草业学报 ›› 2022, Vol. 31 ›› Issue (1): 195-204.DOI: 10.11686/cyxb2021265
• 研究论文 • 上一篇
收稿日期:
2021-07-05
修回日期:
2021-09-22
出版日期:
2021-12-01
发布日期:
2021-12-01
通讯作者:
杨惠敏
作者简介:
Corresponding author. E-mail: huimyang@lzu.edu.cn基金资助:
Rui-zhi XU(), Xiao-juan WU, Hui-min YANG()
Received:
2021-07-05
Revised:
2021-09-22
Online:
2021-12-01
Published:
2021-12-01
Contact:
Hui-min YANG
摘要:
施肥是苜蓿生产的重要管理措施之一,但苜蓿刈割后的追肥效应以及最佳追肥管理方案尚不明确。本研究旨在探讨追肥时间和不同氮、磷追施配比对苜蓿刈割后再生长的影响。以建植当年陇东苜蓿为试验材料,设置两个追肥时间(刈割当日和刈割后7 d,分别表示为T0和T1)、3个氮肥水平(0、25和50 kg·hm-2 N,分别表示为N0、N25和N50)和3个磷肥水平(0、30、60 kg·hm-2 P2O5,分别表示为P0、P30和P60),并设3个重复,共54个小区。研究发现:1)建植当年苜蓿刈割后追肥促进了后茬苜蓿的生长,其中刈割后立即施用少量磷肥(T0N0P30)处理下株高最高,比对照(T0N0P0)增加了20.53%。刈割后追肥提高了苜蓿的叶茎比,在T1时进行高氮低磷配施(N50P0和N50P30)中最为明显。2)第2茬苜蓿产量在不同处理间差异显著(P<0.05),其中刈割后立即高磷高氮追施(T0N50P60)下干物质和粗蛋白产量最高,分别为3.58和0.94 t·hm-2,与T1处理下的结果有显著差异。刈割后追肥对苜蓿酸性洗涤纤维、中性洗涤纤维含量和相对饲用价值均无显著影响(P>0.05)。3)氮磷肥配比追施对单位体积土壤中后茬苜蓿的根长、根表面积、根体积和根生物量影响显著(P<0.05)。最大根长密度(2.66 mm·cm-3)和根表面积密度(7.75 mm2·cm-3)出现在无肥(N0P0)、T0N25P30处理中,根体积密度在T1N25P30条件下最大。不同处理的根系生物量差异较大,但均高于不施肥处理(N0P0)。综上所述,在陇东黄土高原雨养农区,刈割后追施氮、磷肥促进了建植当年苜蓿的再生。在当地的生产实践中,建议在苜蓿刈割后立即追施少量磷肥(30 kg·hm-2 P2O5)或每公顷配合追施50 kg N和60 kg P2O5。
徐睿智, 吴晓娟, 杨惠敏. 刈割后追肥对建植当年紫花苜蓿生长和生产性能的影响[J]. 草业学报, 2022, 31(1): 195-204.
Rui-zhi XU, Xiao-juan WU, Hui-min YANG. Effect of topdressing after cutting on alfalfa growth and production[J]. Acta Prataculturae Sinica, 2022, 31(1): 195-204.
