草业学报 ›› 2022, Vol. 31 ›› Issue (1): 13-25.DOI: 10.11686/cyxb2020483
韩小雨1(), 郭宁2, 李冬冬3, 谢明阳2, 焦峰1,2()
收稿日期:
2020-10-28
修回日期:
2020-11-16
出版日期:
2021-12-01
发布日期:
2021-12-01
通讯作者:
焦峰
作者简介:
Corresponding author. E-mail: Jiaof@ms.iswc.ac.cn基金资助:
Xiao-yu HAN1(), Ning GUO2, Dong-dong LI3, Ming-yang XIE2, Feng JIAO1,2()
Received:
2020-10-28
Revised:
2020-11-16
Online:
2021-12-01
Published:
2021-12-01
Contact:
Feng JIAO
摘要:
以内蒙古草甸草原、典型草原、荒漠草原3种草原实验区草地植物群落为研究对象, 设置7种氮添加梯度, 分别为CK(0 g N·m-2·a-1)、N1(5 g N·m-2·a-1)、N2(10 g N·m-2·a-1)、N3(15 g N·m-2·a-1)、N4(20 g N·m-2·a-1)、N5(25 g N·m-2·a-1)、N6(30 g N·m-2·a-1),应用单因素方差分析(One-way ANOVA)方法研究不同浓度梯度氮添加下不同草原类型区植被生物量、土壤碳氮差异及其影响因素。结果表明:1)氮添加并未对3种草原类型地下生物量产生显著影响(P>0.05),但显著提高了草甸草原和荒漠草原地上生物量(P<0.05),且本研究初步判断在N3添加时接近饱和阈值, 整体上氮添加使内蒙古草原总生物量平均增加了29.66%,较干旱的荒漠草原对氮添加的响应较为明显。施氮肥使草甸草原的根冠比显著降低(P<0.05),典型草原根冠比在N3处理下显著增加(P<0.05),但对荒漠草原影响不显著(P>0.05)。2)选择不同土层(0~10 cm、10~30 cm)分析氮添加对3种草地类型土壤有机碳、全氮含量的影响, 结果显示氮添加对草甸草原土壤碳氮含量没有显著影响(P>0.05),对典型草原和荒漠草原土壤碳氮含量存在显著影响(P<0.05),且0~10 cm土层对施氮的响应更明显。3)施氮条件下地上生物量与土壤C/N、年均降水显著相关(P<0.01),地下生物量、总生物量均与土壤全氮含量、有机碳含量、土壤C/N、年均温、年均降水显著相关(P<0.01)。总的来说,不同类型的草地生态系统生物量及土壤碳氮含量对施肥的响应存在差异,这意味着草地恢复与管理过程中需要对养分的添加作用进行考虑。
韩小雨, 郭宁, 李冬冬, 谢明阳, 焦峰. 氮添加对内蒙古不同草原生物量及土壤碳氮变化特征的影响[J]. 草业学报, 2022, 31(1): 13-25.
Xiao-yu HAN, Ning GUO, Dong-dong LI, Ming-yang XIE, Feng JIAO. Effects of nitrogen addition on soil carbon and nitrogen and biomass change in different grassland types in Inner Mongolia[J]. Acta Prataculturae Sinica, 2022, 31(1): 13-25.
