草业学报 ›› 2023, Vol. 32 ›› Issue (3): 142-151.DOI: 10.11686/cyxb2022097
• 研究论文 • 上一篇
收稿日期:
2022-03-01
修回日期:
2022-04-20
出版日期:
2023-03-20
发布日期:
2022-12-30
通讯作者:
董瑞
作者简介:
E-mail: rdong@gzu.edu.cn基金资助:
Zheng TIAN(), Zheng-yu YANG, Zhong-jie LU, Ben LUO, Mao ZHANG, Rui DONG()
Received:
2022-03-01
Revised:
2022-04-20
Online:
2023-03-20
Published:
2022-12-30
Contact:
Rui DONG
摘要:
为了解紫花苜蓿在贵州地区的适应性及耐酸铝胁迫机理,以44份紫花苜蓿品种为研究对象,研究紫花苜蓿处于酸铝胁迫下的生理变化,并揭示其生理变化与耐酸铝胁迫间的关系。利用基因与环境互作模型对两个地点1年的紫花苜蓿进行产量分析,筛选出阿尔冈金、新疆大叶苜蓿、Trifecta、Vernal和中牧1号苜蓿5个耐酸铝强适应品种。利用敏感型UC-1465和耐受型阿尔冈金进行酸铝胁迫试验。结果表明:相同处理下,耐受型紫花苜蓿的电导率、相对铝含量、死亡率显著低于敏感型;紫花苜蓿对酸铝胁迫的响应主要通过柠檬酸、苹果酸、乙酸、酒石酸、反丁烯二酸和草酸的显著(P<0.05)增加来体现,其中苹果酸的合成和分泌增多可能是其耐酸铝胁迫的重要原因。
田政, 杨正禹, 陆忠杰, 罗奔, 张茂, 董瑞. 44个紫花苜蓿品种的酸铝适应性与耐受性评价[J]. 草业学报, 2023, 32(3): 142-151.
Zheng TIAN, Zheng-yu YANG, Zhong-jie LU, Ben LUO, Mao ZHANG, Rui DONG. Acid-aluminum adaptability and tolerance evaluation of 44 alfalfa cultivars[J]. Acta Prataculturae Sinica, 2023, 32(3): 142-151.
研究区 Research area | pH | 碱解氮 Available nitrogen (mg·kg-1) | 全氮 Total nitrogen (mg·kg-1) | 全钾 Total potassium (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 速效钾 Available potassium (mg·kg-1) | 有机碳 Organic carbon (g·kg-1) | 有效磷 Available phosphorus (mg·kg-1) | 有效铁 Available iron (mg·kg-1) | 有效铜 Effective copper (mg·kg-1) | 有效锌 Effective zinc (mg·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|---|
贵阳Guiyang | 5.84 | 33.23 | 655.00 | 26.13 | 0.76 | 293.33 | 5.68 | 4.74 | 34.77 | 1.04 | 1.34 |
石阡Shiqian | 6.14 | 11.55 | 847.72 | 16.15 | 0.73 | 184.62 | 14.07 | 0.18 | 75.81 | 3.48 | 1.21 |
表1 两个研究区土壤营养组成成分和pH值
Table 1 Soil physical and chemical properties in the two study areas
研究区 Research area | pH | 碱解氮 Available nitrogen (mg·kg-1) | 全氮 Total nitrogen (mg·kg-1) | 全钾 Total potassium (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 速效钾 Available potassium (mg·kg-1) | 有机碳 Organic carbon (g·kg-1) | 有效磷 Available phosphorus (mg·kg-1) | 有效铁 Available iron (mg·kg-1) | 有效铜 Effective copper (mg·kg-1) | 有效锌 Effective zinc (mg·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|---|
贵阳Guiyang | 5.84 | 33.23 | 655.00 | 26.13 | 0.76 | 293.33 | 5.68 | 4.74 | 34.77 | 1.04 | 1.34 |
石阡Shiqian | 6.14 | 11.55 | 847.72 | 16.15 | 0.73 | 184.62 | 14.07 | 0.18 | 75.81 | 3.48 | 1.21 |
编号 Serial number | 品种名 Variety name | 产地 Country | 编号 Serial number | 品种名 Variety name | 产地 Country |
---|---|---|---|---|---|
1 | Abi 700 | 美国United States | 23 | WL363HQ | 美国United States |
2 | Arc | 美国United States | 24 | 东苜1号Dongmu No. 1 | 中国China |
3 | Archer | 美国United States | 25 | 甘农3号Gannong No. 3 | 中国China |