土层 Soil layer (cm) | pH | 有机碳 Organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 硝态氮 Nitrate nitrogen (mg·kg-1) | 铵态氮 Ammonium nitrogen (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) |
---|---|---|---|---|---|---|
0~10 | 8.48 | 12.77 | 0.81 | 30.47 | 1.96 | 11.44 |
10~20 | 8.45 | 11.79 | 0.76 | 30.00 | 1.39 | 10.40 |
20~30 | 8.51 | 11.25 | 0.75 | 31.06 | 1.53 | 8.22 |
30~40 | 8.57 | 9.84 | 0.73 | 26.37 | 1.15 | 8.16 |
40~60 | 8.56 | 8.40 | 0.72 | 26.18 | 1.23 | 7.81 |
表1 试验地0~60 cm土层主要养分特征
Table 1 Characteristics of key nutrients in 0-60 cm soil layer
土层 Soil layer (cm) | pH | 有机碳 Organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 硝态氮 Nitrate nitrogen (mg·kg-1) | 铵态氮 Ammonium nitrogen (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) |
---|---|---|---|---|---|---|
0~10 | 8.48 | 12.77 | 0.81 | 30.47 | 1.96 | 11.44 |
10~20 | 8.45 | 11.79 | 0.76 | 30.00 | 1.39 | 10.40 |
20~30 | 8.51 | 11.25 | 0.75 | 31.06 | 1.53 | 8.22 |
30~40 | 8.57 | 9.84 | 0.73 | 26.37 | 1.15 | 8.16 |
40~60 | 8.56 | 8.40 | 0.72 | 26.18 | 1.23 | 7.81 |
处理Treatment | N | P |
---|---|---|
N0P0 | 0 | 0 |
N0P30 | 0 | 30 |
N25P0 | 25 | 0 |
N0P60 | 0 | 60 |
N50P0 | 50 | 0 |
N25P30 | 25 | 30 |
N25P60 | 25 | 60 |
N50P30 | 50 | 30 |
N50P60 | 50 | 60 |
表2 试验处理
Table 2 Design for treatments (kg·hm-2)
处理Treatment | N | P |
---|---|---|
N0P0 | 0 | 0 |
N0P30 | 0 | 30 |
N25P0 | 25 | 0 |
N0P60 | 0 | 60 |
N50P0 | 50 | 0 |
N25P30 | 25 | 30 |
N25P60 | 25 | 60 |
N50P30 | 50 | 30 |
N50P60 | 50 | 60 |
因素 Factor | P值P value | |
---|---|---|
株高Plant height | 茎叶比Stem leaf ratio | |
N | 0.108 | 0.036 |
P | 0.009 | 0.150 |
T | 0.003 | 0.063 |
N×P | 0.001 | 0.059 |
N×T | 0.851 | 0.202 |
P×T | 0.944 | 0.210 |
N×P×T | 0.069 | 0.003 |
表3 追肥和追肥时间对第2茬苜蓿株高和茎叶比的影响
Table 3 Effect of topdressing combination and time on plant height and stem leaf ratio of alfalfa at the second cut
因素 Factor | P值P value | |
---|---|---|
株高Plant height | 茎叶比Stem leaf ratio | |
N | 0.108 | 0.036 |
P | 0.009 | 0.150 |
T | 0.003 | 0.063 |
N×P | 0.001 | 0.059 |
N×T | 0.851 | 0.202 |
P×T | 0.944 | 0.210 |
N×P×T | 0.069 | 0.003 |
图2 不同处理下第2茬苜蓿株高不同小写字母表示处理间差异显著(P<0.05)。下同。Different lowercase letters show significant difference among treatments at P<0.05. The same below.
Fig.2 Plant height of alfalfa at the second cut under different treatments
处理Treatment | 茎叶比Stem leaf ratio | 处理Treatment | 茎叶比Stem leaf ratio |
---|---|---|---|
T0N0P0 | 1.11±0.05abc | T1N0P0 | 1.11±0.05abc |
T0N0P30 | 0.94±0.06cde | T1N0P30 | 0.89±0.07e |
T0N0P60 | 1.06±0.02abcde | T1N0P60 | 1.03±0.06abcde |
T0N25P0 | 1.02±0.06abcde | T1N25P0 | 1.00±0.03bcde |
T0N25P30 | 1.06±0.06abcde | T1N25P30 | 1.01±0.03bcde |
