草业学报 ›› 2025, Vol. 34 ›› Issue (7): 171-184.DOI: 10.11686/cyxb2024339
• 研究论文 • 上一篇
李慧玲1(
), 朱永兴1, 陈檬2, 刘姝3, 王娇1, 刘奕清1, 张雪梅1(
), 马慧慧1(
)
收稿日期:2024-09-02
修回日期:2024-10-21
出版日期:2025-07-20
发布日期:2025-05-12
通讯作者:
张雪梅,马慧慧
作者简介:1664456670@qq.com基金资助:
Hui-ling LI1(
), Yong-xing ZHU1, Meng CHEN2, Shu LIU3, Jiao WANG1, Yi-qing LIU1, Xue-mei ZHANG1(
), Hui-hui MA1(
)
Received:2024-09-02
Revised:2024-10-21
Online:2025-07-20
Published:2025-05-12
Contact:
Xue-mei ZHANG,Hui-hui MA
摘要:
为了明确菊芋幼苗对干旱胁迫和复水的响应机制,探究干旱胁迫及恢复浇水处理后对菊芋幼苗生长、生理特性的影响。本研究以‘青芋’菊芋幼苗为材料,在盆栽试验条件下,设置对照处理(CK)、干旱胁迫处理(DS)、复水期间对照处理(RCK)、复水处理(RW),测定干旱胁迫7、14、21、28 d以及复水7、14 d菊芋幼苗的生长形态(总根长、根系投影面积、根系表面积、根系平均直径、根尖数)和生理指标(光合作用参数、光合色素含量、叶绿素荧光参数、水分含量、渗透调节物质、抗氧化酶活性、糖类物质含量、脯氨酸代谢酶活性)。结果表明,干旱胁迫显著抑制菊芋的生长,复水管理能恢复菊芋的正常生长。与干旱胁迫相比,RW处理根系总长度、根系表面积、根系投影面积、平均直径和根尖数显著增加了18.18%、54.36%、30.35%、34.51%和83.29%,叶绿素a(Chl a)和叶绿素a+b(Chl a+Chl b)含量分别显著提高19.51%和19.42%,实际光量子效率(ΦPSII)和光化学淬灭系数(qP)显著上升了13.64%和2.99%;自由水含量和相对含水量显著增加1250.00%和1.34%,束缚水含量和总含水量上升12.84%和8.99%。复水处理后菊芋幼苗的吸水能力得到恢复,保证植株正常生长;与RCK处理相比,RW处理气孔导度(Gs)、蒸腾速率(Tr)和胞间CO2浓度(Ci)显著提高了90.27%、52.24%和44.75%,在第7天时过氧化物酶(POD)活性、蔗糖、果糖和葡萄糖含量上升,超氧化物歧化酶(SOD)活性、过氧化氢酶(CAT)活性、脯氨酸、可溶性蛋白含量降低,而脯氨酸合成途径的Δ1-吡咯啉-5-羧酸合成酶(P5CS)活性和脯氨酸脱氢酶(PDH)活性提高,促进脯氨酸分解,使得菊芋幼苗体内达到渗透平衡,维持细胞的正常膨压。该研究结果可为推广菊芋节水栽培技术的实践应用提供理论依据和参考。
李慧玲, 朱永兴, 陈檬, 刘姝, 王娇, 刘奕清, 张雪梅, 马慧慧. 干旱胁迫与复水对菊芋幼苗的生长及生理特性的影响[J]. 草业学报, 2025, 34(7): 171-184.
Hui-ling LI, Yong-xing ZHU, Meng CHEN, Shu LIU, Jiao WANG, Yi-qing LIU, Xue-mei ZHANG, Hui-hui MA. Effects of drought stress and re-watering on the growth and physiological characteristics of Helianthus tuberosus seedlings[J]. Acta Prataculturae Sinica, 2025, 34(7): 171-184.
