欢迎访问《草业学报》官方网站,今天是 分享到:

草业学报 ›› 2023, Vol. 32 ›› Issue (2): 119-130.DOI: 10.11686/cyxb2022044

• 研究论文 • 上一篇    

盐碱胁迫下外源硫化氢对裸燕麦叶片氨基酸代谢过程的影响

刘建新(), 刘瑞瑞, 刘秀丽, 欧晓彬, 贾海燕, 卜婷, 李娜   

  1. 甘肃省陇东生物资源保护利用与生态修复重点实验室,陇东学院生命科学与技术学院,甘肃 庆阳 745000
  • 收稿日期:2022-01-22 修回日期:2022-03-09 出版日期:2023-02-20 发布日期:2022-12-01
  • 通讯作者: 刘建新
  • 作者简介:E-mail: liujx1964@163.com
    刘建新(1964-),男,甘肃通渭人,本科,教授。E-mail: liujx1964@163.com
  • 基金资助:
    国家自然科学基金(31960375);甘肃省自然科学基金(20JR5RA491)

Effects of exogenous hydrogen sulfide on amino acid metabolism in naked oat leaves under saline-alkali stress

Jian-xin LIU(), Rui-rui LIU, Xiu-li LIU, Xiao-bin OU, Hai-yan JIA, Ting BU, Na LI   

  1. Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration,College of Life Sciences and Technology,Longdong University,Qingyang 745000,China
  • Received:2022-01-22 Revised:2022-03-09 Online:2023-02-20 Published:2022-12-01
  • Contact: Jian-xin LIU

摘要:

信号硫化氢缓解植物盐碱胁迫机理备受关注。为探讨外源硫化氢对盐碱胁迫下植物氨基酸代谢的调控机制,采用盆栽土培试验,以裸燕麦品种‘定莜9号’为材料,设置盆土不添加盐碱和添加3.00 g·kg-1盐碱(摩尔比NaCl︰Na2SO4︰Na2CO3︰NaHCO3=12︰8︰1︰9)与抽穗期叶面喷蒸馏水和喷50 μmol·L-1硫化氢供体硫氢化钠(NaHS)溶液,共4个处理。研究其对叶片中总氨基酸、丙二醛含量和籽粒产量的影响;运用液相色谱和质谱检测,采用主成分分析22种组成蛋白质的氨基酸中差异氨基酸,解析外源硫化氢对氨基酸代谢途径的调控效应。结果表明:在裸燕麦叶片中未检出高半胱氨酸。喷施NaHS溶液对盐碱胁迫下裸燕麦叶片中总氨基酸含量下降的缓解效应不显著,对盐碱胁迫诱导的丙二醛含量的升高和籽粒产量的下降有显著的缓解作用。主成分分析结果显示:盐碱胁迫下,喷施NaHS可显著下调裸燕麦叶片中α-酮戊二酸族的鸟氨酸和草酰乙酸族的天冬酰胺含量;显著上调α-酮戊二酸族的谷氨酰胺、脯氨酸、精氨酸和丙酮酸族的亮氨酸及芳香族的酪氨酸含量,对甘氨酸、丝氨酸(3-磷酸甘油酸族)、色氨酸、苯丙氨酸(芳香族)、丙氨酸、缬氨酸(丙酮酸族)、γ-氨基丁酸、组氨酸、谷氨酸(α-酮戊二酸族)、异亮氨酸、苏氨酸、甲硫氨酸、赖氨酸、天冬氨酸(草酰乙酸族)含量无显著影响。表明外源硫化氢参与盐碱胁迫下裸燕麦氨基酸代谢途径的调控,它能够缓解盐碱胁迫造成的氧化伤害和同化物积累抑制。

关键词: 盐碱胁迫, 硫化氢, 裸燕麦, 氨基酸代谢

Abstract:

The mechanism where by hydrogen sulfide alleviates saline-alkali stress in plants has attracted much attention. This experiment investigated the mechanisms underlying exogenous hydrogen sulfide effects on the amino acid metabolism of plants under saline-alkali stress in potted plants of the naked oat variety ‘Dingyou 9’ grown in soil. There were four treatments: a 2×2 factorial combination of no saline-alkali or 3.00 g·kg-1 saline-alkali (molar ratio NaCl∶Na2SO4∶Na2CO3∶NaHCO3=12∶8∶1∶9) added to the soil in the pot, and the leaves were sprayed with distilled water or 50 μmol·L-1 sodium hydrosulfide (a hydrogen sulfide donor, NaHS) solution at the heading stage. Effects of exogenous hydrogen sulfide on the total amino acid and malondialdehyde contents in leaves and on the grain yield of naked oats under the four treatments were studied. Liquid chromatography and mass spectrometry were used for chemical analysis, and data were analyzed by principal component analysis of levels of the 22 amino acids that make up the protein, in order to determine the regulatory effect of exogenous hydrogen sulfide on amino acid metabolic pathways. It was found that: homocysteine was not detected in the leaves of naked oat. There was no significant decrease in total amino acid content in naked oat leaves under saline-alkali stress as a result of spraying NaHS, but NaHS significantly alleviated the increase in malondialdehyde content in leaves and the decrease in grain yield induced by saline-alkali stress. The results of principal component analysis showed that under saline-alkali stress, spraying NaHS solution significantly down-regulated the contents of ornithine (α-ketoglutarate family) and asparagine (oxaloacetate family), and significantly up-regulated the contents of glutamine, proline, arginine (α-ketoglutarate family), leucine (pyruvate family), and tyrosine (aromatic family) in leaves, but had no significant effect on the contents of glycine, serine (3-phosphoglycerate family), tryptophan, phenylalanine acid (aromatic family), alanine, valine (pyruvate family), 4-aminobutyric acid, histidine, glutamic acid (α-ketoglutarate family), isoleucine, threonine, methionine, lysine and aspartic acid (oxaloacetic acid family). The above results indicate that exogenous hydrogen sulfide is involved in the regulation of amino acid metabolic pathways in naked oat under saline-alkali stress, and that NaHS can alleviate the oxidative damage and inhibition of assimilate accumulation caused by saline-alkali stress.

Key words: saline-alkali stress, hydrogen sulfide, naked oats, amino acid metabolism