T0N25P60 | 1.10±0.08abcd | T1N25P60 | 0.96±0.02bcde |
T0N50P0 | 0.94±0.06cde | T1N50P0 | 0.90±0.05e |
T0N50P30 | 1.19±0.04a | T1N50P30 | 0.89±0.01e |
T0N50P60 | 0.93±0.09de | T1N50P60 | 1.11±0.05abc |
表4 不同处理下第2茬苜蓿茎叶比
Table 4 Stem leaf ratio of alfalfa at the second cut under different treatments
处理Treatment | 茎叶比Stem leaf ratio | 处理Treatment | 茎叶比Stem leaf ratio |
---|---|---|---|
T0N0P0 | 1.11±0.05abc | T1N0P0 | 1.11±0.05abc |
T0N0P30 | 0.94±0.06cde | T1N0P30 | 0.89±0.07e |
T0N0P60 | 1.06±0.02abcde | T1N0P60 | 1.03±0.06abcde |
T0N25P0 | 1.02±0.06abcde | T1N25P0 | 1.00±0.03bcde |
T0N25P30 | 1.06±0.06abcde | T1N25P30 | 1.01±0.03bcde |
T0N25P60 | 1.10±0.08abcd | T1N25P60 | 0.96±0.02bcde |
T0N50P0 | 0.94±0.06cde | T1N50P0 | 0.90±0.05e |
T0N50P30 | 1.19±0.04a | T1N50P30 | 0.89±0.01e |
T0N50P60 | 0.93±0.09de | T1N50P60 | 1.11±0.05abc |
因素 Factor | P值P value | ||||
---|---|---|---|---|---|
牧草产量Forage yield | 粗蛋白产量CP yield | 酸性洗涤纤维含量ADF content | 中性洗涤纤维含量NDF content | 相对饲用价值RFV | |
N | <0.001 | <0.001 | 0.159 | 0.418 | 0.247 |
P | 0.020 | 0.004 | 0.347 | 0.160 | 0.056 |
T | 0.016 | 0.002 | 0.457 | 0.905 | 0.869 |
N×P | 0.030 | 0.008 | 0.732 | 0.773 | 0.477 |
N×T | 0.066 | 0.011 | 0.091 | 0.387 | 0.163 |
P×T | 0.159 | 0.252 | 0.216 | 0.785 | 0.526 |
N×P×T | 0.030 | <0.001 | 0.051 | 0.328 | 0.073 |
表5 追肥和追肥时间对第2茬苜蓿干草产量、粗蛋白产量、酸性洗涤纤维含量、中性洗涤纤维含量和相对饲用价值的影响
Table 5 Effects of topdressing combination and time on forage yield, CP yield, ADF, NDF content and RFV of alfalfa at the second cut
因素 Factor | P值P value | ||||
---|---|---|---|---|---|
牧草产量Forage yield | 粗蛋白产量CP yield | 酸性洗涤纤维含量ADF content | 中性洗涤纤维含量NDF content | 相对饲用价值RFV | |
N | <0.001 | <0.001 | 0.159 | 0.418 | 0.247 |
P | 0.020 | 0.004 | 0.347 | 0.160 | 0.056 |
T | 0.016 | 0.002 | 0.457 | 0.905 | 0.869 |
N×P | 0.030 | 0.008 | 0.732 | 0.773 | 0.477 |
N×T | 0.066 | 0.011 | 0.091 | 0.387 | 0.163 |
P×T | 0.159 | 0.252 | 0.216 | 0.785 | 0.526 |
N×P×T | 0.030 | <0.001 | 0.051 | 0.328 | 0.073 |
处理 Treatment | 酸性洗涤纤维含量 ADF content (%) | 中性洗涤纤维含量 NDF content (%) | 相对饲用价值RFV | 处理 Treatment | 酸性洗涤纤维含量 ADF content (%) | 中性洗涤纤维含量 NDF content (%) | 相对饲用价值RFV |
---|---|---|---|---|---|---|---|
T0N0P0 | 21.9±0.7a | 35.1±0.8a | 187±5c | T1N0P0 | 21.9±0.7a | 35.1±0.8a | 187±5c |
T0N0P30 | 21.0±1.1a | 34.1±0.8a | 198±6abc | T1N0P30 | 20.2±1.2a | 33.5±2.8a | 206±15abc |
T0N0P60 | 19.2±0.7a | 30.1±2.6a | 215±17abc | T1N0P60 | 22.0±0.5a | 36.7±0.8a | 182±3c |
T0N25P0 | 21.2±1.0a | 35.0±0.9a | 193±7abc | T1N25P0 | 19.3±1.2a | 33.7±2.3a | 205±12abc |
T0N25P30 | 20.0±0.8a | 31.9±0.9a | 215±6abc | T1N25P30 | 18.7±1.1a | 31.0±0.8a | 224±8a |