草原类型 Grassland type | 研究站点 Research sites | 纬度 Latitude (°) | 经度 Longitude (°) | 年均温 Annual mean temperature (℃) | 年均降水 Annual mean precipitation (mm) | 土壤类型 Soil type | 优势植物 Dominant plant |
---|---|---|---|---|---|---|---|
草甸草原Meadow grassland | 鄂温克 | 48.93 | 119.69 | -0.85 | 362.67 | 石灰性黑钙土Calcareous chernozem | 羊草、茵陈蒿、冰草L. chinensis,A. capillaris, A. cristatum |
典型草原Typical grassland | 锡林浩特Xilin Hot | 43.94 | 115.86 | 2.28 | 256.22 | 栗钙土Chestnut soil | 克氏针茅、灰绿藜、刺藜S. krylovii, C. glaucum, |
荒漠草原Desert grassland | 杭锦旗 | 39.78 | 108.66 | 7.09 | 284.41 | 棕钙土Calcareous soil | 短花针茅、猪毛菜、狗尾草S. breviflora, S. collina, S. viridis |
表1 研究区基本概况
Table 1 Basic overview of the study area
草原类型 Grassland type | 研究站点 Research sites | 纬度 Latitude (°) | 经度 Longitude (°) | 年均温 Annual mean temperature (℃) | 年均降水 Annual mean precipitation (mm) | 土壤类型 Soil type | 优势植物 Dominant plant |
---|---|---|---|---|---|---|---|
草甸草原Meadow grassland | 鄂温克 | 48.93 | 119.69 | -0.85 | 362.67 | 石灰性黑钙土Calcareous chernozem | 羊草、茵陈蒿、冰草L. chinensis,A. capillaris, A. cristatum |
典型草原Typical grassland | 锡林浩特Xilin Hot | 43.94 | 115.86 | 2.28 | 256.22 | 栗钙土Chestnut soil | 克氏针茅、灰绿藜、刺藜S. krylovii, C. glaucum, |
荒漠草原Desert grassland | 杭锦旗 | 39.78 | 108.66 | 7.09 | 284.41 | 棕钙土Calcareous soil | 短花针茅、猪毛菜、狗尾草S. breviflora, S. collina, S. viridis |
图2 3种草原类型区不同氮处理的植物地上、地下生物量及总生物量不同小写字母表示同一草原类型各处理间差异显著(P<0.05)。下同。Different lowercase letters indicate significant differences (P<0.05) among treatments of the same grassland type. The same below.
Fig. 2 Plant aboveground and belowground biomass and total biomass with different nitrogen treatments in three grassland types (Mean±SE)
草地类型 Grassland type | 地上生物量 Aboveground biomass (g·m-2) | 地下生物量 Belowground biomass (g·m-2) | 根冠比 Root-shoot ratio | 总生物量 Total biomass (g·m-2) |
---|---|---|---|---|
草甸草原Meadow grassland | 388.14±20.70a | 2994.13±178.02a | 8.19±0.68b | 3370.94±177.17a |
典型草原Typical grassland | 122.93±5.56b | 2545.79±197.23a | 22.39±2.46a | 2668.72±194.74b |
荒漠草原Desert grassland | 361.91±20.69a | 1529.95±158.59b | 4.54±0.57b | 1891.86±159.42c |
表2 不同草原类型区氮添加下地上生物量、地下生物量、根冠比和总生物量的方差分析结果
Table 2 ANOVA results of nitrogen addition aboveground biomass, underground biomass, root-shoot ratio and total biomass in different grassland types
草地类型 Grassland type | 地上生物量 Aboveground biomass (g·m-2) | 地下生物量 Belowground biomass (g·m-2) | 根冠比 Root-shoot ratio | 总生物量 Total biomass (g·m-2) |
---|---|---|---|---|
草甸草原Meadow grassland | 388.14±20.70a | 2994.13±178.02a | 8.19±0.68b | 3370.94±177.17a |
典型草原Typical grassland | 122.93±5.56b | 2545.79±197.23a | 22.39±2.46a | 2668.72±194.74b |
荒漠草原Desert grassland | 361.91±20.69a | 1529.95±158.59b | 4.54±0.57b | 1891.86±159.42c |
草地类型 Grassland type | 土壤有机碳Soil organic carbon (g·kg-1) | 土壤全氮Soil total nitrogen (g·kg-1) | C/N | |||
---|---|---|---|---|---|---|
0~10 cm | 10~30 cm | 0~10 cm | 10~30 cm | 0~10 cm | 10~30 cm | |
