | Li N, Wu L H, Li F Y, et al. Biomass and copper contents of Elsholtzia splendens on different copper contaminated soils. Soils, 2006, 38(5): 598-601. |
李宁, 吴龙华, 李法云, 等. 不同铜污染土壤上海洲香薷生长及铜吸收动态. 土壤, 2006, 38(5): 598-601. | |
22 | Li Y, Wang Y B. Research on Cu uptake and tolerance of four Pteridophyta plants. Acta Prataculturae Sinica, 2010, 19(3): 191-197. |
李影, 王友保. 4种蕨类草本植物对Cu的吸收和耐性研究. 草业学报, 2010, 19(3): 191-197. | |
23 | Xu L, Zhou J, Liang J N, et al. The remediation potential of Pennisetum sp. on Cu, Cd contaminated soil. Acta Ecologica Sinica, 2014, 34(18): 5342-5348. |
徐磊, 周静, 梁家妮, 等. 巨菌草对Cu、Cd 污染土壤的修复潜力. 生态学报, 2014, 34(18): 5342-5348. | |
24 | Long J, Huang C Y, Teng Y, et al. Effects of copper mine tailings on growing status of five forage grass species. Grassland of China, 2003, 25(2): 18-21. |
龙健, 黄昌勇, 滕应, 等. 铜尾矿对五种牧草生长情况的影响. 中国草地, 2003, 25(2): 18-21. | |
25 | Gao Z, Wang X L, Liu T Y, et al. Effects of heavy metals copper pollution on seed germination and seedlings growth of Sorghum sudanense (Piper) Stapf. Chinese Agricultural Science Bulletin, 2013, 29(25): 199-204. |
高柱, 王小玲, 刘腾云, 等. 重金属Cu污染对苏丹草种子发芽及幼苗生长的影响. 中国农学通报, 2013, 29(25): 199-204. | |
26 | Shamina S, Sugiyama S. Cadmium phytoextraction capacity in eight C3 herbage grass species. Grassland Science, 2008, 54(1): 27-32. |
27 | Peralta-Videa J R, Garden-Torresdey J L, Gomez E, et al. Effect of mixed cadmium, copper, nickel and zinc at different pHs upon alfalfa growth and heavy metal uptake. Environmental Pollution, 2002, 119(3): 291-301. |
28 | Zhang Z F, Gong L X, Wen Z Z, et al. Effect of acid-copper stress on seed germination and root growth of Medicago sativa. Chinese Journal of Grassland, 2017, 39(3): 72-76. |
张志飞, 龚梨霞, 文昭竹, 等. 酸铜对紫花苜蓿种子萌发及根系生长的影响. 中国草地学报, 2017, 39(3): 72-76. | |
29 | Zeng X L, Han F, Zhong Y M, et al. Study on selenium- and strontium-concentrating capacity of milk vetch, sesbania and smooth vetch. Fujian Agricultural Science and Technology, 2017(1): 15-19. |
曾宪录, 韩飞, 钟艳梅, 等. 紫云英、田菁及光叶苕子富集硒、锶能力研究. 福建农业科技, 2017(1): 15-19. | |
30 | Han X S, Cao C Y, Yao J D, et al. Effects of copper and cadmium on leguminous plant growth and nutrient uptake. Chinese Journal of Ecology, 2009, 28(11): 2250-2256. |
韩晓姝, 曹成有, 姚金冬, 等. 铜、镉对三种豆科植物生长及氮磷钾含量的影响. 生态学杂志, 2009, 28(11): 2250-2256. | |
31 | Wang S Q, Hu Y G, She K J, et al. Gray relational grade analysis of agronomical and physi-biochemical traits related to drought tolerance in wheat. Scientia Agricultura Sinica, 2007, 40(11): 2452-2459. |
王士强, 胡银岗, 佘奎军, 等. 小麦抗旱相关农艺性状和生理生化性状的灰色关联度分析. 中国农业科学, 2007, 40(11): 2452-2459. | |
32 | Jiang H X, Bai S S, Wu B, et al. A multivariate evaluation of agronomic straits and forage quality of 22 oat varieties in the Huang-Huai-Hai area of China. Acta Prataculturae Sinica, 2021, 30(1): 140-149. |