T0N25P60 | 21.3±0.4a | 36.1±2.2a | 190±11bc | T1N25P60 | 18.4±0.3a | 33.5±0.2a | 207±1abc |
T0N50P0 | 21.8±1.4a | 34.0±2.3a | 198±10abc | T1N50P0 | 19.0±1.6a | 33.3±2.7a | 209±13abc |
T0N50P30 | 18.1±0.5a | 31.2±0.8a | 223±7ab | T1N50P30 | 21.9±1.8a | 35.1±2.5a | 192±12abc |
T0N50P60 | 21.5±0.9a | 34.8±1.7a | 194±11abc | T1N50P60 | 20.9±1.9a | 33.3±1.9a | 204±8abc |
表6 不同处理下第2茬苜蓿干草的酸性洗涤纤维含量、中性洗涤纤维含量和相对饲用价值
Table 6 ADF content, NDF content and RFV of alfalfa at the second cut under different treatments
处理 Treatment | 酸性洗涤纤维含量 ADF content (%) | 中性洗涤纤维含量 NDF content (%) | 相对饲用价值RFV | 处理 Treatment | 酸性洗涤纤维含量 ADF content (%) | 中性洗涤纤维含量 NDF content (%) | 相对饲用价值RFV |
---|---|---|---|---|---|---|---|
T0N0P0 | 21.9±0.7a | 35.1±0.8a | 187±5c | T1N0P0 | 21.9±0.7a | 35.1±0.8a | 187±5c |
T0N0P30 | 21.0±1.1a | 34.1±0.8a | 198±6abc | T1N0P30 | 20.2±1.2a | 33.5±2.8a | 206±15abc |
T0N0P60 | 19.2±0.7a | 30.1±2.6a | 215±17abc | T1N0P60 | 22.0±0.5a | 36.7±0.8a | 182±3c |
T0N25P0 | 21.2±1.0a | 35.0±0.9a | 193±7abc | T1N25P0 | 19.3±1.2a | 33.7±2.3a | 205±12abc |
T0N25P30 | 20.0±0.8a | 31.9±0.9a | 215±6abc | T1N25P30 | 18.7±1.1a | 31.0±0.8a | 224±8a |
T0N25P60 | 21.3±0.4a | 36.1±2.2a | 190±11bc | T1N25P60 | 18.4±0.3a | 33.5±0.2a | 207±1abc |
T0N50P0 | 21.8±1.4a | 34.0±2.3a | 198±10abc | T1N50P0 | 19.0±1.6a | 33.3±2.7a | 209±13abc |
T0N50P30 | 18.1±0.5a | 31.2±0.8a | 223±7ab | T1N50P30 | 21.9±1.8a | 35.1±2.5a | 192±12abc |
T0N50P60 | 21.5±0.9a | 34.8±1.7a | 194±11abc | T1N50P60 | 20.9±1.9a | 33.3±1.9a | 204±8abc |
因素 Factor | 根长密度 Root length density | 根表面积 Root surface area | 根体积 Root volume | 根生物量 Root biomass |
---|---|---|---|---|
N | 0.233 | 0.040 | 0.050 | 0.048 |
P | 0.030 | 0.556 | 0.002 | 0.024 |
T | 0.075 | 0.779 | 0.010 | 0.684 |
N×P | 0.032 | 0.042 | <0.001 | 0.004 |
N×T | 0.551 | 0.771 | 0.567 | 0.021 |
P×T | 0.159 | 0.924 | 0.531 | 0.139 |
N×P×T | 0.545 | 0.253 | 0.131 | 0.210 |
表7 追肥和追肥时间对第2茬苜蓿根长、根表面积、根体积和根生物量的影响(P值)
Table 7 Effects (P value) of fertilization and topdressing time on root length, root surface area, root volume and root biomass of alfalfa at the second cut
因素 Factor | 根长密度 Root length density | 根表面积 Root surface area | 根体积 Root volume | 根生物量 Root biomass |
---|---|---|---|---|
N | 0.233 | 0.040 | 0.050 | 0.048 |
P | 0.030 | 0.556 | 0.002 | 0.024 |
T | 0.075 | 0.779 | 0.010 | 0.684 |
N×P | 0.032 | 0.042 | <0.001 | 0.004 |
N×T | 0.551 | 0.771 | 0.567 | 0.021 |
P×T | 0.159 | 0.924 | 0.531 | 0.139 |
N×P×T | 0.545 | 0.253 | 0.131 | 0.210 |
处理 Treatment | 根长密度 Root length density (mm·cm-3) | 根表面积 Root surface area (mm2·cm-3) | 根体积 Root volume (mm3·cm-3) | 处理 Treatment | 根长密度 Root length density (mm·cm-3) | 根表面积 Root surface area (mm2·cm-3) | 根体积 Root volume (mm3·cm-3) |
