草业学报 ›› 2022, Vol. 31 ›› Issue (3): 124-135.DOI: 10.11686/cyxb2021011
• 研究论文 • 上一篇
收稿日期:
2020-12-30
修回日期:
2021-03-10
出版日期:
2022-03-20
发布日期:
2022-01-15
通讯作者:
刘晓静
作者简介:
Corresponding author. E-mail: liuxj@gsau.edu.cn基金资助:
Chang-chun TONG(), Xiao-jing LIU(), Yong WU, Ya-jiao ZHAO, Jing WANG
Received:
2020-12-30
Revised:
2021-03-10
Online:
2022-03-20
Published:
2022-01-15
Contact:
Xiao-jing LIU
摘要:
为探究紫花苜蓿体内异黄酮与结瘤固氮及氮效率的关系,以紫花苜蓿品种中氮高效的“LW6010”和氮低效的陇东苜蓿为材料,采用室内营养液砂培,设5个氮素水平,研究了不同氮效率紫花苜蓿的异黄酮含量和固氮特性以及异黄酮合酶(IFS)和结瘤信号传递通路基因(nod)的表达。结果表明:紫花苜蓿的异黄酮含量与根瘤数、单株总根瘤重以及单株固氮潜力的相关性显著,并且在低氮胁迫时紫花苜蓿的异黄酮含量以及根瘤数、单株总根瘤重和单株固氮潜力均显著上升。另外,还发现:氮高效的“LW6010”紫花苜蓿在氮胁迫时,茎叶和根系中上调的IFS基因数量和上调幅度均大于氮低效的陇东苜蓿,因此促进了nod基因的高表达,最终提高了氮效率。综上所述,1)紫花苜蓿的结瘤固氮与异黄酮含量显著正相关,在外源氮素浓度改变时,紫花苜蓿能通过茎叶和根系中不同IFS基因的表达提高体内异黄酮含量,从而刺激nod基因表达来促进结瘤和提高单株固氮潜力;2)紫花苜蓿体内异黄酮含量的差异是决定其氮效率高低的重要原因,氮高效紫花苜蓿在氮胁迫时通过多个IFS基因的高表达促进异黄酮合成,进而刺激结瘤固氮,从而表现出氮高效。
童长春, 刘晓静, 吴勇, 赵雅姣, 王静. 内源异黄酮对紫花苜蓿结瘤固氮及氮效率的调控研究[J]. 草业学报, 2022, 31(3): 124-135.
Chang-chun TONG, Xiao-jing LIU, Yong WU, Ya-jiao ZHAO, Jing WANG. Regulation of endogenous isoflavones on alfalfa nodulation and nitrogen fixation and nitrogen use efficiency[J]. Acta Prataculturae Sinica, 2022, 31(3): 124-135.
基因名称Gene name | 登录号Accession No. | 引物序列Primers sequences (5′-3′) |
---|---|---|
IFS-1 | MTR_5g020760 | F: 5′-CACGAGGCAGTTGAGCCAGTTAG-3′ |
R: 5′-ACGTCGAGTTGAGCCAAGTTACG-3′ | ||
IFS-2 | MTR_5g020800 | F: 5′-CACGAGGCAGTTGAGCCAGTTAG-3′ |
R: 5′-ACGTCGAGTTGAGCCAAGTTACG-3′ | ||
IFS-3 | MTR_8g071130 | F: 5′-ATGGTTGTTCACGAGACCTCAGTG-3′ |
R: 5′-ACGGCAATGCACTAGGCTTAAGAG-3′ | ||
IFS-4 | MTR_4g070340 | F: 5′-TCGATGTTTCAGTGTCCGTGT-3′ |
R: 5′-CAGCCAGACAAATTGCAAGTCC-3′ | ||
nod-1 | MTR_8g020840 | F: 5′-TGTCTGTGCTCAGTTCAGGTTGC-3′ |
R: 5′-GCTCCATGCCTCTCAACACCTTC-3′ | ||
nod-2 | MTR_3g072710 | F: 5′-TCACAGCCAATCAAGCCATCATCG-3′ |
R: 5′-TGTGGACCGTTGTTGTTGGAAGC-3′ | ||
18S | KJ 507198.1 | F: 5′- AAAGGAATTGACGGAAGGGC-3′ |
R: 5′- CGCTCCACCAACTAAGAACG-3′ |
表1 定量PCR引物序列信息
Table 1 Information of primer sequences of quantitative real-time PCR
基因名称Gene name | 登录号Accession No. | 引物序列Primers sequences (5′-3′) |
---|---|---|
IFS-1 | MTR_5g020760 | F: 5′-CACGAGGCAGTTGAGCCAGTTAG-3′ |
R: 5′-ACGTCGAGTTGAGCCAAGTTACG-3′ | ||
IFS-2 | MTR_5g020800 | F: 5′-CACGAGGCAGTTGAGCCAGTTAG-3′ |
R: 5′-ACGTCGAGTTGAGCCAAGTTACG-3′ | ||
IFS-3 | MTR_8g071130 | F: 5′-ATGGTTGTTCACGAGACCTCAGTG-3′ |
R: 5′-ACGGCAATGCACTAGGCTTAAGAG-3′ | ||
IFS-4 | MTR_4g070340 | F: 5′-TCGATGTTTCAGTGTCCGTGT-3′ |
R: 5′-CAGCCAGACAAATTGCAAGTCC-3′ | ||
nod-1 | MTR_8g020840 | F: 5′-TGTCTGTGCTCAGTTCAGGTTGC-3′ |
R: 5′-GCTCCATGCCTCTCAACACCTTC-3′ | ||
nod-2 | MTR_3g072710 | F: 5′-TCACAGCCAATCAAGCCATCATCG-3′ |
R: 5′-TGTGGACCGTTGTTGTTGGAAGC-3′ | ||
18S | KJ 507198.1 | F: 5′- AAAGGAATTGACGGAAGGGC-3′ |
R: 5′- CGCTCCACCAACTAAGAACG-3′ |
部位 Position | 品种 Varieties | 处理 Treatments | 木犀草素 Luteolin | 染料木素 Genistein | 大豆苷元 Daidzein | 刺芒柄花素 Formononetin | 总含量 Total content |