4 | Boja | 波兰Poland | 26 | 甘农4号Gannong No. 4 | 中国China |
5 | CUF 101 | 美国United States | 27 | 甘农5号Gannong No. 5 | 中国China |
6 | 德宝 Derby | 英国United Kingdom | 28 | 甘农6号Gannong No. 6 | 中国China |
7 | Hunter River | 墨西哥Mexico | 29 | 甘农7号Gannong No. 7 | 中国China |
8 | Aurora | 危地马拉Guatemala | 30 | 公农2号Gongnong No. 2 | 中国China |
9 | Maverick | 美国United States | 31 | 皇冠Phabulous | 美国United States |
10 | Orca | 法国France | 32 | 陇东Longdong | 中国China |
11 | Ranger | 美国United States | 33 | 陇中Longzhong | 中国China |
12 | 三得利 Sanditi | 法国France | 34 | 天水Tianshui | 中国China |
13 | Saranac AR | 美国United States | 35 | 无棣Wudi | 中国China |
14 | Sutter | 美国United States | 36 | 新疆大叶Xinjiang daye | 中国China |
15 | Trifecta | 奥地利Austria | 37 | 新牧2号Xinmu No. 2 | 中国China |
16 | UC-1465 | 美国United States | 38 | 中兰1号Zhonglan No. 1 | 中国China |
17 | UC-1887 | 美国United States | 39 | 中苜1号Zhongmu No. 1 | 中国China |
18 | Vernal | 奥地利Austria | 40 | 中牧1号Zhongmu No. 1 | 中国China |
19 | WL168HQ | 美国United States | 41 | 甘农1号Gannong No. 1 | 中国China |
20 | WL319HQ | 美国United States | 42 | 甘农2号Gannong No. 2 | 中国China |
21 | WL343HQ | 美国United States | 43 | 图牧1号Tumu No. 1 | 中国China |
22 | WL354HQ | 美国United States | 44 | 阿尔冈金Algonquin | 中国China |
表2 紫花苜蓿品种信息
Table 2 Alfalfa species information
编号 Serial number | 品种名 Variety name | 产地 Country | 编号 Serial number | 品种名 Variety name | 产地 Country |
---|---|---|---|---|---|
1 | Abi 700 | 美国United States | 23 | WL363HQ | 美国United States |
2 | Arc | 美国United States | 24 | 东苜1号Dongmu No. 1 | 中国China |
3 | Archer | 美国United States | 25 | 甘农3号Gannong No. 3 | 中国China |
4 | Boja | 波兰Poland | 26 | 甘农4号Gannong No. 4 | 中国China |
5 | CUF 101 | 美国United States | 27 | 甘农5号Gannong No. 5 | 中国China |
6 | 德宝 Derby | 英国United Kingdom | 28 | 甘农6号Gannong No. 6 | 中国China |
7 | Hunter River | 墨西哥Mexico | 29 | 甘农7号Gannong No. 7 | 中国China |
8 | Aurora | 危地马拉Guatemala | 30 | 公农2号Gongnong No. 2 | 中国China |
9 | Maverick | 美国United States | 31 | 皇冠Phabulous | 美国United States |
10 | Orca | 法国France | 32 | 陇东Longdong | 中国China |
11 | Ranger | 美国United States | 33 | 陇中Longzhong | 中国China |
12 | 三得利 Sanditi | 法国France | 34 | 天水Tianshui | 中国China |
13 | Saranac AR | 美国United States | 35 | 无棣Wudi | 中国China |
14 | Sutter | 美国United States | 36 | 新疆大叶Xinjiang daye | 中国China |
15 | Trifecta | 奥地利Austria | 37 | 新牧2号Xinmu No. 2 | 中国China |
16 | UC-1465 | 美国United States | 38 | 中兰1号Zhonglan No. 1 | 中国China |
17 | UC-1887 | 美国United States | 39 | 中苜1号Zhongmu No. 1 | 中国China |
18 | Vernal | 奥地利Austria | 40 | 中牧1号Zhongmu No. 1 | 中国China |