---|---|---|---|---|---|---|---|
T0N0P0 | 2.66±0.27a | 4.95±0.67b | 1.28±0.15e | T1N0P0 | 2.66±0.27a | 4.95±0.67b | 1.28±0.15e |
T0N0P30 | 1.83±0.15d | 5.34±0.88b | 1.31±0.16e | T1N0P30 | 2.02±0.06bcd | 5.03±0.43b | 1.54±0.10cde |
T0N0P60 | 2.36±0.12abcd | 5.80±0.61ab | 1.46±0.27de | T1N0P60 | 1.88±0.11cd | 6.76±0.51ab | 2.04±0.02ab |
T0N25P0 | 2.49±0.22abc | 5.81±0.94ab | 1.49±0.09cde | T1N25P0 | 2.14±0.17abcd | 6.87±0.57ab | 1.74±0.09abcde |
T0N25P30 | 2.27±0.26abcd | 7.75±0.25a | 1.93±0.12abc | T1N25P30 | 2.10±0.26abcd | 6.78±0.32ab | 2.15±0.03a |
T0N25P60 | 2.49±0.23abc | 6.05±0.76ab | 1.47±0.19de | T1N25P60 | 2.07±0.27abcd | 5.00±0.41b | 1.32±0.07e |
T0N50P0 | 2.57±0.20ab | 6.56±0.36ab | 1.40±0.20de | T1N50P0 | 2.09±0.07abcd | 5.76±0.40ab | 1.37±0.14e |
T0N50P30 | 2.17±0.12abcd | 5.79±0.99ab | 1.47±0.16de | T1N50P30 | 2.41±0.25abcd | 6.53±0.82ab | 1.62±0.18bcde |
T0N50P60 | 2.64±0.34ab | 6.84±0.73ab | 1.81±0.19abcd | T1N50P60 | 2.59±0.15ab | 6.41±0.88ab | 2.12±0.08a |
表8 不同处理下第2茬苜蓿根长、根表面积和根体积
Table 8 Root length, root surface area and root volume of alfalfa at the second cut under different treatments
处理 Treatment | 根长密度 Root length density (mm·cm-3) | 根表面积 Root surface area (mm2·cm-3) | 根体积 Root volume (mm3·cm-3) | 处理 Treatment | 根长密度 Root length density (mm·cm-3) | 根表面积 Root surface area (mm2·cm-3) | 根体积 Root volume (mm3·cm-3) |
---|---|---|---|---|---|---|---|
T0N0P0 | 2.66±0.27a | 4.95±0.67b | 1.28±0.15e | T1N0P0 | 2.66±0.27a | 4.95±0.67b | 1.28±0.15e |
T0N0P30 | 1.83±0.15d | 5.34±0.88b | 1.31±0.16e | T1N0P30 | 2.02±0.06bcd | 5.03±0.43b | 1.54±0.10cde |
T0N0P60 | 2.36±0.12abcd | 5.80±0.61ab | 1.46±0.27de | T1N0P60 | 1.88±0.11cd | 6.76±0.51ab | 2.04±0.02ab |
T0N25P0 | 2.49±0.22abc | 5.81±0.94ab | 1.49±0.09cde | T1N25P0 | 2.14±0.17abcd | 6.87±0.57ab | 1.74±0.09abcde |
T0N25P30 | 2.27±0.26abcd | 7.75±0.25a | 1.93±0.12abc | T1N25P30 | 2.10±0.26abcd | 6.78±0.32ab | 2.15±0.03a |
T0N25P60 | 2.49±0.23abc | 6.05±0.76ab | 1.47±0.19de | T1N25P60 | 2.07±0.27abcd | 5.00±0.41b | 1.32±0.07e |
T0N50P0 | 2.57±0.20ab | 6.56±0.36ab | 1.40±0.20de | T1N50P0 | 2.09±0.07abcd | 5.76±0.40ab | 1.37±0.14e |
T0N50P30 | 2.17±0.12abcd | 5.79±0.99ab | 1.47±0.16de | T1N50P30 | 2.41±0.25abcd | 6.53±0.82ab | 1.62±0.18bcde |
T0N50P60 | 2.64±0.34ab | 6.84±0.73ab | 1.81±0.19abcd | T1N50P60 | 2.59±0.15ab | 6.41±0.88ab | 2.12±0.08a |
1 | Farissi M, Ghoulam C, Bouizgaren A. The effect of salinity on yield and forage quality of alfalfa populations in the Marrakech region (Morocco). Fourrages, 2014, 2014(219): 271-275. |