图1 干旱胁迫和复水后菊芋幼苗植株和根系表型A, E: CK处理下的植株和根系Plants and roots under CK treatment; B, F: DS处理下的植株和根系Plants and roots under DS treatment; C, G: RCK处理下的植株和根系Plants and roots under RCK treatment; D, H: RW处理下的植株和根系Plants and roots under RW treatment.
Fig.1 Plant and root phenotypes of H. tuberosus seedlings under drought stress and re-watering
处理 Treatments | 总根长 Total root length (cm) | 根系投影面积 Root projection area (cm2) | 根系表面积 Root surface area (cm2) | 平均直径 Average diameter of root (mm) | 根尖数 Number of root tips |
|---|---|---|---|---|---|
| CK | 712.43±32.93a | 74.00±4.27b | 234.39±12.46b | 1.43±0.19b | 330.00±20.05b |
| DS | 454.37±24.82c | 55.32±3.16c | 173.79±9.94c | 1.13±0.05c | 207.50±22.91c |
| RCK | 757.44±25.42a | 100.44±1.36a | 318.15±5.02a | 1.76±0.02a | 540.00±30.82a |
| RW | 536.98±16.42b | 72.11±1.60b | 268.26±24.59b | 1.52±0.03b | 380.33±12.66b |
表1 干旱胁迫和复水对菊芋幼苗根系生长的影响
Table 1 Effects of drought stress and re-watering on the root growth of H. tuberosus seedlings
处理 Treatments | 总根长 Total root length (cm) | 根系投影面积 Root projection area (cm2) | 根系表面积 Root surface area (cm2) | 平均直径 Average diameter of root (mm) | 根尖数 Number of root tips |
|---|---|---|---|---|---|
| CK | 712.43±32.93a | 74.00±4.27b | 234.39±12.46b | 1.43±0.19b | 330.00±20.05b |
| DS | 454.37±24.82c | 55.32±3.16c | 173.79±9.94c | 1.13±0.05c | 207.50±22.91c |
| RCK | 757.44±25.42a | 100.44±1.36a | 318.15±5.02a | 1.76±0.02a | 540.00±30.82a |
| RW | 536.98±16.42b | 72.11±1.60b | 268.26±24.59b | 1.52±0.03b | 380.33±12.66b |
处理 Treatment | 净光合速率 Net photosynthetic rate (Pn, μmol·m-2·s-1) | 气孔导度 Stomatal conductance (Gs, mmol·m-2·s-1) | 蒸腾速率 Transpiration rate (Tr, mmol·m-2·s-1) | 胞间CO2浓度 Intercellular CO2 concentration (Ci, μmol·mol-1) |
|---|---|---|---|---|
| CK | 7.54±0.08a | 253.37±9.40a | 4.69±1.07a | 366.67±8.99a |
| DS | 3.39±0.15c | 195.87±4.48b | 4.26±0.17b | 328.00±1.41a |
| RCK | 7.60±0.19a | 51.70±4.81d | 1.34±0.17c | 219.00±35.22b |
| RW | 3.88±0.02b | 98.37±0.78c | 2.04±0.28b | 317.00±27.94a |
表2 干旱胁迫和复水后菊芋幼苗叶片光合参数
Table 2 Photosynthetic parameters of H. tuberosus seedling leaves under drought stress and re-watering
处理 Treatment | 净光合速率 Net photosynthetic rate (Pn, μmol·m-2·s-1) | 气孔导度 Stomatal conductance (Gs, mmol·m-2·s-1) | 蒸腾速率 Transpiration rate (Tr, mmol·m-2·s-1) | 胞间CO2浓度 Intercellular CO2 concentration (Ci, μmol·mol-1) |
|---|---|---|---|---|
| CK | 7.54±0.08a | 253.37±9.40a | 4.69±1.07a | 366.67±8.99a |
| DS | 3.39±0.15c | 195.87±4.48b | 4.26±0.17b | 328.00±1.41a |
| RCK | 7.60±0.19a | 51.70±4.81d | 1.34±0.17c | 219.00±35.22b |
| RW | 3.88±0.02b | 98.37±0.78c | 2.04±0.28b | 317.00±27.94a |