草甸草原Meadow grassland | 23.29±0.23a | 15.75±0.28a | 2.16±0.03a | 1.44±0.02b | 10.78±0.07b | 10.91±0.09b |
典型草原Typical grassland | 17.14±0.54b | 12.43±0.55b | 1.91±0.07b | 1.67±0.05a | 9.13±0.31c | 7.56±0.38c |
荒漠草原Desert grassland | 9.54±0.10c | 9.24±0.08c | 0.59±0.01c | 0.57±0.01c | 16.03±0.23a | 16.27±0.18a |
表 3 不同草原类型区氮添加处理下土壤C、N以及C/N的方差分析
Table 3 Variance analysis of nitrogen-added soil C, N and C/N in different grassland types
草地类型 Grassland type | 土壤有机碳Soil organic carbon (g·kg-1) | 土壤全氮Soil total nitrogen (g·kg-1) | C/N | |||
---|---|---|---|---|---|---|
0~10 cm | 10~30 cm | 0~10 cm | 10~30 cm | 0~10 cm | 10~30 cm | |
草甸草原Meadow grassland | 23.29±0.23a | 15.75±0.28a | 2.16±0.03a | 1.44±0.02b | 10.78±0.07b | 10.91±0.09b |
典型草原Typical grassland | 17.14±0.54b | 12.43±0.55b | 1.91±0.07b | 1.67±0.05a | 9.13±0.31c | 7.56±0.38c |
荒漠草原Desert grassland | 9.54±0.10c | 9.24±0.08c | 0.59±0.01c | 0.57±0.01c | 16.03±0.23a | 16.27±0.18a |
项目 Item | 土壤有机碳Soil organic carbon | 土壤全氮Soil total nitrogen | C/N | |||
---|---|---|---|---|---|---|
0~10 cm | 10~30 cm | 0~10 cm | 10~30 cm | 0~10 cm | 10~30 cm | |
地上生物量Aboveground biomass | 0.02 | 0.10 | -0.22 | -0.47 | 0.45** | 0.58** |
地下生物量Belowground biomass | 0.63** | 0.48** | 0.62** | 0.52** | -0.52** | -0.46** |
总生物量Total biomass | 0.63** | 0.50** | 0.59** | 0.46** | -0.46** | -0.61** |
根冠比Root-shoot ratio | 0.20 | 0.04 | 0.40** | 0.59** | -0.57** | -0.69** |
年均温Annual mean temperature | -0.96** | -0.85** | -0.93** | -0.79** | 0.76** | 0.67** |
年均降水量Annual mean precipitation | 0.65** | 0.60** | 0.40** | 0.08 | -0.04 | 0.10 |
草原类型Grassland type | -0.96** | -0.86** | -0.90** | -0.72** | 0.69** | 0.58** |
表4 氮添加下不同土层土壤C、N化学计量特征与生物量及水热因子的相关性分析
Table 4 Correlation analysis of soil C,N stoichiometric characteristics with biomass and hydrothermal factors under nitrogen addition
项目 Item | 土壤有机碳Soil organic carbon | 土壤全氮Soil total nitrogen | C/N | |||
---|---|---|---|---|---|---|
0~10 cm | 10~30 cm | 0~10 cm | 10~30 cm | 0~10 cm | 10~30 cm | |
地上生物量Aboveground biomass | 0.02 | 0.10 | -0.22 | -0.47 | 0.45** | 0.58** |
地下生物量Belowground biomass | 0.63** | 0.48** | 0.62** | 0.52** | -0.52** | -0.46** |
总生物量Total biomass | 0.63** | 0.50** | 0.59** | 0.46** | -0.46** | -0.61** |
根冠比Root-shoot ratio | 0.20 | 0.04 | 0.40** | 0.59** | -0.57** | -0.69** |
年均温Annual mean temperature | -0.96** | -0.85** | -0.93** | -0.79** | 0.76** | 0.67** |
年均降水量Annual mean precipitation | 0.65** | 0.60** | 0.40** | 0.08 | -0.04 | 0.10 |
草原类型Grassland type | -0.96** | -0.86** | -0.90** | -0.72** | 0.69** | 0.58** |
项目 Item | 地上生物量 Aboveground biomass | 地下生物量 Belowground biomass | 总生物量 Total biomass | 根冠比 Root-shoot ratio | 年均温 Annual mean temperature | 年均降水量 Annual mean precipitation |
---|---|---|---|---|---|---|
地上生物量Aboveground biomass | -0.09 | 0.03 | -0.72** | 0.03 | 0.63** | |