---|---|---|---|---|---|---|---|
茎叶 Stem and leaf | LW6010 | N21 | 2.56±0.28a | 26.37±1.07a | 29.73±1.52a | 2.72±0.38a | 61.37±2.48a |
N105 | 2.48±0.05a | 22.17±0.68b | 23.61±0.72b | 2.67±0.08a | 50.93±0.08b | ||
N210 | 1.01±0.04d | 18.90±0.56c | 18.67±1.21c | 1.66±0.12cd | 40.24±1.05d | ||
N315 | 1.08±0.06d | 21.00±0.42b | 22.26±1.21b | 2.12±0.08bc | 46.45±1.56c | ||
N420 | 2.91±0.20a | 27.58±0.63a | 25.03±1.29b | 2.92±0.10a | 58.43±1.16a | ||
陇东苜蓿 Longdong | N21 | 1.60±0.08bc | 16.80±0.40d | 12.13±0.84de | 1.62±0.07d | 32.15±1.18e | |
N105 | 1.14±0.06cd | 14.70±0.81e | 10.97±0.84de | 1.69±0.04cd | 28.50±1.04ef | ||
N210 | 1.02±0.21d | 16.93±0.46d | 9.10±0.91e | 2.19±0.08b | 29.24±1.59ef | ||
N315 | 1.47±0.12bcd | 12.60±0.84f | 9.10±0.62e | 1.98±0.11bcd | 25.15±1.54f | ||
N420 | 1.84±0.18b | 10.27±0.24g | 13.18±1.04d | 1.69±0.04cd | 26.99±1.21f | ||
根系 Root | LW6010 | N21 | 5.90±0.19a | 41.28±0.98a | 40.98±0.78a | 4.28±0.10a | 92.43±2.11a |
N105 | 3.83±0.16c | 28.82±1.04c | 24.15±0.61c | 3.29±0.09b | 60.09±1.40c | ||
N210 | 1.93±0.12e | 26.09±1.21d | 19.97±0.75d | 2.45±0.06d | 50.45±3.24d | ||
N315 | 2.50±0.10d | 25.78±0.51d | 21.48±0.64d | 2.73±0.02c | 52.49±2.06d | ||
N420 | 4.43±0.23b | 35.85±0.46b | 28.28±0.91b | 4.08±0.08a | 72.65±1.19b | ||
陇东苜蓿 Longdong | N21 | 1.92±0.04e | 20.16±0.48e | 14.56±1.01ef | 1.89±0.09ef | 38.53±2.59e | |
N105 | 1.19±0.29f | 17.64±0.39f | 13.16±0.48fg | 1.71±0.11f | 33.70±1.51f | ||
N210 | 1.22±0.03f | 21.25±1.10e | 10.92±0.69g | 1.67±0.03f | 35.06±3.05ef | ||
N315 | 1.76±0.09e | 12.60±0.48g | 10.92±0.84g | 2.12±0.09e | 27.41±0.96g | ||
N420 | 2.21±0.02de | 14.31±0.63g | 15.82±0.29e | 2.41±0.06d | 34.75±1.51f |
表2 紫花苜蓿的异黄酮含量
Table 2 Isoflavone content of alfalfa (μg·g-1)
部位 Position | 品种 Varieties | 处理 Treatments | 木犀草素 Luteolin | 染料木素 Genistein | 大豆苷元 Daidzein | 刺芒柄花素 Formononetin | 总含量 Total content |
---|---|---|---|---|---|---|---|
茎叶 Stem and leaf | LW6010 | N21 | 2.56±0.28a | 26.37±1.07a | 29.73±1.52a | 2.72±0.38a | 61.37±2.48a |
N105 | 2.48±0.05a | 22.17±0.68b | 23.61±0.72b | 2.67±0.08a | 50.93±0.08b | ||
N210 | 1.01±0.04d | 18.90±0.56c | 18.67±1.21c | 1.66±0.12cd | 40.24±1.05d | ||
N315 | 1.08±0.06d | 21.00±0.42b | 22.26±1.21b | 2.12±0.08bc | 46.45±1.56c | ||
N420 | 2.91±0.20a | 27.58±0.63a | 25.03±1.29b | 2.92±0.10a | 58.43±1.16a | ||
陇东苜蓿 Longdong | N21 | 1.60±0.08bc | 16.80±0.40d | 12.13±0.84de | 1.62±0.07d | 32.15±1.18e | |
N105 | 1.14±0.06cd | 14.70±0.81e | 10.97±0.84de | 1.69±0.04cd | 28.50±1.04ef | ||
N210 | 1.02±0.21d | 16.93±0.46d | 9.10±0.91e | 2.19±0.08b | 29.24±1.59ef | ||
N315 | 1.47±0.12bcd | 12.60±0.84f | 9.10±0.62e | 1.98±0.11bcd | 25.15±1.54f | ||
N420 | 1.84±0.18b | 10.27±0.24g | 13.18±1.04d | 1.69±0.04cd | 26.99±1.21f | ||
根系 Root | LW6010 | N21 | 5.90±0.19a | 41.28±0.98a | 40.98±0.78a | 4.28±0.10a | 92.43±2.11a |