19 | WL168HQ | 美国United States | 41 | 甘农1号Gannong No. 1 | 中国China |
20 | WL319HQ | 美国United States | 42 | 甘农2号Gannong No. 2 | 中国China |
21 | WL343HQ | 美国United States | 43 | 图牧1号Tumu No. 1 | 中国China |
22 | WL354HQ | 美国United States | 44 | 阿尔冈金Algonquin | 中国China |
品种Germplasm | 贵阳Guiyang | 石阡Shiqian | 品种Germplasm | 贵阳Guiyang | 石阡Shiqian |
---|---|---|---|---|---|
Abi 700 | 320.01±95.82bcdefg | 255.80±64.53cdefg | WL363HQ | 653.38±564.43a | 250.79±81.16cdefg |
Arc | 302.47±102.33bcdefg | 242.60±79.44cdefg | 东苜1号Dongmu No. 1 | 202.40±50.38fg | 171.19±37.62fg |
Archer | 497.17±190.25abcde | 244.79±13.49cdefg | 甘农3号Gannong No. 3 | 358.52±154.96bcdefg | 297.88±91.18bcdefg |
Boja | 542.40±119.56abc | 310.34±43.68bcdefg | 甘农4号Gannong No. 4 | 312.82±106.19bcdefg | 318.14±130.18bcdef |
CUF 101 | 323.86±135.61bcdefg | 162.25±27.74fg | 甘农5号Gannong No. 5 | 213.85±66.25efg | 215.77±109.70defg |
德宝Derby | 312.48±131.80bcdefg | 248.92±37.84cdefg | 甘农6号Gannong No. 6 | 200.54±35.58fg | 217.83±53.13defg |
Hunter River | 316.43±140.97bcdefg | 285.95±139.49bcdefg | 甘农7号Gannong No. 7 | 333.12±224.15bcdefg | 224.5±25.81cdefg |
Aurora | 363.51±158.21bcdefg | 229.98±119.94cdefg | 公农2号Gongnong No. 2 | 256.21±72.78cdefg | 305.78±166.23bcdefg |
Maverick | 197.17±75.65fg | 197.84±103.63defg | 皇冠Phabulous | 360.73±78.59bcdefg | 341.11±105.01abcde |
Orca | 153.22±44.00fg | 240.32±21.13cdefg | 陇东Longdong | 173.73±45.48fg | 168.28±89.88fg |
Ranger | 506.51±79.07abcd | 240.49±13.29cdefg | 陇中Longzhong | 383.56±133.14abcdef | 161.55±34.42fg |
三得利Sanditi | 190.76±10.46fg | 265.27±45.46cdefg | 天水Tianshui | 259.03±106.22cdefg | 224.34±52.02cdefg |
Saranac AR | 283.33±63.41bcdefg | 188.23±9.01efg | 无棣Wudi | 236.63±79.72defg | 237.59±70.70cdefg |
Sutter | 340.65±88.37bcdefg | 312.95±99.71bcdef | 新疆大叶Xinjiang daye | 424.21±206.9abcdef | 378.21±60.32abc |
Trifecta | 522.56±45.09abcd | 429.94±74.83ab | 新牧2号Xinmu No. 2 | 329.43±154.57bcdefg | 256.83±41.31cdefg |
UC-1465 | 84.31±53.91g | 150.97±57.17g | 中兰1号Zhonglan No. 1 | 192.54±27.31fg | 268.15±97.20cdefg |
UC-1887 | 279.29±74.21bcdefg | 201.96±41.10defg | 中苜1号Zhongmu No. 1 | 240.05±66.29defg | 167.90±52.59fg |
Vernal | 418.49±147.06abcdef | 350.40±31.95abcd | 中牧1号Zhongmu No. 1 | 249.72±166.26defg | 351.74±31.64abcd |
WL168HQ | 298.74±156.44bcdefg | 195.23±67.18defg | 甘农1号Gannong No. 1 | 270.86±228.12cdefg | 295.00±159.21bcdefg |
WL319HQ | 348.54±98.86bcdefg | 222.56±31.19cdefg | 甘农2号Gannong No. 2 | 199.08±18.78fg | 235.80±26.59cdefg |
WL343HQ | 393.03±59.76abcdef | 221.61±109.10cdefg | 图牧1号Tumu No. 1 | 350.38±128.24bcdefg | 260.49±52.36cdefg |
