[1] Liu X, Fan Z X, Zhang B, et al. Cadmium pollution of soil and its remediation in China. Shandong Agricultural Sciences, 2007, (6): 94-97. 柳絮, 范仲学, 张斌, 等. 我国土壤镉污染及其修复研究. 山东农业科学, 2007, (6): 94-97. [2] Yu P, Gao F, Liu J, et al. Effect of Cd on plant growth and its tolerance mechanism. Chinese Agricultural Science Bulletin, 2017, 33(11): 89-95. 俞萍, 高凡, 刘杰, 等. 镉对植物生长的影响和植物耐镉机制研究进展. 中国农学通报, 2017, 33(11): 89-95. [3] Clemens S, Ma J F.Toxic heavy metal and metalloid accumulation in crop plants and foods. Annual Review of Plant Biology, 2016, 67(1): 489. [4] You H M. Research progress of heavy metal contaminated soil remediation. Environment and Development, 2017, 29(6): 122, 124. 尤洪梅. 重金属污染的土壤修复的研究进展. 环境与发展, 2017, 29(6): 122, 124. [5] Rizwan M, Ali S, Adrees M, et al. A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere, 2017, 182: 90-105. [6] de Souza Costa E T, Guilherme L R G, de Melo É E C, et al. Assessing the tolerance of castor bean to Cd and Pb for phytoremediation purposes. Biological Trace Element Research, 2012, 145(1): 93-100. [7] Zhang X Z, Zhang H J, Li T X, et al. Differences in Cd-tolerance of rice and screening for Cd low-accumulation rice germplasm resources. Chinese Journal of Eco-Agriculture, 2013, 21(11): 1434-1440. 张锡洲, 张洪江, 李廷轩, 等. 水稻镉耐性差异及镉低积累种质资源的筛选. 中国生态农业学报, 2013, 21(11): 1434-1440. [8] Xin Y W, Liang C H, Du L Y, et al. Accumulation and translocation of cadmium in different maize cultivars. Journal of Agro-Environment Science, 2017, 36(5): 839-846. 辛艳卫, 梁成华, 杜立宇, 等. 不同玉米品种对镉的富集和转运特性. 农业环境科学学报, 2017, 36(5): 839-846. [9] Liu W L, Wang K R, Wang M L, et al. Physiological responses of different peanut (Arachis hypogaea L.) varieties to cadmium. Chinese Journal of Applied Ecology, 2009, 20(2): 451-459. 刘文龙, 王凯荣, 王铭伦, 等. 花生对镉胁迫的生理响应及品种间差异. 应用生态学报, 2009, 20(2): 451-459. [10] Lee K K, Han S C, Yong C M, et al. Cadmium and lead uptake capacity of energy crops and distribution of metals within the plant structures. Ksce Journal of Civil Engineering, 2013, 17(1): 44-50. [11] Pandey V C, Bajpai O, Singh N.Energy crops in sustainable phytoremediation. Renewable & Sustainable Energy Reviews, 2016, 54: 58-73. [12] Torrez V C, Johnson P J, Boe A, et al. Erratum to: Infestation rates and tiller morphology effects by the switchgrass moth on six cultivars of switchgrass. Bioenergy Research, 2013, 6(3): 1126. [13] Li G Y, Li J L,Wang Y, et al. Research progress on the clean bio-energy production from high yield Panicum virgatum. Pratacultural Science, 2008, 25(5): 15-21. 李高扬, 李建龙, 王艳, 等. 利用高产牧草柳枝稷生产清洁生物质能源的研究进展. 草业科学, 2008, 25(5): 15-21. [14] Liu J L, Zhu W B, Xie G H, et al. The development of Panicum virgatum as an energy crop. Acta Prataculturae Sinica, 2009, 18(3): 232-240. 刘吉利, 朱万斌, 谢光辉, 等. 能源作物柳枝稷研究进展. 