N105 | 3.83±0.16c | 28.82±1.04c | 24.15±0.61c | 3.29±0.09b | 60.09±1.40c | ||
N210 | 1.93±0.12e | 26.09±1.21d | 19.97±0.75d | 2.45±0.06d | 50.45±3.24d | ||
N315 | 2.50±0.10d | 25.78±0.51d | 21.48±0.64d | 2.73±0.02c | 52.49±2.06d | ||
N420 | 4.43±0.23b | 35.85±0.46b | 28.28±0.91b | 4.08±0.08a | 72.65±1.19b | ||
陇东苜蓿 Longdong | N21 | 1.92±0.04e | 20.16±0.48e | 14.56±1.01ef | 1.89±0.09ef | 38.53±2.59e | |
N105 | 1.19±0.29f | 17.64±0.39f | 13.16±0.48fg | 1.71±0.11f | 33.70±1.51f | ||
N210 | 1.22±0.03f | 21.25±1.10e | 10.92±0.69g | 1.67±0.03f | 35.06±3.05ef | ||
N315 | 1.76±0.09e | 12.60±0.48g | 10.92±0.84g | 2.12±0.09e | 27.41±0.96g | ||
N420 | 2.21±0.02de | 14.31±0.63g | 15.82±0.29e | 2.41±0.06d | 34.75±1.51f |
图2 紫花苜蓿异黄酮基因的相对表达量不同字母表示差异显著(P<0.05),基因的相对表达量均以N210处理作参照,下同。Different letters mean significant differences at P<0.05 level, the relative expression levels of genes are treated with N210 as a reference, the same below.
Fig.2 Relative expression level of isoflavone genes in alfalfa
品种 Varieties | 处理 Treatments | 总根瘤数 Total nodule number | 有效根瘤数 Effective nodule number | 有效根瘤数/总根瘤数 Effective/total nodule number |
---|---|---|---|---|
LW6010 | N21 | 6.87±0.09a | 5.53±0.09a | 0.81±0.01a |
N105 | 5.97±0.09b | 4.53±0.03b | 0.76±0.01b | |
N210 | 4.33±0.17d | 3.43±0.12c | 0.79±0.01a | |
N315 | 5.07±0.12c | 3.63±0.07c | 0.72±0.02c | |
N420 | 5.10±0.15c | 3.70±0.12c | 0.73±0.03c | |
陇东苜蓿 Longdong | N21 | 3.63±0.09e | 2.07±0.07d | 0.57±0.01e |
N105 | 2.97±0.15f | 1.87±0.09d | 0.63±0.00d | |
N210 | 2.90±0.21f | 1.83±0.12d | 0.63±0.01d | |
N315 | 3.07±0.15f | 1.97±0.09d | 0.64±0.01d | |
N420 | 3.17±0.15f | 1.97±0.09d | 0.62±0.00d |
表3 单株紫花苜蓿的根瘤数
Table 3 Number of nodules of single alfalfa
品种 Varieties | 处理 Treatments | 总根瘤数 Total nodule number | 有效根瘤数 Effective nodule number | 有效根瘤数/总根瘤数 Effective/total nodule number |
---|---|---|---|---|
LW6010 | N21 | 6.87±0.09a | 5.53±0.09a | 0.81±0.01a |
N105 | 5.97±0.09b | 4.53±0.03b | 0.76±0.01b | |
N210 | 4.33±0.17d | 3.43±0.12c | 0.79±0.01a | |
N315 | 5.07±0.12c | 3.63±0.07c | 0.72±0.02c | |
N420 | 5.10±0.15c | 3.70±0.12c | 0.73±0.03c | |
陇东苜蓿 Longdong | N21 | 3.63±0.09e | 2.07±0.07d | 0.57±0.01e |
N105 | 2.97±0.15f | 1.87±0.09d | 0.63±0.00d | |
N210 | 2.90±0.21f | 1.83±0.12d | 0.63±0.01d | |
N315 | 3.07±0.15f | 1.97±0.09d | 0.64±0.01d | |
N420 | 3.17±0.15f | 1.97±0.09d | 0.62±0.00d |
部位Position | 异黄酮Isoflavone | TNN | ENN | ENN/TNN | TNW | SNW | NA | NFP | ANA | UNA |
---|---|---|---|---|---|---|---|---|---|---|
茎叶 Stem and leaf | 木犀草素Luteolin | 0.658* | 0.615 | 0.394 | 0.708* | -0.419 | -0.382 | 0.506 | -0.282 | -0.312 |
染料木素Genistein | 0.853** | 0.840** | 0.738* | 0.866** | -0.590 | 0.257 | 0.939** | 0.335 | 0.259 | |
大豆苷元Daidzein | 0.967** | 0.963** | 0.857** | 0.906** | -0.806** | 0.120 | 0.928** | 0.251 | 0.204 | |
刺芒柄花素Formononetin | 0.739* | 0.724* | 0.594 | 0.707* | -0.546 | 0.029 | 0.686* | 0.147 | 0.029 | |