WL354HQ | 544.17±76.47abc | 306.68±18.89bcdefg | 阿尔冈金Algonquin | 564.15±145.08ab | 464.91±123.14a |
表 3 44份紫花苜蓿品种干重方差分析
Table 3 Analysis of variance of dry weight of 44 alfalfa varieties (g·plant-1·a-1)
品种Germplasm | 贵阳Guiyang | 石阡Shiqian | 品种Germplasm | 贵阳Guiyang | 石阡Shiqian |
---|---|---|---|---|---|
Abi 700 | 320.01±95.82bcdefg | 255.80±64.53cdefg | WL363HQ | 653.38±564.43a | 250.79±81.16cdefg |
Arc | 302.47±102.33bcdefg | 242.60±79.44cdefg | 东苜1号Dongmu No. 1 | 202.40±50.38fg | 171.19±37.62fg |
Archer | 497.17±190.25abcde | 244.79±13.49cdefg | 甘农3号Gannong No. 3 | 358.52±154.96bcdefg | 297.88±91.18bcdefg |
Boja | 542.40±119.56abc | 310.34±43.68bcdefg | 甘农4号Gannong No. 4 | 312.82±106.19bcdefg | 318.14±130.18bcdef |
CUF 101 | 323.86±135.61bcdefg | 162.25±27.74fg | 甘农5号Gannong No. 5 | 213.85±66.25efg | 215.77±109.70defg |
德宝Derby | 312.48±131.80bcdefg | 248.92±37.84cdefg | 甘农6号Gannong No. 6 | 200.54±35.58fg | 217.83±53.13defg |
Hunter River | 316.43±140.97bcdefg | 285.95±139.49bcdefg | 甘农7号Gannong No. 7 | 333.12±224.15bcdefg | 224.5±25.81cdefg |
Aurora | 363.51±158.21bcdefg | 229.98±119.94cdefg | 公农2号Gongnong No. 2 | 256.21±72.78cdefg | 305.78±166.23bcdefg |
Maverick | 197.17±75.65fg | 197.84±103.63defg | 皇冠Phabulous | 360.73±78.59bcdefg | 341.11±105.01abcde |
Orca | 153.22±44.00fg | 240.32±21.13cdefg | 陇东Longdong | 173.73±45.48fg | 168.28±89.88fg |
Ranger | 506.51±79.07abcd | 240.49±13.29cdefg | 陇中Longzhong | 383.56±133.14abcdef | 161.55±34.42fg |
三得利Sanditi | 190.76±10.46fg | 265.27±45.46cdefg | 天水Tianshui | 259.03±106.22cdefg | 224.34±52.02cdefg |
Saranac AR | 283.33±63.41bcdefg | 188.23±9.01efg | 无棣Wudi | 236.63±79.72defg | 237.59±70.70cdefg |
Sutter | 340.65±88.37bcdefg | 312.95±99.71bcdef | 新疆大叶Xinjiang daye | 424.21±206.9abcdef | 378.21±60.32abc |
Trifecta | 522.56±45.09abcd | 429.94±74.83ab | 新牧2号Xinmu No. 2 | 329.43±154.57bcdefg | 256.83±41.31cdefg |
UC-1465 | 84.31±53.91g | 150.97±57.17g | 中兰1号Zhonglan No. 1 | 192.54±27.31fg | 268.15±97.20cdefg |
UC-1887 | 279.29±74.21bcdefg | 201.96±41.10defg | 中苜1号Zhongmu No. 1 | 240.05±66.29defg | 167.90±52.59fg |
Vernal | 418.49±147.06abcdef | 350.40±31.95abcd | 中牧1号Zhongmu No. 1 | 249.72±166.26defg | 351.74±31.64abcd |
WL168HQ | 298.74±156.44bcdefg | 195.23±67.18defg | 甘农1号Gannong No. 1 | 270.86±228.12cdefg | 295.00±159.21bcdefg |
WL319HQ | 348.54±98.86bcdefg | 222.56±31.19cdefg | 甘农2号Gannong No. 2 | 199.08±18.78fg | 235.80±26.59cdefg |
WL343HQ | 393.03±59.76abcdef | 221.61±109.10cdefg | 图牧1号Tumu No. 1 | 350.38±128.24bcdefg | 260.49±52.36cdefg |