2 | Yost M A, Russelle M P, Coulter J A, et al. Alfalfa stand length and subsequent crop patterns in the upper Midwestern United States. Agronomy Journal, 2014, 106(5): 1697-1708. |
3 | Olmstead J, Brummer E C. Benefits and barriers to perennial forage crops in Iowa corn and soybean rotations. Renewable Agriculture & Food Systems, 2008, 23(2): 97-107. |
4 | Gulnazarali, Tao H N, Wang Z K, et al. Evaluating the deep-horizon soil water content and water use efficiency in the alfalfa-wheat rotation system on the dryland of Loess Plateau using APSIM. Acta Prataculturae Sinica, 2021, 30(7): 22-33. |
古丽娜扎尔·艾力, 陶海宁, 王自奎, 等. 基于APSIM模型的黄土旱塬区苜蓿-小麦轮作系统深层土壤水分及水分利用效率研究. 草业学报, 2021, 30(7): 22-33. | |
5 | Lu J Y. Effects of N and P fertilizations on leaf nutrient reabsorption of alfalfa at different growth stages in the Loess Plateau. Lanzhou: Lanzhou University, 2019. |
陆姣云. 施氮磷肥对黄土高原不同生长阶段紫花苜蓿叶片养分重吸收的影响. 兰州: 兰州大学, 2019. | |
6 | Yang H M, Wang Z N, Ji C R. Research progress in the dynamics of carbon and nitrogen in forages after cutting and grazing. Chinese Journal of Grassland, 2013, 35(4): 102-109, 120. |
杨惠敏, 王振南, 吉春荣. 刈割和放牧后牧草碳氮动态研究进展. 中国草地学报, 2013, 35(4): 102-109, 120. | |
7 | Bouton J H. Breeding lucerne for persistence. Crop and Pasture Science, 2012, 63(2): 95-106. |
8 | Chen P, Shen Z R, Chi H F, et al. Effects of different fertilization on output and plant height of alfalfa. Crops, 2013(1): 91-94. |
陈萍, 沈振荣, 迟海峰, 等.不同施肥处理对紫花苜蓿产量和株高的影响. 作物杂志, 2013(1): 91-94. | |
9 | Chen X L, Pan J, Chen L J. et al. Effects of fertilization on hay yield and quality of alfalfa on the Loess Plateau. Pratacultural Science, 2019, 36(12): 3145-3154. |
陈香来, 潘佳, 陈利军, 等. 施肥对黄土高原紫花苜蓿产量及品质的影响. 草业科学, 2019, 36(12): 3145-3154. | |
10 | Wang D. Effects of nitrogen application on alfalfa production performance and soil nitrogen content. Beijing: Chinese Academy of Agricultural Sciences, 2013. |
王丹. 施氮对紫花苜蓿生产性能及土壤氮含量的影响. 北京: 中国农业科学院, 2013. | |
11 | Jenkins M B, Bottomley P J. Seasonal response of uninoculated alfalfa to N fertilizer: Soil N, nodule turnover, and symbiotic effectiveness of Rhizobium meliloti. Agronomy Journal, 1984, 76(6): 959-963. |
12 | Daliparthy J, Herbert S J, Veneman P, et al. Herbage production, weed occurrence, and economic risk from dairy manure applications to alfalfa. Journal of Production Agriculture, 1995, 8(4): 495-501. |
13 | Lamb J, Barnes D K, Russelle M P, et al. Ineffectively and effectively nodulated alfalfas demonstrate biology nitrogen fixation continues with high nitrogen fertilization. Crop Science, 1995, 35(1): 153-157. |
14 | Wang Y, Cui G W, Yin H, et al. Effects of different fertilization schemes on alfalfa performance and nutritional quality. Pratacultural Science, 2019, 36(3): 793-803. |