总含量Total content | 0.946** | 0.935** | 0.818** | 0.919** | -0.729* | 0.153 | 0.950** | 0.267 | 0.204 | |
根系 Root | 木犀草素Luteolin | 0.910** | 0.894** | 0.705* | 0.923** | -0.628 | -0.155 | 0.814** | -0.057 | -0.040 |
染料木素Genistein | 0.895** | 0.898** | 0.797** | 0.919** | -0.589 | 0.136 | 0.941** | 0.273 | 0.293 | |
大豆苷元Daidzein | 0.934** | 0.937** | 0.800** | 0.940** | -0.658* | -0.023 | 0.890** | 0.079 | 0.126 | |
刺芒柄花素Formononetin | 0.891** | 0.884** | 0.764* | 0.860** | -0.712* | -0.008 | 0.822** | 0.110 | -0.009 | |
总含量Total content | 0.935** | 0.936** | 0.809** | 0.948** | -0.643* | 0.039 | 0.925** | 0.159 | 0.185 |
表4 紫花苜蓿异黄酮含量与氮素固定的相关性
Table 4 Correlation between isoflavone content and nitrogen fixation of alfalfa
部位Position | 异黄酮Isoflavone | TNN | ENN | ENN/TNN | TNW | SNW | NA | NFP | ANA | UNA |
---|---|---|---|---|---|---|---|---|---|---|
茎叶 Stem and leaf | 木犀草素Luteolin | 0.658* | 0.615 | 0.394 | 0.708* | -0.419 | -0.382 | 0.506 | -0.282 | -0.312 |
染料木素Genistein | 0.853** | 0.840** | 0.738* | 0.866** | -0.590 | 0.257 | 0.939** | 0.335 | 0.259 | |
大豆苷元Daidzein | 0.967** | 0.963** | 0.857** | 0.906** | -0.806** | 0.120 | 0.928** | 0.251 | 0.204 | |
刺芒柄花素Formononetin | 0.739* | 0.724* | 0.594 | 0.707* | -0.546 | 0.029 | 0.686* | 0.147 | 0.029 | |
总含量Total content | 0.946** | 0.935** | 0.818** | 0.919** | -0.729* | 0.153 | 0.950** | 0.267 | 0.204 | |
根系 Root | 木犀草素Luteolin | 0.910** | 0.894** | 0.705* | 0.923** | -0.628 | -0.155 | 0.814** | -0.057 | -0.040 |
染料木素Genistein | 0.895** | 0.898** | 0.797** | 0.919** | -0.589 | 0.136 | 0.941** | 0.273 | 0.293 | |
大豆苷元Daidzein | 0.934** | 0.937** | 0.800** | 0.940** | -0.658* | -0.023 | 0.890** | 0.079 | 0.126 | |
刺芒柄花素Formononetin | 0.891** | 0.884** | 0.764* | 0.860** | -0.712* | -0.008 | 0.822** | 0.110 | -0.009 | |
总含量Total content | 0.935** | 0.936** | 0.809** | 0.948** | -0.643* | 0.039 | 0.925** | 0.159 | 0.185 |
部位 Position | 基因 Gene | 茎叶Stem and leaf | 根系Root | ||||||
---|---|---|---|---|---|---|---|---|---|
IFS-1 | IFS-2 | IFS-3 | IFS-4 | IFS-1 | IFS-2 | IFS-3 | IFS-4 | ||
茎叶 Stem and leaf | nod-1 | 0.770** | 0.888** | 0.738* | 0.787** | 0.354 | 0.854** | 0.555 | 0.088 |
nod-2 | 0.349 | 0.808** | 0.625 | 0.361 | -0.071 | 0.808** | 0.766** | -0.371 | |
根系 Root | nod-1 | 0.675* | 0.762* | 0.753* | 0.661* | 0.161 | 0.720* | 0.854** | 0.096 |
nod-2 | 0.061 | -0.097 | -0.340 | 0.046 | 0.638* | 0.006 | -0.509 | 0.846** |
表5 紫花苜蓿异黄酮基因与结瘤基因表达的相关性
Table 5 Correlation between isoflavone gene and nodulation gene expression in alfalfa
部位 Position | 基因 Gene | 茎叶Stem and leaf | 根系Root | ||||||
---|---|---|---|---|---|---|---|---|---|
IFS-1 | IFS-2 | IFS-3 | IFS-4 | IFS-1 | IFS-2 | IFS-3 | IFS-4 | ||
茎叶 Stem and leaf | nod-1 | 0.770** | 0.888** | 0.738* | 0.787** | 0.354 | 0.854** | 0.555 | 0.088 |
nod-2 | 0.349 | 0.808** | 0.625 | 0.361 | -0.071 | 0.808** | 0.766** | -0.371 | |