处理 Treatments | 叶绿素a Chlorophyll a (Chl a) | 叶绿素b Chlorophyll b (Chl b) | 叶绿素a+b Chlorophyll (a+b) (Chl a+b) | 类胡萝卜素 Carotenoid (Car) |
|---|---|---|---|---|
| CK | 4.43±0.17a | 2.06±0.15a | 6.48±0.26a | 0.72±0.08a |
| DS | 3.28±0.16c | 1.37±0.13c | 4.79±0.27c | 0.59±0.04a |
| RCK | 4.70±0.25a | 1.85±0.10ab | 6.51±0.12a | 0.79±0.16a |
| RW | 3.92±0.05b | 1.52±0.26bc | 5.72±0.31b | 0.71±0.03a |
表3 干旱胁迫和复水后菊芋幼苗光合色素含量
Table 3 Photosynthetic pigment content of H. tuberosus seedlings under drought stress and re-watering (mg·g-1 FW)
处理 Treatments | 叶绿素a Chlorophyll a (Chl a) | 叶绿素b Chlorophyll b (Chl b) | 叶绿素a+b Chlorophyll (a+b) (Chl a+b) | 类胡萝卜素 Carotenoid (Car) |
|---|---|---|---|---|
| CK | 4.43±0.17a | 2.06±0.15a | 6.48±0.26a | 0.72±0.08a |
| DS | 3.28±0.16c | 1.37±0.13c | 4.79±0.27c | 0.59±0.04a |
| RCK | 4.70±0.25a | 1.85±0.10ab | 6.51±0.12a | 0.79±0.16a |
| RW | 3.92±0.05b | 1.52±0.26bc | 5.72±0.31b | 0.71±0.03a |
处理 Treatment | 实际光量子效率 PSII actual photochemical quantum yield (ΦPSII, μmol·mol-1) | 最大光化学效率 Maximum photochemical efficiency of PSII (Fv/Fm, μmol·mol-1) | 光化学淬灭系数 Photochemical quenching coefficient (qP, μmol·m-2·s-1) | 非光化学淬灭系数 Non-photochemical quenching coefficient (NPQ, μmol·m-2·s-1) |
|---|---|---|---|---|
| CK | 0.53±0.01a | 0.81±0.00a | 0.75±0.01a | 0.77±0.09b |
| DS | 0.44±0.02c | 0.78±0.00a | 0.67±0.00c | 1.00±0.08a |
| RCK | 0.54±0.01a | 0.81±0.01a | 0.75±0.01a | 0.73±0.00bc |
| RW | 0.50±0.01b | 0.80±0.01a | 0.69±0.00b | 0.65±0.00c |
表4 干旱胁迫和复水后菊芋幼苗叶片叶绿素荧光参数
Table 4 Chlorophyll fluorescence parameters of H. tuberosus seedlings leaves under drought stress and re-watering
处理 Treatment | 实际光量子效率 PSII actual photochemical quantum yield (ΦPSII, μmol·mol-1) | 最大光化学效率 Maximum photochemical efficiency of PSII (Fv/Fm, μmol·mol-1) | 光化学淬灭系数 Photochemical quenching coefficient (qP, μmol·m-2·s-1) | 非光化学淬灭系数 Non-photochemical quenching coefficient (NPQ, μmol·m-2·s-1) |
|---|---|---|---|---|
| CK | 0.53±0.01a | 0.81±0.00a | 0.75±0.01a | 0.77±0.09b |
| DS | 0.44±0.02c | 0.78±0.00a | 0.67±0.00c | 1.00±0.08a |
| RCK | 0.54±0.01a | 0.81±0.01a | 0.75±0.01a | 0.73±0.00bc |
| RW | 0.50±0.01b | 0.80±0.01a | 0.69±0.00b | 0.65±0.00c |
处理 Treatment | 自由水含量Free water content (mg H2O·g-1 DW) | 束缚水含量Bound water content (g H2O·g-1 DW) | 总含水量Total water content (g H2O·g-1 DW) | 相对含水量Relative water content (%) |
|---|---|---|---|---|
| CK | 0.09±0.00c | 5.37±0.26a | 5.38±0.32a | 95.52±0.54a |
| DS | 0.04±0.00d | 3.66±0.18b | 3.67±0.19b | 89.60±0.39c |
| RCK | 0.18±0.00b | 5.34±0.40a | 5.45±0.40a | 95.71±0.46a |
| RW | 0.54±0.00a | 4.13±0.19b | 4.00±0.27b | 90.80±0.71b |
表5 干旱胁迫和复水后菊芋幼苗叶片含水量