王洋, 崔国文, 尹航, 等. 施肥对紫花苜蓿生产性能及营养品质的影响. 草业科学, 2019, 36(3): 793-803. | |
15 | Sun H R, Cao Y, Liu L, et al. Fertilization theory and technology of alfalfa. China Dairy Cattle, 2017, 8(328): 59-63. |
孙洪仁, 曹影, 刘琳, 等. 紫花苜蓿施肥的理论和技术. 中国奶牛, 2017, 8(328): 59-63. | |
16 | Xiao Z X, Wang Y, Liu G F, et al. Effects of fertilizing time in early spring on alfalfa (Medicago sativa) production performance and nutritional quality in Mollisol area in cold region. Scientia Agricultura Sinica, 2020, 53(13): 2668-2677. |
肖知新, 王洋, 刘国富, 等. 寒地黑土区春季施肥期对紫花苜蓿生产性能及营养品质的影响. 中国农业科学, 2020, 53(13): 2668-2677. | |
17 | Comas L H, Eissenstat D M, Lakso A N. Assessing root death and root system dynamics in a study of grape canopy pruning. New Phytologist, 2000, 147(1): 171-178. |
18 | Ma X H. The affection of fertilization on alfalfa and analyzing of economy. Urumqi: Xinjiang Agricultural University, 2005. |
马孝慧. 施肥对苜蓿产量与品质的影响及其经济效益分析. 乌鲁木齐: 新疆农业大学, 2005. | |
19 | Zhang J. Study on the effects of fertilization between alfalfa characteristics and soil fertility. Xianyang: Northwest A&F University, 2007. |
张杰. 施肥对紫花苜蓿生长特性和土壤肥力的影响研究. 咸阳: 西北农林科技大学, 2007. | |
20 | Li X Y, Meng K, Xiao Y Z, et al. The effect of fertilizing with formula on stem leaf ratio and ratio of dry-and-wet of alfalfa. Grassland and Prataculture, 2015, 27(4): 32-39. |
李星月, 孟凯, 肖燕子, 等. 配方施肥对苜蓿茎叶比和鲜干比的影响. 草原与草业, 2015, 27(4): 32-39. | |
21 | Pan L, Wei Z W, Wu Z N, et al. Effects of fertilizers and sowing rates on growth characteristics and forage yields of alfalfa in Yangzhou region. Acta Agrestia Sinica, 2012, 20(6): 1099-1104. |
潘玲, 魏臻武, 武自念, 等. 施肥和播种量对扬州地区苜蓿生长特性和产草量的影响. 草地学报, 2012, 20(6): 1099-1104. | |
22 | Zhao L X. Effect of P application depth and P application level on production performance and C, N, P stoichiometric characteristics of alfalfa leaves. Tongliao: Inner Mongolia University for Nationalities, 2020. |
赵力兴. 施磷深度与施磷水平对紫花苜蓿生产性能和叶片C、N、P化学计量特征的影响. 通辽: 内蒙古民族大学, 2020. | |
23 | Singh D K, Sale P, Routley R R. Increasing phosphorus supply in subsurface soil in northern Australia: Rationale for deep placement and the effects with various crops. Plant and Soil, 2005, 269(1/2): 35-44. |
24 | Zhang T J, Zhao Z X, Long R C, et al. Study on effects of N, P and K fertilizers on alfalfa hay and recommended fertilizer rate in Huanghuaihai area. Acta Agrestia Sinica, 2019, 27(1): 243-249. |
张铁军, 赵忠祥, 龙瑞才, 等. 黄淮海地区紫花苜蓿氮磷钾肥料效应与推荐施肥量研究. 草地学报, 2019, 27(1): 243-249. | |
25 | Zhang Q B, Liu J Y, Liu X S, et al. Optimizing the nutritional quality and phosphorus use efficiency of alfalfa under drip irrigation with nitrogen and phosphorus fertilization. Agronomy Journal, 2020, 112(4): 3129-3139. |
