草业学报 ›› 2022, Vol. 31 ›› Issue (12): 31-40.DOI: 10.11686/cyxb2021467
王玉琴1(), 宋梅玲1, 周睿1, 王宏生1, 刘华2, 朱秀莲3, 马玉寿1()
收稿日期:
2021-12-13
修回日期:
2022-01-27
出版日期:
2022-12-20
发布日期:
2022-10-17
通讯作者:
马玉寿
作者简介:
E-mail: mayushou@sina.com基金资助:
Yu-qin WANG1(), Mei-ling SONG1, Rui ZHOU1, Hong-sheng WANG1, Hua LIU2, Xiu-lian ZHU3, Yu-shou MA1()
Received:
2021-12-13
Revised:
2022-01-27
Online:
2022-12-20
Published:
2022-10-17
Contact:
Yu-shou MA
摘要:
黄帚橐吾作为指示高寒草甸植被退化的重要物种,研究其对草地生态系统植被、土壤以及微生物养分循环的影响,对揭示其入侵机制具有重要意义。本研究以黄帚橐吾危害区为研究对象,用化学药剂去除黄帚橐吾的竞争优势,分析黄帚橐吾危害后植被功能群养分、土壤养分以及土壤微生物量的变化。结果表明:黄帚橐吾危害后,提高了莎草科体内碳(C)含量,禾本科和豆科氮(N)含量显著升高,豆科磷(P)含量显著升高,而莎草科P含量显著降低(P<0.05),且黄帚橐吾体内C含量显著高于其他功能群(P<0.05);各功能群C/N表现为莎草科显著高于豆科和杂类草(P<0.05),C/P为莎草科显著高于其他功能群(P<0.05),同时,植物C含量与N含量、P含量负相关,N含量与P含量正相关。黄帚橐吾危害后土壤全氮含量显著升高,速效氮、全钾和速效钾含量显著降低,C/N显著降低,N/P显著升高(P<0.05)。黄帚橐吾引起土壤微生物量(MBC、MBN和MBP)的升高,使土壤微生物活性上升,MBC/MBN和MBC/MBP在危害区也高于防除区,MBN/MBP略低于防除区,说明黄帚橐吾对N的需求大于对P的需求。植物C、N、P含量及化学计量比与土壤养分和土壤微生物量及化学计量比具有一定的相关性,冗余分析(RDA)结果得到在黄帚橐吾危害区黄帚橐吾C、N、P含量与土壤养分和微生物量具有较大的相关性,且植物的P含量与土壤养分和微生物量显著相关(P<0.05),而在防除对照区内每个功能群植物对养分的需求均匀分布,可见黄帚橐吾危害后影响了草地养分的分配格局。
王玉琴, 宋梅玲, 周睿, 王宏生, 刘华, 朱秀莲, 马玉寿. 黄帚橐吾对退化高寒草地植物、土壤养分及微生物量的影响[J]. 草业学报, 2022, 31(12): 31-40.
Yu-qin WANG, Mei-ling SONG, Rui ZHOU, Hong-sheng WANG, Hua LIU, Xiu-lian ZHU, Yu-shou MA. Effects of Ligularia virgaurea on plant and soil nutrient levels and soil microbial biomass characteristics in degraded alpine grassland[J]. Acta Prataculturae Sinica, 2022, 31(12): 31-40.