Table 5 Leaf water content of H. tuberosus seedlings under drought stress and re-watering
处理 Treatment | 自由水含量Free water content (mg H2O·g-1 DW) | 束缚水含量Bound water content (g H2O·g-1 DW) | 总含水量Total water content (g H2O·g-1 DW) | 相对含水量Relative water content (%) |
|---|---|---|---|---|
| CK | 0.09±0.00c | 5.37±0.26a | 5.38±0.32a | 95.52±0.54a |
| DS | 0.04±0.00d | 3.66±0.18b | 3.67±0.19b | 89.60±0.39c |
| RCK | 0.18±0.00b | 5.34±0.40a | 5.45±0.40a | 95.71±0.46a |
| RW | 0.54±0.00a | 4.13±0.19b | 4.00±0.27b | 90.80±0.71b |
图2 干旱胁迫和复水后菊芋幼苗叶片抗氧化酶活性*表示相同处理天数不同处理间差异显著(P<0.05)。虚线表示不同干旱胁迫处理和复水处理时间分界线。下同。* represents significant differences between different treatments at the same treatment day (P<0.05). The dotted line represents the time boundary between different drought stress treatments and re-watering treatments. The same below.
Fig.2 Antioxidant enzyme activity in leaves of H. tuberosus seedlings under drought stress and re-watering
| 1 | Zhong Q W, Li L, Zhao M L, et al. Research on jerusalem artichoke. Beijing: Science Press, 2023: 1-2. |
| 钟启文, 李莉, 赵孟良, 等. 菊芋研究. 北京: 科学出版社, 2023: 1-2. | |
| 2 | Kosaric N, Cosentino G P, Wieczorek A, et al. The jerusalem artichoke as an agricultural crop. Biomass, 1984, 5(1): 1-36. |
| 3 | Farooq M, Wahid A, Kobayashi N, et al. Plant drought stress: effects, mechanisms and management. Sustainable Agriculture, 2009, 29(1): 153-188. |
| 4 | Seleiman M F, Al-Suhaibani N, Ali N, et al. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 2021, 10(2): 259. |
| 5 | Liu Y, Zhang L N, Liu X H, et al. Research progress from individual plant physiological response to ecological model prediction under drought stress. Acta Ecologica Sincia, 2023, 43(24): 10042-10053. |
| 刘燕, 张凌楠, 刘晓宏, 等. 干旱胁迫植物个体生理响应及其生态模型预测研究进展. 生态学报, 2023, 43(24): 10042-10053. | |
| 6 | Bandurska H. Drought stress responses: coping strategy and resistance. Plants, 2022, 11(7): 922. |
| 7 | Qin L, Chen E Y, Yang Y B, et al. Effect of drought stress and rewatering on root morphological characteristics and leaf anatomical structure of foxtail millet. Shandong Agricultural Sciences, 2024, 56(1): 50-57. |
| 秦岭, 陈二影, 杨延兵, 等. 干旱及复水对谷子苗期根系形态特征及叶片解剖结构的影响. 山东农业科学, 2024, 56(1): 50-57. | |
| 8 | Zeng L J, Wang G H. Effects of drought stress and rehydration on the growth and physiological characteristics of annual herbaceous plants from a desert-oasis ecotone. Acta Prataculturae Sinica, 2024, 33(5): 41-57. |
| 曾露婧, 王国华. 干旱及复水对荒漠绿洲过渡带一年生草本植物生长及生理特性的影响. 草业学报, 2024, 33(5): 41-57. | |