地下生物量Belowground biomass | -0.09 | 0.96** | 0.57** | -0.61** | 0.33** | |
总生物量Total biomass | 0.03 | 0.96** | 0.47** | -0.60** | 0.42** | |
根冠比Root-shoot ratio | -0.72** | 0.57** | 0.47** | -0.23 | -0.41** | |
年均温Annual mean temperature | 0.03 | -0.61** | -0.60** | -0.23 | -0.63** | |
年均降水量Annual mean precipitation | 0.63** | 0.33** | 0.42** | -0.41** | -0.63** | |
草原类型Grassland type | -0.08 | -0.59** | -0.61** | -0.15 | 0.99** | -0.71** |
表5 氮添加下生物量与水热因子的相关性分析结果
Table 5 Results of correlation analysis of nitrogen added biomass and hydrothermal factor
项目 Item | 地上生物量 Aboveground biomass | 地下生物量 Belowground biomass | 总生物量 Total biomass | 根冠比 Root-shoot ratio | 年均温 Annual mean temperature | 年均降水量 Annual mean precipitation |
---|---|---|---|---|---|---|
地上生物量Aboveground biomass | -0.09 | 0.03 | -0.72** | 0.03 | 0.63** | |
地下生物量Belowground biomass | -0.09 | 0.96** | 0.57** | -0.61** | 0.33** | |
总生物量Total biomass | 0.03 | 0.96** | 0.47** | -0.60** | 0.42** | |
根冠比Root-shoot ratio | -0.72** | 0.57** | 0.47** | -0.23 | -0.41** | |
年均温Annual mean temperature | 0.03 | -0.61** | -0.60** | -0.23 | -0.63** | |
年均降水量Annual mean precipitation | 0.63** | 0.33** | 0.42** | -0.41** | -0.63** | |
草原类型Grassland type | -0.08 | -0.59** | -0.61** | -0.15 | 0.99** | -0.71** |
1 | Xie G D, Zhang Y L, Lu C X, et al. Service value of natural grassland ecosystem in China. Journal of Natural Resources, 2001, 16(1): 47-53. |
谢高地, 张钇锂, 鲁春霞, 等. 中国自然草地生态系统服务价值. 自然资源学报, 2001, 16(1): 47-53. | |
2 | Richter A, Burrows J P, Nuss H, et al. Increase in tropospheric nitrogen dioxide over China observed from space. Nature, 2005, 437(7055): 129-132. |
3 | Stevens C J, Lind E M, Hautier Y, et al. Anthropogenic nitrogen deposition predicts local grassland primary production worldwide. Ecology, 2015, 96(6): 1459-1465. |
4 | Isbell F, Reich P B, Tilman D, et al. Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(29): 11911-11916. |
5 | Mao J H, Xing Y J, Yan G Y, et al. A meta-analysis of the response of terrestrial plant biomass allocation to simulated N deposition. Acta Ecologica Sinica, 2018, 38(9): 3183-3194. |
毛晋花, 邢亚娟, 闫国永, 等. 陆生植物生物量分配对模拟氮沉降响应的Meta分析. 生态学报, 2018, 38(9): 3183-3194. | |
6 | Zong N, Duan C, Geng S B, et al. Effects of warming and nitrogen addition on community production and biomass allocation in an alpine meadow. Chinese Journal of Applied Ecology, 2018, 29(1): 59-67. |
宗宁, 段呈, 耿守保, 等. 增温施氮对高寒草甸生产力及生物量分配的影响. 应用生态学报, 2018, 29(1): 59-67. | |
7 | Majdi H, Andersson P. Fine root production and turnover in a norway spruce stand in Northern Sweden: Effects of nitrogen and water manipulation. Ecosystems, 2005, 8(2): 191-199. |
8 | Nadelhoffer K J. The potential effects of nitrogen deposition on fine-root production in forest ecosystems. New Phytologist, 2000, 147(1): 131-139. |