功能群 Functional group | 黄帚橐吾危害区Hazard area of L.virgaurea | 黄帚橐吾防除区Control area of L.virgaurea | ||||
---|---|---|---|---|---|---|
C (g·kg-1) | N (g·kg-1) | P (mg·kg-1) | C (g·kg-1) | N (g·kg-1) | P (mg·kg-1) | |
禾本科 Gramineae | 390.02±4.36b | 21.70±0.68b* | 1.08±0.04b | 401.03±11.87a | 18.28±0.55c | 0.98±0.02c |
莎草科 Cyperaceae | 383.57±5.32bc | 20.03±0.44c | 0.92±0.02c | 370.60±12.07b | 20.93±0.46b | 1.12±0.06b* |
豆科 Leguminosae | 370.90±4.63c | 37.33±0.28a* | 1.41±0.03a* | 380.38±1.99ab | 17.33±0.33c | 0.86±0.03d |
杂类草 Forbs | 383.97±5.61bc | 24.32±0.67b | 1.40±0.02a | 385.12±6.37ab | 35.01±0.54a* | 1.39±0.02a |
黄帚橐吾 | 411.28±2.27a | 27.68±5.78ab | 1.33±0.04a | - | - | - |
表1 黄帚橐吾对各功能群植物的C、N、P含量的影响
Table 1 Effect of L. virgaurea on C, N and P contents of functional groups plants
功能群 Functional group | 黄帚橐吾危害区Hazard area of L.virgaurea | 黄帚橐吾防除区Control area of L.virgaurea | ||||
---|---|---|---|---|---|---|
C (g·kg-1) | N (g·kg-1) | P (mg·kg-1) | C (g·kg-1) | N (g·kg-1) | P (mg·kg-1) | |
禾本科 Gramineae | 390.02±4.36b | 21.70±0.68b* | 1.08±0.04b | 401.03±11.87a | 18.28±0.55c | 0.98±0.02c |
莎草科 Cyperaceae | 383.57±5.32bc | 20.03±0.44c | 0.92±0.02c | 370.60±12.07b | 20.93±0.46b | 1.12±0.06b* |
豆科 Leguminosae | 370.90±4.63c | 37.33±0.28a* | 1.41±0.03a* | 380.38±1.99ab | 17.33±0.33c | 0.86±0.03d |
杂类草 Forbs | 383.97±5.61bc | 24.32±0.67b | 1.40±0.02a | 385.12±6.37ab | 35.01±0.54a* | 1.39±0.02a |
黄帚橐吾 | 411.28±2.27a | 27.68±5.78ab | 1.33±0.04a | - | - | - |
图1 黄帚橐吾对植物养分化学计量特征的影响Gr: 禾本科Gramineae; Cy: 莎草科Cyperaceae; Le: 豆科Leguminosae; Fr: 杂类草Forbs; Lv: 黄帚橐吾L.virgaurea; LH: 黄帚橐吾危害区Hazard area of L.virgaurea; LC: 黄帚橐吾防除区Control area of L.virgaurea; 不同小写字母表示相同处理不同功能群间差异显著(P<0.05) Different lowercase letters indicate significant differences among different functional groups in the same treatment (P<0.05); *: 同一功能群不同处理之间差异显著(P<0.05) Significant differences between different treatments with the same function group (P<0.05).
Fig.1 Effect of L.virgaurea on the stoichiometric characteristics of plant nutrients
项目 Item | LH | LC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
PC | PN | PP | PC/N | PC/P | PC | PN | PP | PC/N | PC/P | |
PN | -0.321 | -0.059 | ||||||||
PP | -0.028 | 0.740 | -0.127 | 0.954* | ||||||
PC/N | 0.486 | -0.974** | -0.764 | 0.249 | -0.975* | -0.976* | ||||
PC/P | 0.152 | -0.767 | -0.989** | 0.814 | 0.268 | -0.894 | -0.983* | 0.957* | ||
PN/P | -0.403 | 0.746 | 0.107 | -0.672 | -0.149 | -0.037 | 0.935 | 0.787 | -0.869 | -0.692 |
表2 植物C、N、P含量及化学计量比的相关分析
Table 2 Correlations of plants C, N, P content and stoichiometry across different treatments
项目 Item | LH | LC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