| 9 | Deng P, Wu M, Lin D, et al. Effects of drought-rehydration on photosynthetic capacity, chlorophyll fluorescence, and microstructure of Cyclobalanopsis glauca seedling leaves in Karst Area of Northwest Guangxi. Acta Botanica Boreali-Occidentalia Sinica, 2024, 44(1): 63-76. |
| 邓平, 吴敏, 林丁, 等. 干旱-复水对桂西北喀斯特地区青冈栎幼苗叶片光合能力、叶绿素荧光和显微结构的影响. 西北植物学报, 2024, 44(1): 63-76. | |
| 10 | Feng S L, Zhou T, Wang J L. Responses characteristics of leaf water potential in different growth stages of Lespedeza bicolor seedlings to drought stress and rewatering. Acta Agrestia Sinica, 2023, 31(7): 2077-2085. |
| 冯树林, 周婷, 王军利. 胡枝子幼苗不同生长阶段叶水势对干旱-复水的响应特征. 草地学报, 2023, 31(7): 2077-2085. | |
| 11 | Chen J F, Wu X, Yang J R, et al. Effect of drought and rewatering on plant and soil microorganisms under climate change: review and perspectives. Chinese Journal of Ecology, 2023, 42(12): 3038-3049. |
| 陈俊芳, 吴宪, 杨佳绒, 等. 全球气候变化下干旱及复水对植物和土壤微生物的影响: 进展与展望. 生态学杂志, 2023, 42(12): 3038-3049. | |
| 12 | Xiao G, Cai H J, Mu Q, et al. Physiological response mechanism of summer maize seedlings to drought-rewatering of different durations. Agricultural Research in the Arid Areas, 2020, 38(5): 57-63. |
| 肖钢, 蔡焕杰, 沐青, 等. 夏玉米苗期对不同时长干旱-复水的生理响应机制. 干旱地区农业研究, 2020, 38(5): 57-63. | |
| 13 | Mao J R, Zeng Y, Xu X Y, et al. Effects of drought and re-irrigation on osmotic regulator and hydraulic function of Pinus tabuliformis. Chinese Journal of Applied Ecology, 2024, 35(11): 2959-2965. |
| 冒吉荣, 曾岩, 徐馨妤, 等. 干旱胁迫及复水对油松渗透调节物质及水力功能的影响. 应用生态学报, 2024, 35(11): 2959-2965. | |
| 14 | Wang R R, Chen T P, Yin H J, et al. Response and drip irrigation re-watering compensation effect of spring wheat roots to drought stress with different drought tolerance varieties. Scientia Agricultura Sinica, 2023, 56(24): 4826-4841. |
| 王荣荣, 陈天鹏, 尹豪杰, 等. 不同抗旱性春小麦根系生长对干旱胁迫的响应及滴灌复水补偿效应. 中国农业科学, 2023, 56(24): 4826-4841. | |
| 15 | Zheng X B, Bai X C, Wang W W, et al. Identification and evaluation of two wheat varieties under drought stress. Acta Agriculturae Boreali-Occidentalis Sinica, 2024, 33(4): 573-584. |
| 郑祥博, 白昕晨, 王伟伟, 等. 两个小麦品种的抗旱性鉴定与评价. 西北农业学报, 2024, 33(4): 573-584. | |
| 16 | Bayat H, Moghadam A N. Drought effects on growth, water status, proline content and antioxidant system in three Salvia nemorosa L. cultivars. Acta Physiologiae Plantarum, 2019, 41(9): 149. |
| 17 | Huang H X, Cao Y, Xin K J, et al. Morphological and physiological changes in Artemisia selengensis under drought and after rehydration recovery. Frontiers in Plant Science, 2022, 13: 851942. |
| 18 | Zhou H H, Fu L C, Ma L, et al. Physiological characteristics of Osmanthus fragrans ‘Boyejingui’ with drought stress and rewatering. Journal of Zhejiang A&F University, 2019, 36(4): 687-696. |