姜慧新, 柏杉杉, 吴波, 等. 22个燕麦品种在黄淮海地区的农艺性状与饲草品质综合评价. 草业学报, 2021, 30(1): 140-149. | |
33 | Zhang H S, Liu Y, Wang F, et al. The comprehensive evaluation of heat tolerance of 18 Trifolium varieties. Pratacultural Science, 2009, 26(7): 44-49. |
张鹤山, 刘洋, 王凤, 等. 18个三叶草品种耐热性综合评价. 草业科学, 2009, 26(7): 44-49. | |
34 | Li G L, Wang Q, Wang J S, et al. Mechanisms of stress and mitigation of heavy metals on seed germination of plants. Biotechnology Bulletin, 2019, 35(6): 147-155. |
李桂玲, 王琦, 王金水, 等. 重金属对植物种子萌发胁迫及缓解的机制. 生物技术通报, 2019, 35(6): 147-155. | |
35 | Thounaojam T C, Panda P, Mazumdar P, et al. Excess copper induced oxidative stress and response of antioxidants in rice. Plant Physiology and Biochemistry, 2012, 53: 33-39. |
36 | Küpper H, Andresen E. Mechanisms of metal toxicity in plants. Metallomics, 2016, 8: 269-285. |
37 | Lequeux H, Hermans C, Lutts S, et al. Response to copper excess in Arabidopsis thaliana: Impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiology and Biochemistry, 2010, 48(8): 673-682. |
38 | Raeymaekers T, Potters G, Asard H, et al. Copper-mediated oxidative burst in Nicotiana tabacum L. cv. bright yellow 2 cell suspension cultures. Protoplasma, 2003, 221(1/2): 93-100. |
39 | Yu X J, Zhang J W, Pan T T, et al. Effects of heavy metals: Copper, cadmium and lead on the seed germination and seedling growth of leguminous forage. Acta Agrestia Sinica, 2015, 23(4): 793-802. |
鱼小军, 张建文, 潘涛涛, 等. 铜、镉、铅对7 种豆科牧草种子萌发和幼苗生长的影响. 草地学报, 2015, 23(4): 793-802. | |
40 | Aydinalp C, Marinova S. The effects of heavy metals on seed germination and plant growth on alfalfa plant (Medicago sativa). Bulgarian Journal of Agricultural Science, 2009, 15(4): 347-350. |
41 | Xin B B, Yuan Q H, Wang Y. Comprehensive evaluation of Co2+ resistance and enrichment features of Italian ryegrass accessions at seedling stage. Acta Agrestia Sinica, 2012, 20(6): 1123-1131. |
辛宝宝, 袁庆华, 王瑜. 多年生黑麦草种质材料苗期耐钴性综合评价及钴离子富集特性研究. 草地学报, 2012, 20(6): 1123-1131. | |
42 | Cui J L, Zhao Y P, Lu Y J, et al. Distribution and speciation of copper in rice (Oryza sativa L.) from mining-impacted paddy soil: Implications for copper uptake mechanisms. Environment International, 2019, 126: 717-726. |
43 | Xu Y, Yu W, Ma Q, et al. Toxicity of sulfadiazine and copper and their interaction to wheat (Triticum aestivum L.) seedlings. Ecotoxicology and Environmental Safety, 2017, 142(8): 250-256. |
44 | Nazir F, Hussain A, Fariduddin Q. Hydrogen peroxide modulate photosynthesis and antioxidant systems in tomato (Solanum lycopersicum L.) plants under copper stress. Chemosphere, 2019, 230(9): 544-558. |
45 | Zhao S Y, Chen F, Zhang H S, et al. Evaluation of copper tolerance of 51 red clover germplasm resources at germination stage. Seed, 2019, 38(4): 10-14. |