PC | PN | PP | PC/N | PC/P | PC | PN | PP | PC/N | PC/P | |
PN | -0.321 | -0.059 | ||||||||
PP | -0.028 | 0.740 | -0.127 | 0.954* | ||||||
PC/N | 0.486 | -0.974** | -0.764 | 0.249 | -0.975* | -0.976* | ||||
PC/P | 0.152 | -0.767 | -0.989** | 0.814 | 0.268 | -0.894 | -0.983* | 0.957* | ||
PN/P | -0.403 | 0.746 | 0.107 | -0.672 | -0.149 | -0.037 | 0.935 | 0.787 | -0.869 | -0.692 |
项目 Item | LH | LC | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PC | PN | PP | PC/N | PC/P | PN/P | PC | PN | PP | PC/N | PC/P | PN/P | |
SOC | -0.031 | 0.384 | 0.174 | -0.355 | -0.236 | 0.359 | -0.611 | -0.542 | -0.314 | 0.346 | 0.133 | -0.710 |
STN | 0.808 | -0.978* | -0.786 | 0.981* | 0.816 | -0.671 | 0.516 | 0.796 | 0.783 | -0.693 | -0.675 | 0.678 |
NH4+-N | 0.551 | -0.783 | -0.383 | 0.739 | 0.440 | -0.759 | -0.776 | 0.623 | 0.720 | -0.777 | -0.816 | 0.480 |
NO3--N | -0.140 | 0.525 | 0.477 | -0.531 | -0.530 | 0.276 | -0.554 | 0.536 | 0.355 | -0.549 | -0.332 | 0.726 |
STP | 0.129 | -0.171 | 0.470 | 0.060 | -0.417 | -0.690 | 0.739 | -0.702 | -0.759 | 0.834 | 0.832 | -0.595 |
SAP | 0.462 | -0.581 | 0.025 | 0.493 | 0.033 | -0.861 | 0.711 | 0.566 | 0.384 | -0.370 | -0.207 | 0.668 |
STK | 0.273 | -0.232 | 0.466 | 0.116 | -0.420 | -0.785 | 0.382 | -0.895 | -0.965* | 0.969* | 0.989* | -0.723 |
SAK | 0.042 | 0.367 | 0.421 | -0.383 | -0.471 | 0.094 | 0.882 | -0.519 | -0.537 | 0.662 | 0.623 | -0.491 |
MBC | -0.387 | 0.721 | 0.831 | -0.764 | -0.863 | 0.233 | 0.792 | 0.562 | 0.480 | -0.391 | -0.327 | 0.538 |
MBN | -0.208 | 0.589 | 0.696 | -0.625 | -0.736 | 0.163 | 0.165 | 0.933 | 0.790 | -0.836 | -0.674 | 0.977* |
MBP | -0.762 | 0.717 | 0.865 | -0.775 | -0.842 | 0.236 | 0.869 | 0.433 | 0.319 | -0.239 | -0.153 | 0.458 |
SC/N | -0.723 | 0.939 | 0.705 | -0.931 | -0.746 | 0.684 | -0.590 | -0.771 | -0.695 | 0.632 | 0.558 | -0.726 |
SC/P | -0.107 | 0.229 | -0.354 | -0.130 | 0.295 | 0.657 | -0.804 | 0.576 | 0.683 | -0.739 | -0.788 | 0.429 |
SC/K | -0.188 | 0.362 | -0.183 | -0.275 | 0.121 | 0.685 | -0.596 | 0.676 | 0.825 | -0.820 | -0.914 | 0.451 |
SN/P | 0.512 | -0.596 | -0.959* | 0.685 | 0.938 | 0.043 | -0.411 | 0.909 | 0.954* | -0.979* | -0.973* | 0.769 |
MBC/MBN | -0.460 | 0.761 | 0.899 | -0.812 | -0.924 | 0.231 | 0.881 | 0.417 | 0.351 | -0.240 | -0.201 | 0.385 |
MBC/MBP | 0.214 | 0.191 | 0.228 | -0.197 | -0.280 | 0.020 | 0.774 | 0.586 | 0.506 | -0.418 | -0.354 | 0.558 |
MBN/MBP | 0.610 | -0.317 | -0.368 | 0.346 | 0.322 | -0.147 | -0.987* | 0.208 | 0.250 | -0.383 | -0.373 | 0.197 |
表3 植物与土壤C、N、P、K含量及化学计量比的相关分析
Table 3 Correlations of C, N, P, K content and stoichiometry between plants and soil nutrients in different treatments