9 | Henry H A L, Chiariello N R, Vitousek P M, et al. Interactive effects of fire, elevated carbon dioxide, nitrogen deposition, and precipitation on a California annual grassland. Ecosystems, 2006, 9(7): 1066-1075. |
10 | Yu L Z, Ding G Q, Zhu J J, et al. Effects of fertilization on fine root biomass of Larix kaempferi plantation.Chinese Journal of Applied Ecology, 2007, 18(4): 713-720. |
于立忠, 丁国泉, 朱教君, 等. 施肥对日本落叶松人工林细根生物量的影响. 应用生态学报, 2007, 18(4): 713-720. | |
11 | Liu Y W, Bai W, Yin P S, et al. Effects of exogenous nitrogen addition on soil nutrients and plant community biomass in alpine swamp meadow in the headwaters region of the Yangtze River. Acta Agrestia Sinica, 2020, 28(2): 483-491. |
刘永万, 白炜, 尹鹏松, 等. 外源氮素添加对长江源区高寒沼泽草甸土壤养分及植物群落生物量的影响. 草地学报, 2020, 28(2): 483-491. | |
12 | Wang W Q, Xu L L, Zeng C S, et al. Carbon, nitrogen and phosphorus ecological stoichiometric ratios among live plant-litter-soil systems in estuarine wetland.Acta Ecologica Sinica, 2011, 31(23): 134-139. |
王维奇, 徐玲琳, 曾从盛, 等. 河口湿地植物活体-枯落物-土壤的碳氮磷生态化学计量特征. 生态学报, 2011, 31(23): 134-139. | |
13 | Wang Q K, Wang S L, Gao H. Influence of land use on soil organic matter. Chinese Journal of Ecology, 2005, 24(4): 360-363. |
王清奎, 汪思龙, 高洪. 土地利用方式对土壤有机质的影响. 生态学杂志, 2005, 24(4): 360-363. | |
14 | Konnerup D, Brix H. Nitrogen nutrition of Canna indica: Effects of ammonium versus nitrate on growth, biomass allocation, photosynthesis, nitrate reductase activity and N uptake rates. Aquatic Botany, 2010, 92(2): 142-148. |
15 | He X, Ma W H, Liang C Z, et al. Effects of nutrient additions on community biomass varied among different grassland ecosystems of Inner Mongolia. Acta Scientiarum Naturalium Universitatis Pekinensis, 2015, 51(4): 657-666. |
贺星, 马文红, 梁存柱, 等. 养分添加对内蒙古不同草地生态系统生物量的影响. 北京大学学报 (自然科学版), 2015, 51(4): 657-666. | |
16 | Jing M H, Jia X T, Zhang Y L, et al. Effects of long-term nitrogen addition on community aboveground and belowground biomass and their ratio in an Inner Mongolia typical grassland. Chinese Journal of Ecology, 2020(10): 1-11. |
景明慧, 贾晓彤, 张运龙, 等. 长期氮添加对内蒙古典型草原植物地上、地下生物量及根冠比的影响. 生态学杂志, 2020(10): 1-11. | |
17 | Ka Z C R, De K J, Xu C T. The effects of different fertilizer times and nitrogen levels on biomass and soil nutrients in alpine meadow.Acta Agrestia Sinica, 2015, 23(4): 726-732. |
卡着才让, 德科加, 徐成体. 不同施肥时间及施氮水平对高寒草甸生物量和土壤养分的影响. 草地学报, 2015, 23(4): 726-732. | |
18 | Su J Q, Li X R, Bao J T. Effects of nitrogen addition on soil physico-chemical properties and enzyme activities in desertified steppe.Chinese Journal of Applied Ecology, 2014, 25(3): 664-670. |
苏洁琼, 李新荣, 鲍婧婷. 施氮对荒漠化草原土壤理化性质及酶活性的影响. 应用生态学报, 2014, 25(3): 664-670. | |
19 | Bai Y, Wu J, Clark C M, et al. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from Inner Mongolia grasslands. Global Change Biology, 2010, 16(1): 358-372. |
20 | Lan Z, Bai Y. Testing mechanisms of N-enrichment-induced species loss in a semiarid Inner Mongolia grassland: Critical thresholds and implications for long-term ecosystem responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367(1606): 3125-3134. |