草业学报, 2009, 18(3): 232-240. [15] Liu C H, Lou L Q, Deng J X, et al. Morph-physiological responses of two switchgrass (Panicum virgatum L.) cultivars to cadmium stress. Grassland Science, 2016, 62(2): 92-101. [16] Liu C H, Lou L Q, Guo T, et al. Preliminary research on Cd-tolerance of Panicum virgatum and Panicum maximum. Acta Prataculturae Sinica, 2015, 24(11): 100-108. 刘长浩, 娄来清, 郭涛, 等. 柳枝稷和坚尼草的耐镉性初步研究. 草业学报, 2015, 24(11): 100-108. [17] Lemus R, Brummer E C, Moore K J, et al. Biomass yield and quality of 20 switchgrass populations in southern Iowa, USA. Biomass & Bioenergy, 2002, 23(6): 433-442. [18] Du F, Chen X, Yang C H, et al. Effects of NaCl stress on seed germination and seedling growth of different switchgrass materials. Acta Agrestia Sinica, 2011, 19(6): 1018-1024. 杜菲, 陈新, 杨春华, 等. NaCl胁迫对不同柳枝稷材料种子萌发与幼苗生长的影响. 草地学报, 2011, 19(6): 1018-1024. [19] Huo W, Zhuang C H, Cao Y, et al. Paclobutrazol and plant-growth promoting bacterial endophyte Pantoea sp. enhance copper tolerance of guinea grass (Panicum maximum) in hydroponic culture. Acta Physiologiae Plantarum, 2012, 34(1): 139-150. [20] Su Y, Liu J, Lu Z, et al. Effects of iron deficiency on subcellular distribution and chemical forms of cadmium in peanut roots in relation to its translocation. Environmental & Experimental Botany, 2014, 97(1): 40-48. [21] Yan H, Wu L, Filardo F, et al. Chemical and hydraulic signals regulate stomatal behavior and photosynthetic activity in maize during progressive drought. Acta Physiologiae Plantarum, 2017, 39(6): 125. [22] Wang B, Ma J J, Sun X H, et al. The effects of different water supplies on root vigor of winter wheat. China Rural Water and Hydropower, 2017, (3): 41-44, 49. 王兵, 马娟娟, 孙西欢, 等. 水分调控对冬小麦根系活力的影响研究. 中国农村水利水电, 2017, (3): 41-44, 49. [23] Shi Y H, Wan L Q, Liu J N, et al. Analysis of the principal components and the subordinate function of Lolium perenne drought resistance. Acta Agrestla Sinica, 2010, 18(5): 669-672. 石永红, 万里强, 刘建宁, 等. 多年生黑麦草抗旱性主成分及隶属函数分析. 草地学报, 2010, 18(5): 669-672. [24] Zhu Y, Fan X F, Wu J Y, et al. Comprehensive evaluation of tolerance of switchgrass to nitrogen-deficiency stress at seedling stage. Chinese Journal of Grassland, 2013, 35(4): 66-70. 朱毅, 范希峰, 武菊英, 等. 柳枝稷苗期对氮素胁迫耐受性的综合评价. 中国草地学报, 2013, 35(4): 66-70. [25] Fang Z G, Hu Z Y, Zhao H H, et al. Screening for cadmium tolerance of 21 cultivars from Italian ryegrass (Lolium multiflorum Lam) during germination. Grassland Science, 2017, 63(1): 36-45. [26] Tian X X, Li L, Mao P C, et al. Analysis of Cd-tolerance and determination of Cd-tolerance evaluation indicators in Iris lactea at seedling stage. Journal of Nuclear Agricultural Sciences, 2018, 32(3): 591-599. 田小霞, 李丽, 毛培春, 等. 马蔺苗期耐镉性分析及鉴定指标筛选. 