项目 Item | LH | LC | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PC | PN | PP | PC/N | PC/P | PN/P | PC | PN | PP | PC/N | PC/P | PN/P | |
SOC | -0.031 | 0.384 | 0.174 | -0.355 | -0.236 | 0.359 | -0.611 | -0.542 | -0.314 | 0.346 | 0.133 | -0.710 |
STN | 0.808 | -0.978* | -0.786 | 0.981* | 0.816 | -0.671 | 0.516 | 0.796 | 0.783 | -0.693 | -0.675 | 0.678 |
NH4+-N | 0.551 | -0.783 | -0.383 | 0.739 | 0.440 | -0.759 | -0.776 | 0.623 | 0.720 | -0.777 | -0.816 | 0.480 |
NO3--N | -0.140 | 0.525 | 0.477 | -0.531 | -0.530 | 0.276 | -0.554 | 0.536 | 0.355 | -0.549 | -0.332 | 0.726 |
STP | 0.129 | -0.171 | 0.470 | 0.060 | -0.417 | -0.690 | 0.739 | -0.702 | -0.759 | 0.834 | 0.832 | -0.595 |
SAP | 0.462 | -0.581 | 0.025 | 0.493 | 0.033 | -0.861 | 0.711 | 0.566 | 0.384 | -0.370 | -0.207 | 0.668 |
STK | 0.273 | -0.232 | 0.466 | 0.116 | -0.420 | -0.785 | 0.382 | -0.895 | -0.965* | 0.969* | 0.989* | -0.723 |
SAK | 0.042 | 0.367 | 0.421 | -0.383 | -0.471 | 0.094 | 0.882 | -0.519 | -0.537 | 0.662 | 0.623 | -0.491 |
MBC | -0.387 | 0.721 | 0.831 | -0.764 | -0.863 | 0.233 | 0.792 | 0.562 | 0.480 | -0.391 | -0.327 | 0.538 |
MBN | -0.208 | 0.589 | 0.696 | -0.625 | -0.736 | 0.163 | 0.165 | 0.933 | 0.790 | -0.836 | -0.674 | 0.977* |
MBP | -0.762 | 0.717 | 0.865 | -0.775 | -0.842 | 0.236 | 0.869 | 0.433 | 0.319 | -0.239 | -0.153 | 0.458 |
SC/N | -0.723 | 0.939 | 0.705 | -0.931 | -0.746 | 0.684 | -0.590 | -0.771 | -0.695 | 0.632 | 0.558 | -0.726 |
SC/P | -0.107 | 0.229 | -0.354 | -0.130 | 0.295 | 0.657 | -0.804 | 0.576 | 0.683 | -0.739 | -0.788 | 0.429 |
SC/K | -0.188 | 0.362 | -0.183 | -0.275 | 0.121 | 0.685 | -0.596 | 0.676 | 0.825 | -0.820 | -0.914 | 0.451 |
SN/P | 0.512 | -0.596 | -0.959* | 0.685 | 0.938 | 0.043 | -0.411 | 0.909 | 0.954* | -0.979* | -0.973* | 0.769 |
MBC/MBN | -0.460 | 0.761 | 0.899 | -0.812 | -0.924 | 0.231 | 0.881 | 0.417 | 0.351 | -0.240 | -0.201 | 0.385 |
MBC/MBP | 0.214 | 0.191 | 0.228 | -0.197 | -0.280 | 0.020 | 0.774 | 0.586 | 0.506 | -0.418 | -0.354 | 0.558 |
MBN/MBP | 0.610 | -0.317 | -0.368 | 0.346 | 0.322 | -0.147 | -0.987* | 0.208 | 0.250 | -0.383 | -0.373 | 0.197 |
图4 植物与土壤和微生物C、N、P含量的冗余分析黑线表示植物各含量及化学计量比,红线表示土壤各含量及化学计量比;GrC、GrN、GrP分别表示禾本科C、N、P含量,CyC、CyN、CyP分别表示莎草科C、N、P含量,LeC、LeN、LeP分别表示豆科C、N、P含量,FrC、FrN、FrP分别表示杂类草C、N、P含量,LvC、LvN、LvP分别表示黄帚橐吾C、N、P含量。The black line indicates the plant content and stoichiometry, the red line indicates the soil content and stoichiometry, GrC, GrN and GrP represent the C, N and P contents of Gramineae, CyC, CyN and CyP represent the C, N and P contents of Cyperaceae, LeC, LeN and LeP represent the C, N and P contents of Leguminosae, FrC, FrN and FrP represent the C, N and P contents of Forbs, LvC, LvN and LvP represented C, N and P contents of L. virgaurea, respectively.