21 | Bao S D. Analysis of soil and agricultural chemistry. Beijing: China Agricultural Press, 2000. |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. | |
22 | Ying F, Fen X, Bai W M, et al. Long-term nitrogen addition leads to loss of species richness due to litter accumulation and soil acidification in a temperate steppe. PLoS One, 2012, 7(10): e47369. |
23 | He D, Li X L, He F, et al. Effect of nitrogen application on aboveground biomass and important values of major species in degraded natural grassland. Chinese Journal of Grassland, 2009, 31(5): 42-46. |
何丹, 李向林, 何峰, 等. 施氮对退化天然草地主要物种地上生物量和重要值的影响. 中国草地学报, 2009, 31(5): 42-46. | |
24 | Bai Y F. Influence of seasonal distribution of precipitation on primary productivity of Stipa krylovii community. Acta Phytoecologica Sinica, 1999(2): 3-5. |
白永飞. 降水量季节分配对克氏针茅草原群落初级生产力的影响. 植物生态学报, 1999(2): 3-5. | |
25 | Bai Y, Wu J, Pan Q, et al. Positive linear relationship between productivity and diversity: Evidence from the Eurasian Steppe. Journal of Applied Ecology, 2007, 44(5): 1023-1034. |
26 | Ma W H, Yang Y H, He J S, et al. Biomass of temperate grassland in Inner Mongolia and its relationship with environmental factors.Scientia Sinica (C Collection: Vitae), 2008(1): 84-92. |
马文红, 杨元合, 贺金生, 等. 内蒙古温带草地生物量及其与环境因子的关系. 中国科学(C辑:生命科学), 2008(1): 84-92. | |
27 | Lee M, Manning P, Rist J, et al. A global comparison of grassland biomass responses to CO2 and nitrogen enrichment. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365(1549): 2047-2056. |
28 | Ma Y S, Lang B N, Li Q Y, et al. Effect of fertilizing nitrogen rate and time on Kobresia pygmaea meadow grassland. Pratacultural Science, 2003(3): 47-50. |
马玉寿, 郎百宁, 李青云, 等. 施氮量与施氮时间对小嵩草草甸草地的影响. 草业科学, 2003(3): 47-50. | |
29 | Zhang L W. Analysis of precipitation variation characteristics and drought disasters in recent 50 years in Xilinhot. Meteorology Journal of Inner Mongolia, 2018(3): 33-35. |
张立伟. 近50a锡林浩特市降水量变化特征及干旱灾害统计分析. 内蒙古气象, 2018(3): 33-35. | |
30 | Qi Y, Huang Y M, Wang Y, et al. Biomass and its allocation of four grassland species under different nitrogen levels. Acta Ecologica Sinica, 2011, 31(18): 5121-5129. |
祁瑜, 黄永梅, 王艳, 等. 施氮对几种草地植物生物量及其分配的影响. 生态学报, 2011, 31(18): 5121-5129. | |
31 | Bai W, Guo D, Tian Q, et al. Differential responses of grasses and forbs led to marked reduction in below‐ground productivity in temperate steppe following chronic N deposition. Journal of Ecology, 2015, 103(6): 1570-1579. |
32 | Gao Y Z, Chen Q, Lin S, et al. Resource manipulation effects on net primary production, biomass allocation and rain-use efficiency of two semiarid grassland sites in Inner Mongolia, China. Oecologia, 2011, 165(4): 855-864. |
33 | Han B, Fan J W, Zhong H P. Grassland biomass of communities along gradients of the Inner Mongolia grassland transect. Journal of Plant Ecology, 2006(4): 553-562. |