WL354HQ | 544.17±76.47abc | 306.68±18.89bcdefg | 阿尔冈金Algonquin | 564.15±145.08ab | 464.91±123.14a |
排名Rank | 品种 Germplasm | 排名Rank | 品种 Germplasm | 排名Rank | 品种 Germplasm | 排名Rank | 品种 Germplasm |
---|---|---|---|---|---|---|---|
1 | 阿尔冈金Algonquin | 12 | 甘农1号Gannong No. 1 | 23 | 甘农4号Gannong No. 4 | 34 | 公农2号Gongnong No. 2 |
2 | 新疆大叶Xinjiang daye | 13 | 新牧2号Xinmu No. 2 | 24 | WL319HQ | 35 | UC-1887 |
3 | Trifecta | 14 | Ranger | 25 | 甘农6号Gannong No. 6 | 36 | 甘农5号Gannong No. 5 |
4 | Vernal | 15 | 德宝Derby | 26 | 三得利Sanditi | 37 | Saranac AR |
5 | 中牧1号Zhongmu No. 1 | 16 | 中兰1号Zhonglan No. 1 | 27 | Arc | 38 | Maverick |
6 | 皇冠Phabulous | 17 | Archer | 28 | Orca | 39 | 中苜1号Zhongmu No. 1 |
7 | Sutter | 18 | 甘农2号Gannong No. 2 | 29 | 甘农7号Gannong No. 7 | 40 | 陇中Longzhong |
8 | WL354HQ | 19 | 无棣Wudi | 30 | 天水Tianshui | 41 | 东苜1号Dongmu No. 1 |
9 | Hunter River | 20 | WL363HQ | 31 | 甘农3号Gannong No. 3 | 42 | 陇东Longdong |
10 | Boja | 21 | Abi 700 | 32 | Aurora | 43 | CUF 101 |
11 | 图牧1号Tumu No. 1 | 22 | WL343HQ | 33 | WL168HQ | 44 | UC-1465 |
表4 44份紫花苜蓿田间试验综合排名
Table 4 Comprehensive ranking of 44 alfalfa field trials
排名Rank | 品种 Germplasm | 排名Rank | 品种 Germplasm | 排名Rank | 品种 Germplasm | 排名Rank | 品种 Germplasm |
---|---|---|---|---|---|---|---|
1 | 阿尔冈金Algonquin | 12 | 甘农1号Gannong No. 1 | 23 | 甘农4号Gannong No. 4 | 34 | 公农2号Gongnong No. 2 |
2 | 新疆大叶Xinjiang daye | 13 | 新牧2号Xinmu No. 2 | 24 | WL319HQ | 35 | UC-1887 |
3 | Trifecta | 14 | Ranger | 25 | 甘农6号Gannong No. 6 | 36 | 甘农5号Gannong No. 5 |
4 | Vernal | 15 | 德宝Derby | 26 | 三得利Sanditi | 37 | Saranac AR |
5 | 中牧1号Zhongmu No. 1 | 16 | 中兰1号Zhonglan No. 1 | 27 | Arc | 38 | Maverick |
6 | 皇冠Phabulous | 17 | Archer | 28 | Orca | 39 | 中苜1号Zhongmu No. 1 |
7 | Sutter | 18 | 甘农2号Gannong No. 2 | 29 | 甘农7号Gannong No. 7 | 40 | 陇中Longzhong |
8 | WL354HQ | 19 | 无棣Wudi | 30 | 天水Tianshui | 41 | 东苜1号Dongmu No. 1 |
9 | Hunter River | 20 | WL363HQ | 31 | 甘农3号Gannong No. 3 | 42 | 陇东Longdong |
10 | Boja | 21 | Abi 700 | 32 | Aurora | 43 | CUF 101 |
11 | 图牧1号Tumu No. 1 | 22 | WL343HQ | 33 | WL168HQ | 44 | UC-1465 |
图1 铝胁迫对紫花苜蓿相对电导率和存活率的影响大写字母代表不同铝浓度胁迫间的差异性(P<0.05);小写字母代表不同品种间的差异性(P<0.05)。下同。The capital letters represent the differences (P<0.05) among different aluminum concentration stress; The lowercase letters represent the differences (P<0.05) among different varieties. The same below.
Fig.1 Effect of Al stress on the relative conductivity and survival rate of alfalfa
图2 紫花苜蓿铝胁迫前后根尖细胞活力及结构Ⅰ:荧光强度,标尺0.2 mm Fluorescence intensity, ruler 0.2 mm;Ⅱ:根尖横截面结构,标尺50 μm Root cross-sectional structure, ruler 50 μm.