Fig.4 Redundant analysis of plants C, N, P contents with soils and microorganisms
1 | Wang C T, Long R J, Wang Q L, et al. Response of plant diversity and productivity to soil resources changing under grazing disturbance on an alpine meadow. Acta Ecologica Sinica, 2008, 28(9): 4144-4152. |
王长庭, 龙瑞军, 王启兰, 等. 放牧扰动下高寒草甸植物多样性、生产力对土壤养分条件变化的响应. 生态学报, 2008, 28(9): 4144-4152. | |
2 | Bengtsson J, Bullock J M, Egoh B, et al. Grasslands-more important for ecosystem services than you might think. Ecosphere, 2019, 10(2): 1-20. |
3 | Ren J Z, Xu G, Li X L, et al. Trajectory and prospect of China’s prataculture. Chinese Science Bulletin, 2016, 61(2): 178-192. |
任继周, 胥刚, 李向林, 等. 中国草业科学的发展轨迹与展望. 科学通报, 2016, 61(2): 178-192. | |
4 | Wang H, Liu H Y, Cao G M, et al. Alpine grassland plants grow earlier and faster but biomass remains unchanged over 35 years of climate change. Ecology Letters, 2020, 23(4): 701-710. |
5 | Wang H S. Current research status and prosperous of allelecheical in weeds control. Qinghai Prataculture, 2007, 16(3): 33-36. |
王宏生. 利用化感物质防除杂草研究现状及应用前景. 青海草业, 2007, 16(3): 33-36. | |
6 | Zhang G F, Xie T P, Du G Z. Variation in floral sex allocation, female success, and seed predation within racemiform synflorescence in the gynomonoecious Ligularia virgaurea (Asteraceae). Journal of Plant Research, 2012, 125(4): 527-538. |
7 | Xie T P, Zhang G F, Zhao Z G, et al. Intraspecific competition and light effect on reproduction of Ligularia virgaurea, an invasive native alpine grassland clonal herb. Ecology and Evolution, 2014, 4(6): 817-825. |
8 | Shi G X, Wang W Y, Jiang S J, et al. Effects of the spreading of Ligularia virgaurea on soil physicochemical property and microbial functional diversity. Chinese Journal of Plant Ecology, 2018, 42(1): 126-132. |
石国玺, 王文颖, 蒋胜竞, 等.黄帚橐吾种群扩张对土壤理化特性与微生物功能多样性的影响. 植物生态学报, 2018, 42(1): 126-132. | |
9 | Wang M T, Zhao Z G, Du G Z, et al. Effects of light on the growth and clonal reproduction of Ligularia virgaurea. Journal of Integrative Plant Biology, 2008(8): 1015-1023. |
10 | Shi X M, Li X G, Wu R M, et al. Changes in soil biochemical properties associated with Ligularia virgaurea spreading in grazed alpine meadows. Plant and Soil, 2011, 347(1、2): 65-78. |
11 | Yu H Y. Study on influence of appiying herbicide to control Ligularia virgaurea on grassland vegetation. Qinghai Prataculture, 2018, 27(2): 14-16. |
于红妍. 不同药剂防除黄帚橐吾对草地植被的影响研究. 青海草业, 2018, 27(2): 14-16. | |
12 | Wang H S, Bao G S, Song M L, et al. Effects of using “Qingtuo No.1”to control Ligularia virgaurea on grassland community and productivity. Chinese Qinghai Journal of Animal and Veterinary Sciences, 2018, 48(5): 1-5. |