韩彬, 樊江文, 钟华平. 内蒙古草地样带植物群落生物量的梯度研究. 植物生态学报, 2006(4): 553-562. | |
34 | Meng F Z, Yang P M. The effects of different fertilizer application on root shoot ratio and healthy index of pansy. Chinese Agricultural Science Bulletin, 2010, 26(6): 216-218. |
孟凡枝, 杨鹏鸣. 不同施肥水平对三色堇根冠比和壮苗指数的影响. 中国农学通报, 2010, 26(6): 216-218. | |
35 | Wang Z Q, Wu L H, Liu T T, et al. Effect of different nitrogen rates on Parthenocissus tricuspidata Planch seedling growth and nutrient distribution.Acta Ecologica Sinica, 2007(8): 3435-3441. |
王忠强, 吴良欢, 刘婷婷, 等. 供氮水平对爬山虎(Parthenocissus tricuspidata Planch)生物量及养分分配的影响. 生态学报, 2007(8): 3435-3441. | |
36 | Yang P M, Zhou X R. Effect of different fertilizer application standard on pumpkin root shoot ratio and healthy index. Southwest China Journal of Agricultural Sciences, 2010, 23(1): 115-118. |
杨鹏鸣, 周修任. 不同施肥水平对南瓜根冠比和壮苗指标的影响. 西南农业学报, 2010, 23(1): 115-118. | |
37 | Wang W, Peng S S, Fang J Y. Biomass distribution of natural grasslands and its response to climate change in north China. Arid Zone Research, 2008(1): 90-97. |
王娓, 彭书时, 方精云. 中国北方天然草地的生物量分配及其对气候的响应. 干旱区研究, 2008(1): 90-97. | |
38 | Wang Y F, Yang Z J, Huang F Q, et al. Effect of nitrogen addition on biomass of Allium polyrhizum. Journal of Green Science and Technology, 2018(8): 10-12. |
王瑀璠, 袁子健, 黄富权, 等. 氮添加对退化草原优势植物多根葱(Allium polyrhizum)生物量的影响. 绿色科技, 2018(8): 10-12. | |
39 | Luo Y, Field C B, Jackson R B. Does nitrogen constrain carbon cycling, or does carbon input stimulate nitrogen cycling? Ecology, 2006, 87(1): 3-4. |
40 | Qi Y, Mulder J, Duan L, et al. Short-term effects of simulating nitrogen deposition on soil organic carbon in a Stipa krylovii steppe. Acta Ecologica Sinica, 2015, 35(4): 1104-1113. |
祁瑜, Mulder J, 段雷, 等. 模拟氮沉降对克氏针茅草原土壤有机碳的短期影响. 生态学报, 2015, 35(4): 1104-1113. | |
41 | Zheng H X, Qi S, Zhao X R, et al. Characters of soil particulate organic matter under five-year application of N fertilizer and sheep manure in Leymus chinensis grassland of Inner Mongolia. Scientia Agricultura Sinica, 2008(4): 1083-1088. |
郑海霞, 齐莎, 赵小蓉, 等. 连续5年施用氮肥和羊粪的内蒙古羊草(Leymus chinensis)草原土壤颗粒状有机质特征. 中国农业科学, 2008(4): 1083-1088. | |
42 | Ai L, Wu J G, Liu J Q, et al. Soil organic carbon and total nitrogen content and its relationship with altitude, vegetation and climate elements-the northern slope of the central Qilian Mountains was studied. Chinese Horticultural Abstracts, 2010, 26(3): 27-34. |
艾丽, 吴建国, 刘建泉, 等. 土壤有机碳和全氮含量及其与海拔、植被和气候要素的关系—以祁连山中段北坡为研究对象.中国园艺文摘, 2010, 26(3): 27-34. | |
43 | Wang C T, Long R J, Wang Q J, et al. The distribution and productivity of organic matter nitrogen and phosphorus in alpine meadow and its relationship with environmental factors.Acta Prataculturae Sinica, 2005(4): 15-20. |
王长庭, 龙瑞军, 王启基, 等. 高寒草甸不同海拔梯度土壤有机质氮磷的分布和生产力变化及其与环境因子的关系. 草业学报, 2005(4): 15-20. | |