Fig.2 Cell changes of alfalfa before and after Al stress
1 | Von Uexküll H R, Mutert E. Global extent, development and economic impact of acid soils. Plant and Soil, 1995, 171(1): 1-15. |
2 | Huang C Q, Chen Z, Liu G D, et al. The physiological response of the warm-season turfgrass Cynodon dactylon accessions to acidity and aluminum stress. Acta Agrestia Sinica, 2017, 25(4): 796-802. |
黄春琼, 陈振, 刘国道, 等. 暖季型草坪草狗牙根对酸铝胁迫的生理响应. 草地学报, 2017, 25(4): 796-802. | |
3 | Horst W J, Wang Y, Eticha D. The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: A review. Annals of Botany, 2010, 106(1): 185-197. |
4 | Kinraide T B. Identity of the rhizotoxic aluminium species//Plant-soil interactions at low pH. Dordrecht: Springer Netherlands, 1991: 717-728. |
5 | Čiamporová M. Diverse responses of root cell structure to aluminium stress. Plant and Soil, 2000, 226(1): 113-116. |
6 | Čiamporová M. Morphological and structural responses of plant roots to aluminium at organ, tissue, and cellular levels. Biologia Plantarum, 2002, 45(2): 161-171. |
7 | Zhang X H, Zhang Z, Xu N, et al. Effects of growth traits and grass yield of alfalfa in different sowing dates. Chinese Agricultural Science Bulletin, 2011, 27(14): 27-30. |
张晓华, 张众, 徐娜, 等. 不同播期对紫花苜蓿生长性状及草产量的影响. 中国农学通报, 2011, 27(14): 27-30. | |
8 | Cao H, Ma S F, Han Y, et al. Introduction and selection of 5 alfalfa cultivars in Longdong Region. Pratacultural Science, 2014, 31(9): 1761-1766. |
曹宏, 马生发, 韩雍, 等. 5个紫花苜蓿品种在陇东地区的引进筛选试验. 草业科学, 2014, 31(9): 1761-1766. | |
9 | Zhang B Y. Function and expression regulation aluminum-responsive genes MsMATE and MsSTOP1 in Medicago sativa. Chongqing: Chongqing University, 2017. |
张宝云. 紫花苜蓿铝胁迫响应基因MsMATE与MsSTOP1的功能与表达调控研究. 重庆: 重庆大学, 2017. | |
10 | Ren X Y. Effects of aluminum toxicity on the growth and IAA distribution in alfalfa. Shanghai: Shanghai Jiao Tong University, 2013. |
任晓燕. 铝毒对紫花苜蓿幼苗生长和IAA分布的影响. 上海: 上海交通大学, 2013. | |
11 | Jiang N, Tang M, Han B, et al. Effects of aluminum stress on different germplasm materials of alfalfa and its comprehensive evaluation. Acta Agrestia Sinica, 2019, 27(3): 620-627. |
姜娜, 唐敏, 韩博, 等. 铝胁迫对紫花苜蓿不同种质材料的影响及综合评价. 草地学报, 2019, 27(3): 620-627. | |
12 | Ma J F, Ryan P R, Delhaize E. Aluminium tolerance in plants and the complexing role of organic acids. Trends in Plant Science, 2001, 6(6): 273-278. |
13 | Barone P, Rosellini D, LaFayette P, et al. Bacterial citrate synthase expression and soil aluminum tolerance in transgenic alfalfa. Plant Cell Reports, 2008, 27(5): 893-901. |
14 | Sun G, Zhu H, Wen S, et al. Citrate synthesis and exudation confer Al resistance in alfalfa (Medicago sativa L.). Plant and Soil, 2020, 449(1): 319-329. |
15 | Chen A K, Han R H, Li D Y, et al. A comparison of two methods for electrical conductivity about plant leaves. Journal of Guangdong Education Institute, 2010, 30(5): 88-91. |
陈爱葵, 韩瑞宏, 李东洋, 等. 植物叶片相对电导率测定方法比较研究. 广东教育学院学报, 2010, 30(5): 88-91. | |
16 | Wang Y M, Zhang L L, Zhang X W, et al. Comparative study on three pretreatment methods for atomic absorptive spectrophotometry determination of metal elements in Lycium barbarum. Spectroscopy and Spectral Analysis, 2017, 37(3): 914-918. |