赵思怡, 陈菲, 张鹤山, 等. 51份红三叶种质资源萌发期耐铜性评价. 种子, 2019, 38(4): 10-14. | |
46 | Kopittke P M, Menzies N W. Effect of Cu toxicity on growth of cowpea (Vigna unguiculata). Plant and Soil, 2006, 279(1/2): 287-296. |
47 | Feigl G, Kumar D, Lehotai N, et al. Comparing the effects of excess copper in the leaves of Brassica juncea (L. Czern) and Brassica napus (L.) seedlings: Growth inhibition, oxidative stress and photosynthetic damage. Acta Biologica Hungarica, 2015, 66(2): 205-221. |
48 | Wang B, Huang P, Lv D Y, et al. Effects of Pb and Cd on the seed germination and seedling growth of Triarrhena lutarioriparia. Ecology and Environmental Sciences, 2018, 27(9): 1768-1773. |
王波, 黄攀, 吕徳雅, 等. 铅、镉对南荻种子萌发和幼苗生长的影响. 生态环境学报, 2018, 27(9): 1768-1773. | |
49 | Chen J R, Liu D, Wu J S, et al. Seed germination and metal accumulation of Moso bamboo (Phyllostachys pubescens) under heavy metal exposure. Acta Ecologica Sinica, 2014, 34(22): 6501-6509. |
陈俊任, 柳丹, 吴家森, 等. 重金属胁迫对毛竹种子萌发及其富集效应的影响. 生态学报, 2014, 34(22): 6501-6509. | |
50 | Boojar M M A, Goodarzi F. The copper tolerance strategies and the role of antioxidative enzymes in three plant species grown on copper mine. Chemosphere, 2007, 67(11): 2138-2147. |
51 | Zhang H, Shen Z J, Chen Z, et al. An investigation of heavy-metal, nitrogen and phosphorus concentration in nine dominant plant species in a copper mine tailings area. Ecology and Environmental Sciences, 2011, 20(10): 1478-1484. |
张宏, 沈章军, 陈政, 等. 铜尾矿区9种优势植物体内重金属和氮磷含量研究. 生态环境学报, 2011, 20(10): 1478-1484. | |
52 | Zhang L P, Shen Y T. Study on copper absorption, accumulation and tolerance mechanism of alfalfa. Chinese Journal of Analytical Chemistry, 2017, 45(8): 1129-1136. |
张丽萍, 沈亚婷. 紫花苜蓿对铜的吸收、积累和耐受机制研究. 分析化学, 2017, 45(8): 1129-1136. | |
53 | Wang R, Fu W, Wang J, et al. Application of rice grain husk derived biochar in ameliorating toxicity impacts of Cu and Zn on growth, physiology and enzymatic functioning of wheat seedlings. Bulletin of Environmental Contamination and Toxicology, 2019, 103(4): 636-641. |
54 | Chibuike G U, Obiora S C. Heavy metal polluted soils: Effect on plants and bioremediation methods. Applied and Environmental Soil Science, 2014(1): 1-12. |
55 | Xu Z M, Chen L, Liu Y Z, et al. Effects of Cu2+ and Zn2+ stress on seed germination and antioxidant characteristics of Muhlenbergia capillaris. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2020, 49(3): 326-333. |
许志敏, 陈琳, 刘燕珍, 等. Cu2+、Zn2+胁迫对粉黛乱子草种子萌发及抗氧化特征影响. 福建农林大学学报(自然科学版), 2020, 49(3): 326-333. | |
56 | Hu B Y, Fang Z G, Lou L Q, et al. Comprehensive evaluation of cadmium tolerance of 14 switchgrass (Panicum virgatum) cultivars in the seedling stage. Acta Prataculturae Sinica, 2019, 28(1): 27-36. |