| 周欢欢, 傅卢成, 马玲, 等. 干旱胁迫及复水对‘波叶金桂’生理特性的影响. 浙江农林大学学报, 2019, 36(4): 687-696. | |
| 19 | Shi M J, Li B, Yi L T, et al. Sexual divergence of Populus deltoides seedlings growth and ecophysiological response to drought and rewatering. Chinese Journal of Plant Ecology, 2023, 47(8): 1159-1170. |
| 施梦娇, 李斌, 伊力塔, 等. 美洲黑杨幼苗生长和生理生态指标对干旱-复水响应的性别差异. 植物生态学报, 2023, 47(8): 1159-1170. | |
| 20 | Cui Z Y, Xu Y, Zou J L, et al. Effects of drought and rewatering on physiological indexes and photosynthetic characteristics of winter wheat leaves. Water Saving Irrigation, 2023(10): 36-42. |
| 崔兆韵, 徐祎, 邹俊丽, 等. 干旱及复水对冬小麦叶片生理指标和光合特性的影响. 节水灌溉, 2023(10): 36-42. | |
| 21 | Feng Z M, Zhang L, Yang C Y, et al. EF8 is involved in photoperiodic flowering pathway and chlorophyll biogenesis in rice.Plant Cell Reports, 2014, 33(12): 2003-2014. |
| 22 | Qin M L, Zhu Y X, Liu X L, et al. Exogenous chitosan affects photosynthetic characteristics and water metabolism of ginger seedling under drought stress. China Cucurbits and Vegetables, 2022, 35(9): 48-56. |
| 秦曼丽, 朱永兴, 刘续立, 等. 外源壳聚糖对干旱胁迫下生姜幼苗光合特性及水分代谢的影响. 中国瓜菜, 2022, 35(9): 48-56. | |
| 23 | Yin J L, Jia J H, Lian Z Y, et al. Silicon enhances the salt tolerance of cucumber through increasing polyamine accumulation and decreasing oxidative damage. Ecotoxicology and Environmental Safety, 2019, 169: 8-17. |
| 24 | Chen L, Liu L, Lu B, et al. Exogenous melatonin promotes seed germination and osmotic regulation under salt stress in cotton (Gossypium hirsutum L.). PLoS One, 2020, 15(1): e0228241. |
| 25 | Zhao Y, Wu M, Ye X X, et al. Growth and chlorophyll flourescence kinetics parameters of Alchornea trewioides under drought and re-watering in Karst Areas. Acta Botanica Boreali-Occidentalia Sinica, 2023, 43(9): 1537-1546. |
| 赵英, 吴敏, 叶晓霞, 等. 干旱与复水对喀斯特地区红背山麻杆生长及叶绿素荧光动力学参数的影响. 西北植物学报, 2023, 43(9): 1537-1546. | |
| 26 | Zhuang Y, Ge J X, Wang X G, et al. Effect of rehydration after drought stress on the growth and physiological characteristics of flue-cured tobacco. Acta Tabacaria Sinica, 2022, 28(4): 48-58. |
| 庄晔, 葛嘉雪, 汪孝国, 等. 干旱胁迫后复水对烤烟生长及其生理特性的影响. 中国烟草学报, 2022, 28(4): 48-58. | |
| 27 | Li Z S, Wan L Q, Li S, et al. Response of alfalfa root architecture and physiological characteristics to drought and rehydration. Acta Prataculturae Sinica, 2021, 30(1): 189-196. |
| 李振松, 万里强, 李硕, 等. 苜蓿根系构型及生理特性对干旱复水的响应. 草业学报, 2021, 30(1): 189-196. | |
| 28 | Xie F P, Wang N, Gao J, et al. Effects of drought and re-watering cycle on photosynthetic carbon assimilation function and photochemical activity of Rheum officinale Baill. leaves at seedling stage. Acta Botanica Boreali-Occidentalia Sinica, 2023, 43(11): 1872-1887. |