王益民, 张莉莉, 张筱文, 等. 原子吸收法测定枸杞子矿物质元素的三种前处理方法比较. 光谱学与光谱分析, 2017, 37(3): 914-918. | |
17 | Li W Y, Gu W C. Study on phenotypic diversity of natural population in Quercus mongolica. Scientia Silvae Sinicae, 2005(1): 49-56. |
李文英, 顾万春. 蒙古栎天然群体表型多样性研究. 林业科学, 2005(1): 49-56. | |
18 | Liu M X. The primary study of the production performance and ecological adaptation of twelve introduced alfalfa varieties in the heat-humid areas of southwest in Sichuan Province. Ya’an: Sichuan Agricultural University, 2005. |
刘明秀. 12个紫花苜蓿品种在川西南湿热区的生产性能及生态适应性初步研究. 雅安: 四川农业大学, 2005. | |
19 | Mo B T, Zhang J B, Zhang W, et al. Adaptability of 48 introduced Medicago sativa varieties in southern of Guizhou Province. Guizhou Agricultural Sciences, 2010, 38(9): 155-159. |
莫本田, 张建波, 张文, 等. 48个紫花苜蓿品种在贵州南部的适应性研究. 贵州农业科学, 2010, 38(9): 155-159. | |
20 | Liu H Y. The evaluation of production performance and adaptability to 49 kinds of alfalfa in Xilinhot. Hohhot: Inner Mongolia University, 2017. |
柳海鹰. 锡林浩特地区49个苜蓿品种的适应性及生产性能评价. 呼和浩特: 内蒙古大学, 2017. | |
21 | Wang Y Q, Wu X M, Liu J N, et al. The evaluation of salt tolerance at seeding stage alfalfa for introduced. Prataculture and Animal Husbandry, 2009, 29(3): 22-28. |
王运琦, 吴欣明, 刘建宁, 等. 引进紫花苜蓿耐盐性的评价. 草业与畜牧, 2009, 29(3): 22-28. | |
22 | Tamás L, Huttová J, Mistrík I, et al. Aluminium-induced drought and oxidative stress in barley roots. Journal of Plant Physiology, 2006, 163(7): 781-784. |
23 | Silva I R, Smyth T J, Raper C D, et al. Differential aluminum tolerance in soybean: An evaluation of the role of organic acids. Physiologia Plantarum, 2001, 112(2): 200-210. |
24 | Fan K Z, Zhu M Y, Chen L, et al. Comparison of four alfalfa varieties’ several physiological items change in reagents of the acid, alkali and salt. Guihaia, 2012, 32(4): 516-521. |
范可章, 朱茂英, 陈灵, 等. 酸、碱、盐胁迫下4种紫花苜蓿几项生理指标变化的比较研究. 广西植物, 2012, 32(4): 516-521. | |
25 | Chen T X. Study on salt tolerance at different growth periods in fall dormancy standard varieties of alfalfa (Medicago sativa). Beijing: Beijing Forestry University, 2009. |
陈托兄. 不同生育时期紫花苜蓿秋眠型标准品种耐盐机制研究. 北京: 北京林业大学, 2009. | |
26 | Liao H, Wan H, Shaff J, et al. Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance. Exudation of specific organic acids from different regions of the intact root system. Plant Physiology, 2006, 141(2): 674-684. |
27 | Zhao K, Zhou B H, Ma W Z, et al. The influence of different environmental stresses on root-exuded organic acids: A review. Soils, 2016, 48(2): 235-240. |
赵宽, 周葆华, 马万征, 等. 不同环境胁迫对根系分泌有机酸的影响研究进展. 土壤, 2016, 48(2): 235-240. | |
28 | Delhaize E, Craig S, Beaton C D, et al. Aluminum tolerance in wheat (Triticum aestivum L.) (I. Uptake and distribution of aluminum in root apices). Plant Physiology, 1993, 103(3): 685-693. |
29 | Hoekenga O A, Vision T J, Shaff J E, et al. Identification and characterization of aluminum tolerance loci in Arabidopsis (Landsberg erecta× Columbia) by quantitative trait locus mapping. A physiologically simple but genetically complex trait. Plant Physiology, 2003, 132(2): 936-948. |