王宏生, 鲍根生, 宋梅玲, 等. 应用“清橐1号”防除黄帚橐吾对草地群落及生产力的影响. 青海畜牧兽医杂志, 2018, 48(5): 1-5. | |
13 | Li Y Y, Dong S K, Liu S, et al. The interaction between poisonous plants and soil quality in response to grassland degradation in the alpine region of the Qinghai-Tibetan Plateau. Plant Ecology, 2014, 215(8): 809-819. |
14 | Ma S F, Deng J, Diao Z M, et al. Present research situation, comprehensive utilization and control countermeasures of Stellera chamaejasme in Qinghai. Qinghai Prataculture, 2007(1): 17-21. |
马寿福, 邓君, 刁治民, 等. 青海省狼毒研究现状、综合利用及防治. 青海草业, 2007(1): 17-21. | |
15 | Liu X W, Zhou Y L, Qi C M, et al. Effects of Mikania micrantha invasion on soil nutrient contents and enzyme activities. Ecology and Environmental Sciences, 2012, 21(12): 1960-1965. |
刘小文, 周益林, 齐成媚, 等. 入侵植物薇甘菊对土壤养分和酶活性的影响. 生态环境学报, 2012, 21(12): 1960-1965. | |
16 | Yang W, An S Q, Zhao H, et al. Impacts of Spartina alterniflora invasion on soil organic carbon and nitrogen pools sizes, stability, and turnover in a coastal salt marsh of eastern China. Ecological Engineering, 2016, 86: 174-182. |
17 | Bao G S, Wang Y Q, Song M L, et al. Effects of Stellera chamaejasme patches on the surrounding grassland community and on soil physical-chemical properties in degraded grasslands susceptible to S.chamaejasme invasion. Acta Prataculturae Sinica, 2019, 28(3): 51-61. |
鲍根生, 王玉琴, 宋梅玲, 等. 狼毒斑块对狼毒型退化草地植被和土壤理化性质影响的研究. 草业学报, 2019, 28(3): 51-61. | |
18 | Ma J G, Hou F J, Bowatte S. Effects of toxic plants on soil physicochemical properties and soil microbial abundance in an alpine meadow on the Qinghai-Tibetan Plateau. Pratacultural Science, 2019, 36(12): 3033-3040. |
马建国, 侯扶江, Bowatte S. 青藏高原高寒草甸有毒植物对土壤理化性质和土壤微生物丰度的影响. 草业科学, 2019, 36(12): 3033-3040. | |
19 | Bao S D. Soil agro-chemical analysis. Beijing: China Agriculture Press, 2005. |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2005. | |
20 | Lin X G. Principles and methods of soil microbial research. Beijing: Higher Education Press, 2010. |
林先贵. 土壤微生物研究原理与方法. 北京: 高等教育出版社, 2010. | |
21 | Wang K, Shangguan Z. Seasonal variations in leaf C, N, and P stoichiometry of typical plants in the Yangou watershed in the loess hilly gully region. Acta Ecologica Sinica, 2011, 31(3): 62-64. |
22 | Wang K, Gao S, Liu H B, et al. Effects of nitrogen and water addition on C, N, P stoichiometry in different organs of poplar seedlings. Chinese Journal of Ecology, 2021, 40(12): 3870-3880. |
王凯, 高爽, 刘焕彬, 等. 施氮与增水对杨树幼苗不同器官碳氮磷化学计量的影响. 生态学杂志, 2021, 40(12): 3870-3880. | |
23 | He J S, Fang J, Wang Z, et al. Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia, 2006, 149(1): 115-122. |