胡冰钰, 方志刚, 娄来清, 等. 14份柳枝稷种质资源苗期耐镉性综合评价. 草业学报, 2019, 28(1): 27-36. | |
57 | Wang M M, Zhou X R, Liang G L, et al. A multi-trait evaluation of salt tolerance of 5 oat germplasm lines at the seedling stage. Acta Prataculturae Sinica, 2020, 29(8): 143-154. |
王苗苗, 周向睿, 梁国玲, 等. 5份燕麦材料苗期耐盐性综合评价. 草业学报, 2020, 29(8): 143-154. | |
58 | Fan Z X, Li S C, Sun H L. Physiological response of Amorpha fruiticosa to drought stress under paclobutrazol application and an evaluation of drought resistance. Acta Prataculturae Sinica, 2017, 26(3): 132-141. |
范志霞, 李绍才, 孙海龙. 多效唑作用下紫穗槐对干旱胁迫的生理响应及抗旱性评价. 草业学报, 2017, 26(3): 132-141. | |
59 | Wang Y, Jia Z L, Ren D X, et al. Evaluation on advanced lines of potato drought-resistance traits by subordinate function values analysis. Seed, 2017, 36(6): 72-75. |
王燕, 贾智麟, 任冬雪, 等. 隶属函数法评价马铃薯高代品系材料的抗旱性. 种子, 2017, 36(6): 72-75. | |
60 | Zhang H S, Wang Z Y, Chen Z H, et al. A study on morphological variation of 45 red clover germplasms. Acta Agriculturae Universitatis Jiangxiensis, 2020, 42(5): 923-931. |
张鹤山, 王志勇, 陈志宏, 等. 45份红三叶种质表观性状变异研究. 江西农业大学学报, 2020, 42(5): 923-931. | |
61 | Wang R, Li P Y, Sun Z J, et al. Evaluation of salt tolerance of 42 Elytrigia repens at seedling stage under hydroponic condition. Chinese Journal of Grassland, 2020, 42(5): 22-30. |
王瑞, 李培英, 孙宗玖, 等. 水培下42份偃麦草种质苗期耐盐性评价. 中国草地学报, 2020, 42(5): 22-30. |
[1] | 王传旗, 刘文辉, 张永超, 周青平. 野生老芒麦苗期耐旱性研究[J]. 草业学报, 2021, 30(8): 127-136. |
[2] | 彭艳, 孙晶远, 马素洁, 王向涛, 孙磊, 魏学红. 氮磷添加对藏北人工牧草生产性能和品质的评价[J]. 草业学报, 2021, 30(5): 52-64. |
[3] | 蔺豆豆, 赵桂琴, 琚泽亮, 宫文龙. 15份燕麦材料苗期抗旱性综合评价[J]. 草业学报, 2021, 30(11): 108-121. |
[4] | 王红林, 左艳春, 严旭, 周晓康, 寇晶, 杨希智, 郭俊英, 蒲军, 张浩仁, 杜周和. 刈割高度与施氮量对饲料桑全株产量及营养品质的影响[J]. 草业学报, 2021, 30(11): 203-211. |
[5] | 何海锋, 闫承宏, 吴娜, 刘吉利, 贾瑜琀. 不同施氮水平对柳枝稷光合特性及抗旱性的影响[J]. 草业学报, 2021, 30(1): 107-115. |
[6] | 姜慧新, 柏杉杉, 吴波, 宋静怡, 王国良. 22个燕麦品种在黄淮海地区的农艺性状与饲草品质综合评价[J]. 草业学报, 2021, 30(1): 140-149. |
[7] | 王苗苗, 周向睿, 梁国玲, 赵桂琴, 焦润安, 柴继宽, 高雪梅, 李娟宁. 5份燕麦材料苗期耐盐性综合评价[J]. 草业学报, 2020, 29(8): 143-154. |
[8] | 曾令霜, 李培英, 孙晓梵, 孙宗玖. 新疆不同生境狗牙根种质抗旱性综合评价[J]. 草业学报, 2020, 29(8): 155-169. |
[9] | 张雪婷, 王新永, 杨文雄, 柳娜, 杨长刚. 河西绿洲灌区节水抗旱型玉米品种的评价方法探讨[J]. 草业学报, 2020, 29(2): 134-148. |
[10] | 张朝铖, 蒋倩, 吴志, 何新杰, 蒋凯, 高静雅, 李翔, 王宁. 4种观赏草的耐阴特性研究及评价[J]. 草业学报, 2019, 28(7): 60-72. |
[11] | 梁坤伦, 贾存智, 孙金豪, 王明艳, 傅华, 毛祝新. 高寒地区垂穗披碱草种质对低温胁迫的生理响应及其耐寒性评价[J]. 草业学报, 2019, 28(3): 111-121. |
[12] | 朱娟娟, 喻春明, 陈继康, 王延周, 陈平, 熊和平. 外源硒对饲用苎麻草产量和营养价值的影响[J]. 草业学报, 2019, 28(10): 144-155. |
[13] | 胡冰钰, 方志刚, 娄来清, 蔡庆生. 14份柳枝稷种质资源苗期耐镉性综合评价[J]. 草业学报, 2019, 28(1): 27-36. |
[14] | 李海云, 姚拓, 张榕, 张洁, 李智燕, 荣良燕, 路晓雯, 杨晓蕾, 夏东慧, 罗慧琴. 红三叶根际溶磷菌的筛选与培养基优化[J]. 草业学报, 2019, 28(1): 170-179. |
[15] | 熊雪, 桂维阳, 刘沫含, 陈继辉, 张英俊. 不同紫花苜蓿品种在均匀与不均匀盐胁迫下的耐盐性评价[J]. 草业学报, 2018, 27(9): 67-76. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||