30 | Miyasaka S C, Buta J G, Howell R K, et al. Mechanism of aluminum tolerance in snapbeans: Root exudation of citric acid. Plant Physiology, 1991, 96(3): 737-743. |
31 | Ling G Z, Shi B F, Huang Y L, et al. Secretion of organic acid anions and potassium from root apices under Al stress in Secale cereale L. Plant Nutrition and Fertilizer Science, 2010, 16(4): 893-898. |
32 | Yang L T, Jiang H X, Tang N, et al. Mechanisms of aluminum-tolerance in two species of citrus: Secretion of organic acid anions and immobilization of aluminum by phosphorus in roots. Plant Science, 2011, 180(3): 521-530. |
33 | Takashi I, Tsuyoshi O, Li D H, et al. Effect of aluminum on metabolism of organic acids and chemical forms of aluminum in root tips of Eucalyptus camaldulensis Dehnh. Phytochemistry, 2013, 96: 142-147. |
34 | Wu X, Li R, Shi J, et al. Brassica oleracea MATE encodes a citrate transporter and enhances aluminum tolerance in Arabidopsis thaliana. Plant and Cell Physiology, 2014, 55(8): 1426-1436. |
35 | Dai H, Zhao J, Ahmed I M, et al. Differences in physiological features associated with aluminum tolerance in Tibetan wild and cultivated barleys. Plant Physiology and Biochemistry, 2014, 75: 36-44. |
36 | Liu J, Luo X, Shaff J, et al. A promoter-swap strategy between the AtALMT and AtMATE genes increased Arabidopsis aluminum resistance and improved carbon-use efficiency for aluminum resistance. The Plant Journal, 2012, 71(2): 327-337. |
37 | Yang T Y, Qi Y P, Huang H Y, et al. Interactive effects of pH and aluminum on the secretion of organic acid anions by roots and related metabolic factors in Citrus sinensis roots and leaves. Environmental Pollution, 2020, 262: 114303. |
[1] | 王园, 王晶, 李淑霞. 紫花苜蓿MsBBX24基因的克隆及耐盐性分析[J]. 草业学报, 2023, 32(3): 107-117. |
[2] | 王晓龙, 杨曌, 来永才, 李红, 钟鹏, 徐艳霞, 柴华, 李莎莎, 吴玥, 宋敏超, 周景明. 不同秋眠等级苜蓿根系性状对越冬的影响[J]. 草业学报, 2023, 32(1): 144-153. |
[3] | 孙延亮, 赵俊威, 刘选帅, 李生仪, 马春晖, 王旭哲, 张前兵. 施氮对苜蓿初花期光合日变化、叶片形态及干物质产量的影响[J]. 草业学报, 2022, 31(9): 63-75. |
[4] | 王星, 黄薇, 余淑艳, 李小云, 高雪芹, 伏兵哲. 宁夏地区地下滴灌水肥耦合对紫花苜蓿种子产量及构成因素的影响[J]. 草业学报, 2022, 31(9): 76-85. |
[5] | 付东青, 贾春英, 张力, 张凡凡, 马春晖. 南疆干旱灌溉区青贮玉米农艺性状和发酵品质动态分析及评价[J]. 草业学报, 2022, 31(8): 111-125. |
[6] | 赵建涛, 岳亚飞, 张前兵, 马春晖. 不同秋眠级紫花苜蓿品种抗寒性对新疆北疆地区覆雪厚度的响应[J]. 草业学报, 2022, 31(8): 24-34. |
[7] | 刘彩婷, 毛丽萍, 阿依谢木, 于应文, 沈禹颖. 紫花苜蓿与垂穗披碱草混播比例对其抗寒生长生理特征的影响[J]. 草业学报, 2022, 31(7): 133-143. |
[8] | 王雪萌, 何欣, 张涵, 宋瑞, 毛培胜, 贾善刚. 基于多光谱成像技术快速无损检测紫花苜蓿人工老化种子[J]. 草业学报, 2022, 31(7): 197-208. |
[9] | 李满有, 李东宁, 王斌, 李小云, 沈笑天, 曹立娟, 倪旺, 王腾飞, 兰剑. 不同苜蓿品种混播和播种量对牧草产量及品质的影响[J]. 草业学报, 2022, 31(5): 61-75. |
[10] | 孙洪仁, 王显国, 卜耀军, 乔楠, 任波. 黄土高原紫花苜蓿土壤氮素丰缺指标和推荐施氮量初步研究[J]. 草业学报, 2022, 31(4): 32-42. |
[11] | 高丽敏, 陈春, 沈益新. 氮磷肥对季节性栽培紫花苜蓿生长及再生的影响[J]. 草业学报, 2022, 31(4): 43-52. |
[12] | 撖冬荣, 姚拓, 李海云, 陈敏豪, 高亚敏, 李昌宁, 白洁, 苏明. 化肥减量配施微生物肥料对垂穗披碱草生长的影响[J]. 草业学报, 2022, 31(4): 53-61. |
[13] | 欧成明, 赵美琦, 孙铭, 毛培胜. 抗坏血酸和水杨酸丸衣对NaCl胁迫下紫花苜蓿种子发芽特性的影响[J]. 草业学报, 2022, 31(4): 93-101. |
[14] | 童长春, 刘晓静, 吴勇, 赵雅姣, 王静. 内源异黄酮对紫花苜蓿结瘤固氮及氮效率的调控研究[J]. 草业学报, 2022, 31(3): 124-135. |
[15] | 撖冬荣, 姚拓, 李海云, 黄书超, 杨琰珊, 高亚敏, 李昌宁, 张银翠. 微生物肥料与化肥减量配施对多年生黑麦草生长的影响[J]. 草业学报, 2022, 31(3): 136-143. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||