24 | Güsewell S. N∶P ratios in terrestrial plants: Variation and functional significance. New Phytologist, 2010, 164(2): 243-266. |
25 | Herbert D A, Williams M, Rastetter E B. A model analysis of N and P limitation on carbon accumulation in Amazonian secondary forest after alternate land-use abandonment. Biogeochemistry, 2003, 65: 121-150. |
26 | She S F, Hu Y F, Shu X Y, et al. Variation of C, N and P stoichiometry in dominant understory plants during stand development in Salix cupularis plantations in alpine grassland in Northwestern Sichuan, China. Acta Prataculturae Sinica, 2018, 27(4): 123-130. |
佘淑凤, 胡玉福, 舒向阳, 等. 川西北高寒沙地不同年限高山柳林下优势植物碳、氮、磷生态化学计量特征. 草业学报, 2018, 27(4): 123-130. | |
27 | Liu Z, Tian D, Huang Z J, et al. Characteristics of soil and foliar N and P concentrations and stoichiometric ratio along restoration ages of Pinus massoniana plantations in red soils erosion regions of southern China. Chinese Journal of Applied and Environmental Biology, 2019, 25(4): 768-775. |
刘政, 田地, 黄梓敬, 等. 南方红壤侵蚀区不同恢复年限马尾松人工林土壤和叶片氮磷养分含量及生态化学计量特征. 应用与环境生物学报, 2019, 25(4): 768-775. | |
28 | Fan J W, Gao Y G. The role of nitrogen fixation of legume herbage in mixture pasture. Grassland of China, 1994(6): 64-69, 73. |
樊江文, 高永革. 混播草地中豆科牧草的固氮作用. 中国草地, 1994(6): 64-69, 73. | |
29 | Wan F, Meng Z J, Dang X H, et al. C, N and P ecological stoichiometry characteristics of a Stipa species plant-soil system subject to grazing exclusion in a desert steppe. Acta Prataculturae Sinica, 2020, 29(9): 49-55. |
万芳, 蒙仲举, 党晓宏, 等. 封育措施下荒漠草原针茅植物-土壤C、N、P化学计量特征. 草业学报, 2020, 29(9): 49-55. | |
30 | Yu R X, Wang L, Yang X G, et al. C, N, P stoichiometric characteristics of different dominant species in Stipa Breviflora desert steppe. Bulletin of Soil and Water Conservation, 2019, 39(4): 36-43. |
于瑞鑫, 王磊, 杨新国, 等. 短花针茅荒漠草原不同斑块优势种植物的C,N,P化学计量特征. 水土保持通报, 2019, 39(4): 36-43. | |
31 | Ehrenfeld J G. Effects of exotic plant invasiona on soil nutrient cycling processes. Ecosystems, 2003, 6(6): 503-523. |
32 | Cheng M, An S S. Responses of soil nitrogen, phosphorous and organic matter to vegetation succession on the Loess Plateau of China. Journal of Arid Land, 2015, 7(2): 216-223. |
33 | Zhang H D, Ru H L, Jiao F, et al. C, N, P, K stoichiometric characteristic of leaves, root and soil in different abandoned years in Loess Plateau. Environmental Science, 2016, 37(3): 1128-1138. |
张海东, 汝海丽, 焦峰, 等. 黄土丘陵区退耕时间序列梯度上草本植被群落与土壤C、N、P、K化学计量学特征. 环境科学, 2016, 37(3): 1128-1138. | |
34 | Zhang G S, Deng H J, Du K, et al. Soil stoichiometry characteristics at different elevation gradients of a mountain in an area with high frequency debris flow: A case study in Xiaojiang Watershed, Yunnan. Acta Ecologica Sinica, 2016, 36(3): 675-687. |