核农学报, 2018, 32(3): 591-599. [27] Seregin I V, Ivanov V B.Physiological aspects of cadmium and lead toxic effects on higher plants. Russian Journal of Plant Physiology, 2001, 48(4): 523-544. [28] Fernández R, Bertrand A, Reis R, ,et al. Growth and physiological responses to cadmium stress of two populations of Dittrichia viscosa(L.) Greuter. Journal of Hazardous Materials, 2013, 244/245(2): 555-562. [29] Tai Z L, Yin X Q, Fang Z G, et al. Exogenous GR24 alleviates cadmium toxicity by reducing cadmium uptake in switchgrass (Panicum virgatum) seedlings. International Journal of Environmental Research and Public Health, 2017, 14(8): 852. [30] Pérez-Romero J A, Redondo-Gómez S, Mateos-Naranjo E. Growth and photosynthetic limitation analysis of the Cd-accumulator Salicornia ramosissima under excessive cadmium concentrations and optimum salinity conditions. Plant Physiology & Biochemistry, 2016, 109: 103-113. [31] Masle J, Farquhar G D.Effects of soil strength on the relation of water-use efficiency and growth to carbon isotope discrimination in wheat seedlings. Plant Physiology, 1988, 86(1): 32-38. [32] Vassilev A, Lidon F, Scotti P, et al. Cadmium-induced changes in chloroplast lipids and photosystem activities in barley plants. Biologia Plantarum, 2004, 48(1): 153-156. [33] Zhang F G, Xiao X, Yan G X, et al. Development of evaluation method for cadmium tolerance in Brassica napus seedlings. Chinese Journal of Oil Crop Sciences, 2017, 39(1): 47-54. 张付贵, 肖欣, 闫贵欣, 等. 甘蓝型油菜幼苗期耐镉性评价方法的研究. 中国油料作物学报, 2017, 39(1): 47-54. [34] Fan Z X, Li S C, Sun H L.Physiological response of Amorpha fruiticosato drought stress under paclobutrazol application and an evaluation of drought resistance. Acta Prataculturae Sinica, 2017, 26(3): 132-141. 范志霞, 李绍才, 孙海龙. 多效唑作用下紫穗槐对干旱胁迫的生理响应及抗旱性评价. 草业学报, 2017, 26(3): 132-141. [35] Wang Y, Jia Z L, Ren D X, et al. Evaluation on advanced lines of potato drought-resistance traits by subordinate function values analysis. Seed, 2017, 36(6): 72-75. 王燕, 贾智麟, 任冬雪, 等. 隶属函数法评价马铃薯高代品系材料的抗旱性. 种子, 2017, 36(6): 72-75. [36] Liu C H.The tolerance and morph-physiological response of switchgrass to cadmium. Nanjing: Nanjing Agricultural University, 2016. 刘长浩. 柳枝稷的耐镉性及其对镉的形态生理响应. 南京: 南京农业大学, 2016. [37] Cao X, Jiang F, Wang X, et al. Comprehensive evaluation and screening for chilling-tolerance in tomato lines at the seedling stage. Euphytica, 2015, 205(2): 569-584. [38] Mohammed A K, Kadhem F A.Screening drought tolerance in bread wheat genotypes (Triticum aestivum L.) using drought indices and multivariate analysis. The Iraqi Journal of Agricultural Science, 2017, 48: 41. [39] Uraguchi S, Fujiwara T.Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation. Rice, 2012, 5(1): 5. [40] Sipos G, Solti A, Czech V, et al. Heavy metal accumulation and tolerance of energy grass (Elymus elongatus subsp. ponticus cv. Szarvasi-1) grown in hydroponic culture. Plant Physiology & Biochemistry, 2013, 68(7): 96-103. [41] Wu G R, Yan Z L.Effects of Cd on the growth and osmotic adjustment regulation contents of Aegiceras conrniculatum seedlings. Ecology & Environment, 2006, 15(5): 1003-1008. 吴桂容, 严重玲. 镉对桐花树幼苗生长及渗透调节的影响. 生态环境学报, 2006, 15(5): 1003-1008. |