根系 Root | nod-1 | 0.675* | 0.762* | 0.753* | 0.661* | 0.161 | 0.720* | 0.854** | 0.096 |
nod-2 | 0.061 | -0.097 | -0.340 | 0.046 | 0.638* | 0.006 | -0.509 | 0.846** |
1 | Zhang C, Wang Y F, Chen J, et al. Research advances on the regulation of secondary metabolism by plant MYB transcription factors. Genomics and Applied Biology, 2020, 39(9): 4171-4177. |
张驰, 王艳芳, 陈静, 等. 植物MYB转录因子调控次生代谢的研究进展. 基因组学与应用生物学, 2020, 39(9): 4171-4177. | |
2 | Guo C H, Zhu X F, Duan Y X, et al. Suppression of different soybean isoflavones on Heterodera glycines. Chinese Journal of Oil Crop Sciences, 2017, 39(4): 540-545. |
郭春红, 朱晓峰, 段玉玺, 等. 抑制大豆胞囊线虫的异黄酮种类研究. 中国油料作物学报, 2017, 39(4): 540-545. | |
3 | Yu A L, Zhao J F, Cheng K, et al. Screening and analysis of key metabolic pathways in foxtail millet during different water uptake phases of germination. Scientia Agricultura Sinica, 2020, 53(15): 3005-3019. |
余爱丽, 赵晋锋, 成锴, 等. 谷子萌发吸水期关键代谢途径的筛选与分析. 中国农业科学, 2020, 53(15): 3005-3019. | |
4 | Yu Y, Liu J, Deng B, et al. Effects of exogenous root exudates on symbiosis of alfalfa and rhizobium. Acta Agrestia Sinica, 2020, 28(1): 88-94. |
于跃, 刘静, 邓波, 等. 外源根系分泌物对紫花苜蓿根瘤菌共生体系的影响. 草地学报, 2020, 28(1): 88-94. | |
5 | Zhang J, Subramanian S, Stacey G, et al. Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti. Plant Journal, 2010, 57(1): 171-183. |
6 | Wasson A P, Pellerone F I, Mathesius U. Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell, 2006, 18(7): 1617-1629. |
7 | Kuang Y, Li T X, Yu H Y. Effect of nitrogen on protective enzyme activities and lipid peroxidation in triticale genotypes with different N use efficiency. Acta Prataculturae Sinica, 2011, 20(6): 93-100. |
匡艺, 李廷轩, 余海英. 氮素对不同氮效率小黑麦基因型叶片保护酶活性和膜脂过氧化的影响. 草业学报, 2011, 20(6): 93-100. | |
8 | Chen C, Gong H Q, Zhang J Z, et al. Evaluation of nitrogen nutrition characteristics of different rice cultivars at seedling stage. Chinese Journal of Eco-Agriculture, 2016, 24(10): 1347-1355. |
陈晨, 龚海青, 张敬智, 等. 不同基因型水稻苗期氮营养特性差异及综合评价. 中国生态农业学报, 2016, 24(10): 1347-1355. | |
9 | Feng Y, Chen H F, Hu X M, et al. Nitrogen efficiency screening of rice cultivars popularized in south China. Journal of Plant Nutrition and Fertilizers, 2014, 20(5): 1051-1062. |
冯洋, 陈海飞, 胡孝明, 等. 我国南方主推水稻品种氮效率筛选及评价. 植物营养与肥料学报, 2014, 20(5): 1051-1062. | |
10 | Liu X J, Ye F, Zhang X L. Effects of exogenous nitrogen forms on root characteristics of alfalfa at different growth stages. Acta Prataculturae Sinica, 2015, 24(6): 53-63. |
刘晓静, 叶芳, 张晓玲. 外源氮素形态对紫花苜蓿不同生育期根系特性的影响. 草业学报, 2015, 24(6): 53-63. | |
11 | Wang C X, Ling F, Lu Z Q, et al. Characteristics of nitrogen accumulation and utilization in peanuts (Arachis hypogaea) with different nitrogen use efficiencies. Chinese Journal of Eco-Agriculture, 2019, 27(11): 1706-1713. |
王春晓, 凌飞, 鹿泽启, 等. 不同氮效率花生品种氮素累积与利用特征. 中国生态农业学报, 2019, 27(11): 1706-1713. | |