26 | Zhang L, Liang W, Chen Y H, et al. Yield and forage nutritive quality improvement of alfalfa by nitrogen. Journal of Jilin Agricultural Sciences, 2014, 39(5): 62-66, 79. |
张磊, 梁卫, 陈一昊, 等. 施氮肥对紫花苜蓿产量及饲用营养品质的影响. 吉林农业科学, 2014, 39(5): 62-66, 79. | |
27 | Zhang D S, Li H B, Shen J B. Strategies for roots foraging and acquiring soil nutrient in high efficiency under intensive cropping systems. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1547-1555. |
张德闪, 李洪波, 申建波. 集约化互作体系植物根系高效获取土壤养分的策略与机制. 植物营养与肥料学报, 2017, 23(6): 1547-1555. | |
28 | Ma H, Meng J, Li N. Responses of root morphological and physiological characteristics of different alfalfa genotypes to phosphorus levels. Pratacultural Science, 2021, 38(2): 231-238. |
马红, 孟捷, 李宁. 不同品种紫花苜蓿根系形态及生理特征对磷水平的响应. 草业科学, 2021, 38(2): 231-238. | |
29 | Kang J H, Liang X Z, Zheng M N, et al. Effects of exogenous nitrogen forms on the root of alfalfa. Journal of Shanxi Agricultural Sciences, 2021, 49(4): 467-471. |
康佳惠, 梁秀芝, 郑敏娜, 等. 不同外源氮素形态对紫花苜蓿根系的影响. 山西农业科学, 2021, 49(4): 467-471. | |
30 | Carroll P V, Claudia U S, Deborah L A. Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 2003, 157(3): 423-447. |
[1] | 魏娜, 李艳鹏, 马艺桐, 刘文献. 全基因组水平紫花苜蓿TCP基因家族的鉴定及其在干旱胁迫下表达模式分析[J]. 草业学报, 2022, 31(1): 118-130. |
[2] | 赵颖, 辛夏青, 魏小红. 一氧化氮对干旱胁迫下紫花苜蓿氮代谢的影响[J]. 草业学报, 2021, 30(9): 86-96. |
[3] | 汪雪, 刘晓静, 赵雅姣, 王静. 根系分隔方式下紫花苜蓿/燕麦间作氮素利用及种间互馈特征研究[J]. 草业学报, 2021, 30(8): 73-85. |
[4] | 古丽娜扎尔·艾力null, 陶海宁, 王自奎, 沈禹颖. 基于APSIM模型的黄土旱塬区苜蓿——小麦轮作系统深层土壤水分及水分利用效率研究[J]. 草业学报, 2021, 30(7): 22-33. |
[5] | 周倩倩, 张亚见, 张静, 殷涂童, 盛下放, 何琳燕. 产硫化氢细菌的筛选及阻控苜蓿吸收铅和改良土壤的作用[J]. 草业学报, 2021, 30(7): 44-52. |
[6] | 臧真凤, 白婕, 刘丛, 昝看卓, 龙明秀, 何树斌. 紫花苜蓿形态和生理指标响应干旱胁迫的品种特异性[J]. 草业学报, 2021, 30(6): 73-81. |
[7] | 谢展, 穆麟, 张志飞, 陈桂华, 刘洋, 高帅, 魏仲珊. 乳酸菌或有机酸盐与尿素复配添加对紫花苜蓿混合青贮的影响[J]. 草业学报, 2021, 30(5): 165-173. |
[8] | 王吉祥, 宫焕宇, 屠祥建, 郭侲洐, 赵嘉楠, 沈健, 栗振义, 孙娟. 耐亚磷酸盐紫花苜蓿品种筛选及评价指标的鉴定[J]. 草业学报, 2021, 30(5): 186-199. |
[9] | 张小芳, 魏小红, 刘放, 朱雪妹. PEG胁迫下紫花苜蓿幼苗内源激素对NO的响应[J]. 草业学报, 2021, 30(4): 160-169. |
[10] | 候怡谣, 李霄, 龙瑞才, 杨青川, 康俊梅, 郭长虹. 过量表达紫花苜蓿MsHB7基因对拟南芥耐旱性的影响[J]. 草业学报, 2021, 30(4): 170-179. |
[11] | 马欣, 罗珠珠, 张耀全, 刘家鹤, 牛伊宁, 蔡立群. 黄土高原雨养区不同种植年限紫花苜蓿土壤细菌群落特征与生态功能预测[J]. 草业学报, 2021, 30(3): 54-67. |
[12] | 沙栢平, 谢应忠, 高雪芹, 蔡伟, 伏兵哲. 地下滴灌水肥耦合对紫花苜蓿草产量及品质的影响[J]. 草业学报, 2021, 30(2): 102-114. |
[13] | 刘晓静, 赵雅姣, 郝凤, 童长春. 紫花苜蓿氮效率及其类型特征研究[J]. 草业学报, 2021, 30(12): 90-102. |
[14] | 马倩, 闫启, 张正社, 吴凡, 张吉宇. 紫花苜蓿CCoAOMT基因家族的鉴定、进化及表达分析[J]. 草业学报, 2021, 30(11): 144-156. |
[15] | 王如月, 文武武, 赵恩华, 周鹏, 安渊. 紫花苜蓿MsWRKY11基因的克隆及其耐盐功能分析[J]. 草业学报, 2021, 30(11): 157-169. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||