张广帅, 邓浩俊, 杜锟, 等. 泥石流频发区山地不同海拔土壤化学计量特征——以云南省小江流域为例. 生态学报, 2016, 36(3): 675-687. | |
35 | Wang Y Q, Song M L, Bao G S, et al. Variation of C, N and P stoichiometry in plant and soil after removal Stellera chamaejasme in Stellera chamaejasme patches. Acta Ecologica Sinica, 2021, 41(15): 6280-6288. |
王玉琴, 宋梅玲, 鲍根生, 等. 防除狼毒对狼毒斑块植物-土壤C、N、P化学计量特征的影响. 生态学报, 2021, 41(15): 6280-6288. | |
36 | Yu L H, Wang J, Liao L R, et al. Soil microbial biomass, enzyme activities and ecological stoichiometric characteristics and influencing factors along degraded meadows on the Qinghai-Tibet Plateau. Acta Agrestia Sinica, 2020, 28(6): 1702-1710. |
喻岚晖, 王杰, 廖李容, 等. 青藏高原退化草甸土壤微生物量、酶化学计量学特征及其影响因素. 草地学报, 2020, 28(6): 1702-1710. | |
37 | Wang H H, Ren T B, Yuan Y, et al. Combined application of biomass charcoal and nitrogen fertilizer: Effects on microbial biomass C, microbial biomass N and C/N in tobacco soil. Chinese Agricultural Science Bulletin, 2017, 33(12): 52-57. |
王欢欢, 任天宝, 元野, 等. 生物质炭与氮肥配施对植烟土壤微生物量碳、氮和碳氮比的影响. 中国农学通报, 2017, 33(12): 52-57. |
[1] | 游郭虹, 刘丹, 王艳丽, 王长庭. 高寒草甸植物叶片生态化学计量特征对长期氮肥添加的响应[J]. 草业学报, 2022, 31(9): 50-62. |
[2] | 田英, 许喆, 朱丽珍, 王俊, 温学飞. 生长季不同月份平茬对柠条人工林地土壤细菌群落特性的影响[J]. 草业学报, 2022, 31(5): 40-50. |
[3] | 花蕊, 周睿, 包达尔罕, 董克池, 唐庄生, 花立民. 基于旋翼无人机低空遥感的高原鼠兔危害等级划分技术研究[J]. 草业学报, 2022, 31(4): 165-176. |
[4] | 杨可, 袁帅, 武晓东, 张昊婷, 孙珊珊, 付和平, 赵永泉, 王淑艳, 刘启富. 不同利用方式荒漠区草地鼠害防治的危害阈值和经济阈值[J]. 草业学报, 2022, 31(11): 36-47. |
[5] | 马文明, 刘超文, 周青平, 邓增卓玛, 唐思洪, 迪力亚尔·莫合塔尔null, 侯晨. 高寒草地灌丛化对土壤团聚体生态化学计量学及酶活性的影响[J]. 草业学报, 2022, 31(1): 57-68. |
[6] | 唐立涛, 毛睿, 王长庭, 李洁, 胡雷, 字洪标. 氮磷添加对高寒草甸植物群落根系特征的影响[J]. 草业学报, 2021, 30(9): 105-116. |
[7] | 贺翔, 白梅梅, 徐长林, 宋美娟, 汪鹏斌, 鱼小军. 东祁连山小叶金露梅+杯腺柳灌丛草地植被和土壤对其自然恢复演替的响应[J]. 草业学报, 2021, 30(8): 12-24. |
[8] | 马英, 许志豪, 曾巧红, 孟建龙, 胡亚虎, 苏洁琼. 氮素添加对荒漠化草原草本植物养分化学计量特征的影响[J]. 草业学报, 2021, 30(6): 64-72. |
[9] | 孙忠超, 郭天斗, 于露, 马彦平, 赵亚楠, 李雪颖, 王红梅. 宁夏东部荒漠草原向灌丛地人为转变过程土壤粒径分形特征[J]. 草业学报, 2021, 30(4): 34-45. |
[10] | 张丽星, 海春兴, 常耀文, 高晓媚, 高文邦, 解云虎. 羊草及芨芨草草原和西北针茅草原土壤质量评价[J]. 草业学报, 2021, 30(4): 68-79. |
[11] | 张超, 闫瑞瑞, 梁庆伟, 娜日苏, 李彤, 杨秀芳, 包玉海, 辛晓平. 不同利用方式下草地土壤理化性质及碳、氮固持研究[J]. 草业学报, 2021, 30(4): 90-98. |
[12] | 刘帅楠, 李广, 吴江琪, 马维伟, 杨传杰, 张世康, 姚瑶, 陆燕花, 魏星星, 张娟. 黄土丘陵区不同土地类型下土壤养分特征—基于生态化学计量学[J]. 草业学报, 2021, 30(3): 200-207. |
[13] | 李洁, 潘攀, 王长庭, 胡雷, 陈科宇, 杨文高. 三江源区不同建植年限人工草地根系动态特征[J]. 草业学报, 2021, 30(3): 28-40. |
[14] | 刘斯莉, 王长庭, 张昌兵, 胡雷, 唐立涛, 潘攀. 川西北高原3种禾本科牧草根系特征比较研究[J]. 草业学报, 2021, 30(3): 41-53. |
[15] | 王桔红, 许泽璇, 陈文, 朱慧, 黄龙军, 李佳维. 不同入侵程度喜旱莲子草化学计量特征及其与共存种银花苋的比较[J]. 草业学报, 2021, 30(2): 115-123. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||