12 | Hu W, Zhang Y H, Li P, et al. Effects of water and nitrogen supply under drip irrigation on the production performance rate and water and nitrogen use efficiency of alfalfa. Acta Prataculturae Sinica, 2019, 28(2): 41-50. |
胡伟, 张亚红, 李鹏, 等. 水氮供应对地下滴灌紫花苜蓿生产性能及水氮利用效率的影响. 草业学报, 2019, 28(2): 41-50. | |
13 | Nan L L, Shi S L, Guo Q E, et al. Effects of seeding rate and row spacing on nutritional value of alfalfa in the arid oasis region of Gansu Province. Acta Prataculturae Sinica, 2019, 28(1): 108-119. |
南丽丽, 师尚礼, 郭全恩, 等. 甘肃荒漠灌区播量和行距对紫花苜蓿营养价值的影响. 草业学报, 2019, 28(1): 108-119. | |
14 | Qi P, Liu X J, Liu Y N, et al. Effect of nitrogen fertilizer on nitrogen accumulation in alfalfa and the content of nitrogen in soil. Acta Agrestia Sinica, 2015, 23(5): 1026-1032. |
齐鹏, 刘晓静, 刘艳楠, 等. 施氮对不同紫花苜蓿品种氮积累及土壤氮动态变化的影响. 草地学报, 2015, 23(5): 1026-1032. | |
15 | Liu X J, Liu Y N, Kuai J L, et al. Effects of different N levels on productivity and quality of alfalfa varieties. Acta Agrestia Sinica, 2013, 21(4): 702-707. |
刘晓静, 刘艳楠, 蒯佳林, 等. 供氮水平对不同紫花苜蓿产量及品质的影响. 草地学报, 2013, 21(4): 702-707. | |
16 | Fang X L, Zhang C X, Nan Z B. Research advances in Fusarium root rot of alfalfa (Medicago sativa). Acta Prataculturae Sinica, 2019, 28(12): 169-183. |
方香玲, 张彩霞, 南志标. 紫花苜蓿镰刀菌根腐病研究进展. 草业学报, 2019, 28(12): 169-183. | |
17 | Subramanian S, Stacey G, Yu O. Distinct, crucial roles of flavonoids during legume nodulation. Trends in Plant Science, 2007, 12(7): 282-285. |
18 | Hao F. Study on nitrogen efficiency mechanism and division growth period by nitrogen nutrition stage of alfalfa. Lanzhou: Gansu Agricultural University, 2017. |
郝凤. 紫花苜蓿氮效率差异机制与氮营养阶段生育期划分的研究. 兰州: 甘肃农业大学, 2017. | |
19 | Zhang X L, Liu X J, Hao F. Response of leaf conducting tissue anatomy and photosynthetic characteristics of alfalfa to exogenous nitrogen. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(8): 1597-1603. |
张晓玲, 刘晓静, 郝凤. 紫花苜蓿叶输导组织解剖结构和光合特性对外源氮的响应. 西北植物学报, 2015, 35(8): 1597-1603. | |
20 | Hoagland D R, Arnon D I. The water culture method for growing plants without soil. California Agricultural Experiment Station Circular, 1950, 347: 139. |
21 | Hu F L, Zhao C, Feng F X, et al. Improving N management through intercropping alleviates the inhibitory effect of mineral N on nodulation in pea. Plant and Soil, 2017, 412(1/2): 235-251. |
22 | Xia X, Ma C, Dong S, et al. Effects of nitrogen concentrations on nodulation and nitrogenase activity in dual root systems of soybean plants. Soil Science and Plant Nutrition, 2017, 63(5): 470-482. |
23 | Lu R K. Chemical analysis of soil agriculture. Beijing: China Agricultural Science and Technology Press, 2000. |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. | |
24 | Livak K J, Schmittgcn T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct method. Methods, 2001, 25(4): 402-408. |