44 | Wang J S, Zhao X H, Zhang C Y, et al. Effects of simulated nitrogen deposition on soil organic carbon and total nitrogen content in plantation and natural forests of Pinus tabuliformis. Journal of Beijing Forestry University, 2016, 38(10): 88-94. |
汪金松, 赵秀海, 张春雨, 等. 模拟氮沉降对油松林土壤有机碳和全氮的影响. 北京林业大学学报, 2016, 38(10): 88-94. | |
45 | Lv J L, Yan M J, Song B L, et al. Ecological stoichiometry characteristics of soil carbon, nitrogen, and phosphorus in an oak forest and a black locust plantation in the loess hilly region.Acta Ecologica Sinica, 2017, 37(10): 3385-3393. |
吕金林, 闫美杰, 宋变兰, 等. 黄土丘陵区刺槐、辽东栎林地土壤碳、氮、磷生态化学计量特征. 生态学报, 2017, 37(10): 3385-3393. | |
46 | Kaisermann A, Vries F T, Griffiths R I, et al. Legacy effects of drought on plant-soil feedbacks and plant-plant interactions. New Phytologist, 2017, 215(4): 1413-1424. |
47 | Dai C, Kang M Y, Ji W Y, et al. Response of belowground biomass and biomass allocation to environmental factors in central grassland of Inner Mongolia. Acta Agrestia Sinica, 2012, 20(2): 268-274. |
戴诚, 康慕谊, 纪文瑶, 等. 内蒙古中部草原地下生物量与生物量分配对环境因子的响应关系. 草地学报, 2012, 20(2): 268-274. | |
48 | Yang X J, Huang M, Wang J B, et al. Belowground biomass in Tibetan grasslands and its environmental control factors. Acta Ecologica Sinica, 2013, 33(7): 2032-2042. |
杨秀静, 黄玫, 王军邦, 等. 青藏高原草地地下生物量与环境因子的关系. 生态学报, 2013, 33(7): 2032-2042. |
[1] | 郭丰辉, 丁勇, 马文静, 李贤松, 李西良, 侯向阳. 母体放牧经历对羊草克隆后代干旱敏感性的影响[J]. 草业学报, 2021, 30(8): 119-126. |
[2] | 马婧婧, 刘耘华, 盛建东, 李宁, 武红旗, 贾宏涛, 孙宗玖, 程军回. 新疆草地优势种植物相对生物量沿海拔梯度变化特征[J]. 草业学报, 2021, 30(8): 25-35. |
[3] | 彭磊, 张力, 周小龙, 万彦博, 师庆东. 水分胁迫对新疆准东地区钠猪毛菜的生活史对策的影响[J]. 草业学报, 2021, 30(5): 65-74. |
[4] | 张亦然, 刘廷玺, 童新, 段利民, 吴宇辰. 基于XGBoost算法的草甸地上生物量的高光谱遥感反演[J]. 草业学报, 2021, 30(4): 1-12. |
[5] | 王子欣, 胡国铮, 水宏伟, 葛怡情, 韩玲, 高清竹, 干珠扎布, 旦久罗布. 不同时期干旱对青藏高原高寒草甸生态系统碳交换的影响[J]. 草业学报, 2021, 30(4): 24-33. |
[6] | 顾继雄, 郭天斗, 王红梅, 李雪颖, 梁丹妮, 杨青莲, 高锦月. 宁夏东部荒漠草原向灌丛地转变过程土壤微生物响应[J]. 草业学报, 2021, 30(4): 46-57. |
[7] | 张茹, 李建平, 彭文栋, 王芳, 李志刚. 柠条枝条覆盖对宁夏荒漠草原土壤水热及补播牧草生物量的影响[J]. 草业学报, 2021, 30(4): 58-67. |
[8] | 吕广一, 徐学宝, 高翠萍, 于志慧, 王新雅, 王成杰. 放牧对内蒙古不同类型草原植物和土壤总氮与稳定氮同位素的影响[J]. 草业学报, 2021, 30(3): 208-214. |
[9] | 张殿岱, 王雪梅, 昝梅. 基于Landsat 8 OLI影像的渭-库绿洲植被地上生物量估算[J]. 草业学报, 2021, 30(11): 1-12. |
[10] | 王玲玲, 库努都孜阿依·吐鲁洪null, 孟广飞, 郭正刚. 土壤水分和植株密度互作对垂穗披碱草地下营养繁殖及生物量的影响[J]. 草业学报, 2021, 30(11): 52-61. |
[11] | 陈晓芬, 张路平, 秦文婧, 陈静蕊, 徐样庚, 刘明, 李忠佩, 徐昌旭, 刘佳. 红壤旱地上4种冬绿肥适宜播种量研究[J]. 草业学报, 2021, 30(10): 137-146. |
[12] | 刘慧霞, 董乙强, 崔雨萱, 刘星宏, 何盘星, 孙强, 孙宗玖. 新疆阿勒泰地区荒漠草地土壤有机碳特征及其环境影响因素分析[J]. 草业学报, 2021, 30(10): 41-52. |
[13] | 周诗晶, 罗佳宁, 刘仲淼, 董超, 秦燕, 吴淑娟, 甘红军, 谢菲, 庄光辉, 伏兵哲, 牛得草. 箭筈豌豆种植密度对土壤微生物养分代谢的影响[J]. 草业学报, 2021, 30(10): 63-72. |
[14] | 季波, 何建龙, 吴旭东, 王占军, 谢应忠, 蒋齐. 宁夏典型天然草地土壤有机碳及其活性组分变化特征[J]. 草业学报, 2021, 30(1): 24-35. |
[15] | 李聪聪, 周亚星, 谷强, 杨明新, 朱传鲁, 彭子原, 薛凯, 赵新全, 王艳芬, 纪宝明, 张静. 三江源区典型高寒草地丛枝菌根真菌多样性及构建机制[J]. 草业学报, 2021, 30(1): 46-58. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||