25 | Yang Q, Wang Y X, Li X X, et al. Isolation and screening of effective rhizobial strains of cassia (Chamaecrista spp.) pasture in acidic soils. Acta Agrestia Sinica, 2020, 28(6): 1519-1526. |
杨庆, 王义祥, 李欣欣, 等. 酸性土壤中决明属牧草高效根瘤菌的分离及筛选. 草地学报, 2020, 28(6): 1519-1526. | |
26 | Fan Y T, Fan R N, Zhang H, et al. Biosynthesis and function of flavonol in plants: A review. Chinese Agricultural Science Bulletin, 2020, 36(33): 95-101. |
范雁婷, 樊若楠, 张辉, 等. 植物黄酮醇生物合成及功能研究进展. 中国农学通报, 2020, 36(33): 95-101. | |
27 | Zhu Y, Chu S S, Zhang P P, et al. An R2R3-MYB transcription factor GmMYB184 regulates soybean isoflavone synthesis. Acta Agronomica Sinica, 2018, 44(2): 185-196. |
朱莹, 褚姗姗, 张培培, 等. R2R3-MYB转录因子GmMYB184调节大豆异黄酮合成. 作物学报, 2018, 44(2): 185-196. | |
28 | Zhang X N, Piao C L, Dong Y K, et al. Transcriptome analysis of response to heavy metal Cd stress in soybean root. Chinese Journal of Applied Ecology, 2017, 28(5): 1633-1641. |
张晓娜, 朴春兰, 董友魁, 等. 大豆根系应答重金属Cd胁迫的转录组分析. 应用生态学报, 2017, 28(5): 1633-1641. | |
29 | Wan Q, Liu X Q, Zhang D Y, et al. Cloning and expression of GmNAC73-like gene from Glycine max and its effect on GmIFS2 gene. Journal of Plant Resources and Environment, 2016, 25(3): 12-18, 27. |
万群, 刘晓庆, 张大勇, 等. 大豆GmNAC73-like基因的克隆和表达及其对GmIFS2基因的影响. 植物资源与环境学报, 2016, 25(3): 12-18, 27. | |
30 | Velde W V, Guerra J C, Keyser A D, et al. Aging in legume symbiosis.A molecular view on nodule senescence in Medicago truncatula. Plant Physiolohy, 2006, 141(2): 711-720. |
31 | Catoira R, Galera C, Billy F D, et al. Four genes of Medicago truncatula controlling components of a nod factor transduction pathway. The Plant Cell, 2000, 12(9): 1647-1665. |
32 | Wu L K, Lin X M, Lin W X. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates. Chinese Journal of Plant Ecology, 2014, 38(3): 298-310. |
吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望. 植物生态学报, 2014, 38(3): 298-310. | |
33 | Subramanian S, Stacey G, Yu O. Endogenous isoflavones are essential for the establishment of symbiosis between soybean and Bradyrhizobium japonicum. Plant Journal, 2010, 48(2): 261-273. |
34 | Wu Y W, Li Q, Dou P, et al. Effects of nitrogen fertilizer on leaf chlorophyll content and enzyme activity at late growth stages in maize cultivars with contrasting tolerance to low nitrogen. Acta Prataculturae Sinica, 2017, 26(10): 188-197. |
吴雅薇, 李强, 豆攀, 等. 氮肥对不同耐低氮性玉米品种生育后期叶绿素含量和氮代谢酶活性的影响. 草业学报, 2017, 26(10): 188-197. | |
35 | Ji L, Yang H, Li T X, et al. Dry matter production and nitrogen accumulation of rice genotypes with different nitrogen use efficiencies. Acta Prataculturae Sinica, 2014, 23(6): 327-335. |
戢林, 杨欢, 李廷轩, 等. 氮高效利用基因型水稻干物质生产和氮素积累特性. 草业学报, 2014, 23(6): 327-335. | |
36 | Li K, Guo Y Q, Liu C N, et al. Effects of different NH4+/NO3- ratios on soybean growth, nodulation and biological N fixation. Chinese Journal of Oil Crop Sciences, 2014, 36(3): 349-356. |
李凯, 郭宇琦, 刘楚楠, 等. 铵硝配比对大豆生长及结瘤固氮的影响. 中国油料作物学报, 2014, 36(3): 349-356. | |
37 | Song B, Li P Y, Wang P W, et al. Analysis of soybean isoflavones content and its components in different soybeans. Soybean Science, 2008, 27(4): 675-678. |
宋冰, 李鹏月, 王丕武, 等. 大豆异黄酮的品种间差异分析. 大豆科学, 2008, 27(4): 675-678. | |
38 | Zhou X H, Tian F, Du L P, et al. Advances in molecular biology research of interaction between plants and beneficial microorganisms and their applications in plant improvement. Scientia Agricultura Sinica, 2012, 45(14): 2801-2814. |
周晓鸿, 田芳, 杜丽璞, 等. 植物与有益微生物互作的分子基础及其应用的研究进展. 中国农业科学, 2012, 45(14): 2801-2814. | |
39 | Cooper J E. Early interactions between legumes and rhizobia: Disclosing complexity in a molecular dialogue. Journal of Applied Microbiology, 2007, 103(5): 1355-1365. |
40 | Sugiyama A, Yamazaki Y, Yamashita K, et al. Developmental and nutritional regulation of isoflavone secretion from soybean roots. Bioscience, Biotechnology, and Biochemistry, 2016, 80(1): 89-94. |
41 | An Q, Yin B, Zhang J C, et al. The chemotaxis and nodulation effect of soybean rhizobium on exogenous flavonoids. Soybean Science, 2017, 36(6): 900-904. |
安琦, 殷博, 张介驰, 等. 外源类黄酮对大豆根瘤菌趋化性与结瘤效果的影响. 大豆科学, 2017, 36(6): 900-904. | |
42 | Liu Y C, Xiao J X, Tang L, et al. Effect of nitrogen application rate on root soy isoflavone exudate of wheat/faba bean intercropping system. Chinese Journal of Eco-Agriculture, 2018, 26(6): 799-806. |
刘英超, 肖靖秀, 汤利, 等. 施氮量对间作小麦蚕豆根系分泌大豆异黄酮的影响. 中国生态农业学报, 2018, 26(6): 799-806. |
[1] | 张岳阳, 李芳, 梁维维, 李彦忠. 新疆昌吉32个紫花苜蓿品种的田间抗病性评价[J]. 草业学报, 2022, 31(2): 133-146. |
[2] | 王斌, 杨雨琦, 李满有, 倪旺, 海艺蕊, 张顺香, 董秀, 兰剑. 不同播种量下行距配置对紫花苜蓿产量及品质的影响[J]. 草业学报, 2022, 31(2): 147-158. |
[3] | 张辉辉, 师尚礼, 武蓓, 李自立, 李小龙. 苜蓿与3种多年生禾草混播效应研究[J]. 草业学报, 2022, 31(2): 159-170. |
[4] | 白婕, 臧真凤, 刘丛, 昝看卓, 龙明秀, 王可珍, 屈洋, 何树斌. 紫花苜蓿叶片和根系膜脂过氧化及C、N特征对水分和N添加的响应[J]. 草业学报, 2022, 31(2): 213-220. |
[5] | 魏娜, 李艳鹏, 马艺桐, 刘文献. 全基因组水平紫花苜蓿TCP基因家族的鉴定及其在干旱胁迫下表达模式分析[J]. 草业学报, 2022, 31(1): 118-130. |
[6] | 徐睿智, 吴晓娟, 杨惠敏. 刈割后追肥对建植当年紫花苜蓿生长和生产性能的影响[J]. 草业学报, 2022, 31(1): 195-204. |
[7] | 赵颖, 辛夏青, 魏小红. 一氧化氮对干旱胁迫下紫花苜蓿氮代谢的影响[J]. 草业学报, 2021, 30(9): 86-96. |
[8] | 汪雪, 刘晓静, 赵雅姣, 王静. 根系分隔方式下紫花苜蓿/燕麦间作氮素利用及种间互馈特征研究[J]. 草业学报, 2021, 30(8): 73-85. |
[9] | 古丽娜扎尔·艾力null, 陶海宁, 王自奎, 沈禹颖. 基于APSIM模型的黄土旱塬区苜蓿——小麦轮作系统深层土壤水分及水分利用效率研究[J]. 草业学报, 2021, 30(7): 22-33. |
[10] | 周倩倩, 张亚见, 张静, 殷涂童, 盛下放, 何琳燕. 产硫化氢细菌的筛选及阻控苜蓿吸收铅和改良土壤的作用[J]. 草业学报, 2021, 30(7): 44-52. |
[11] | 臧真凤, 白婕, 刘丛, 昝看卓, 龙明秀, 何树斌. 紫花苜蓿形态和生理指标响应干旱胁迫的品种特异性[J]. 草业学报, 2021, 30(6): 73-81. |
[12] | 谢展, 穆麟, 张志飞, 陈桂华, 刘洋, 高帅, 魏仲珊. 乳酸菌或有机酸盐与尿素复配添加对紫花苜蓿混合青贮的影响[J]. 草业学报, 2021, 30(5): 165-173. |
[13] | 王吉祥, 宫焕宇, 屠祥建, 郭侲洐, 赵嘉楠, 沈健, 栗振义, 孙娟. 耐亚磷酸盐紫花苜蓿品种筛选及评价指标的鉴定[J]. 草业学报, 2021, 30(5): 186-199. |
[14] | 张小芳, 魏小红, 刘放, 朱雪妹. PEG胁迫下紫花苜蓿幼苗内源激素对NO的响应[J]. 草业学报, 2021, 30(4): 160-169. |
[15] | 候怡谣, 李霄, 龙瑞才, 杨青川, 康俊梅, 郭长虹. 过量表达紫花苜蓿MsHB7基因对拟南芥耐旱性的影响[J]. 草业学报, 2021, 30(4): 170-179. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||