| 谢丰璞, 王楠, 高静, 等. 干旱及复水循环对苗期药用大黄叶片光合碳同化功能和光化学活性的影响. 西北植物学报, 2023, 43(11): 1872-1887. | |
| 29 | Nan S R, Luo Y Z, Yu S M, et al. Effects of rewatering after drought stress on photosynthesis and chlorophyll flouresence of Medicago sativa cv. Xingjiangdaye seedlings. Acta Agrestia Sinica, 2022, 30(5): 1141-1149. |
| 南思睿, 罗永忠, 于思敏, 等. 干旱胁迫后复水对新疆大叶苜蓿幼苗光合和叶绿素荧光的影响. 草地学报, 2022, 30(5): 1141-1149. | |
| 30 | Wang Y, Yu S M, Wang J Y, et al. Effects of drought stress and rehydration on physiological characteristics of Hemerocallis fulva. Chinese Agricultural Science Bulletin, 2023, 39(19): 58-64. |
| 王洋, 于森淼, 王旌扬, 等. 干旱胁迫和复水对萱草的生理特性的影响. 中国农学通报, 2023, 39(19): 58-64. | |
| 31 | Wu R R, Huang J X, Yang Y, et al. Effect of drought stress and rehydration on chlorophyll fluorescence parameters and SPAD of leaves of four catimor cultivars of Coffea arabica. Chinese Journal of Tropical Agriculture, 2019, 39(10): 66-74. |
| 武瑞瑞, 黄家雄, 杨阳, 等. 干旱和复水对4种咖啡叶片叶绿素荧光特性和SPAD的影响. 热带农业科学, 2019, 39(10): 66-74. | |
| 32 | Shi Q, Bao X W, Hua J F, et al. Effects of drought stress and recovery on photosynthesis and physiological characteristics of Hibiscus hamabo. ChineseJournal of Applied Ecology, 2019, 30(8): 2600-2606. |
| 施钦, 包学文, 华建峰, 等. 干旱胁迫及复水对海滨木槿光合作用和生理特性的影响. 应用生态学报, 2019, 30(8): 2600-2606. | |
| 33 | Xiao F, Jiang J L, Duan M. Growth and physiological-biochemical responses of Cucumis sativus L. seedlings under drought and re-watering conditions. Journal of Southern Agriculture, 2019, 50(10): 2241-2248. |
| 肖凡, 蒋景龙, 段敏. 干旱和复水条件下黄瓜幼苗生长和生理生化的响应. 南方农业学报, 2019, 50(10): 2241-2248. | |
| 34 | Feng Y Z, Zhao Y, Wang B P, et al. Effects of drought and rewatering on photosynthesis and chlorophyll fluorescence of Paulownia catalpifolia seedlings. Journal of Central South University of Forestry & Technology, 2020, 40(4): 1-8. |
| 冯延芝, 赵阳, 王保平, 等. 干旱复水对楸叶泡桐幼苗光合和叶绿素荧光的影响. 中南林业科技大学学报, 2020, 40(4): 1-8. | |
| 35 | Dong Q Q, Ai X, Zhang Y Z, et al. Effect of drought stress on physiological characteristics and yield in different tolerant peanut. Journal of Shenyang Agricultural University, 2020, 51(1): 18-26. |
| 董奇琦, 艾鑫, 张艳正, 等. 干旱胁迫对不同耐性花生品种生理特性及产量的影响. 沈阳农业大学学报, 2020, 51(1): 18-26. | |
| 36 | Wu R N, Shi F L, Xu B. Medicago ruthenica (L.) Sojak. cv. Zhilixing response and adaptation strategy to drought stress and rehydration. Chinese Journal of Eco-Agriculture, 2020, 28(12): 1901-1912. |
| 乌日娜, 石凤翎, 徐舶. 直立型扁蓿豆对干旱胁迫和复水的响应及适应策略. 中国生态农业学报, 2020, 28(12): 1901-1912. | |
| 37 | Zhao Y, Wu M, Deng P, et al. Effects of drought and rewatering on growth and physiology characteristics of Wedelia chinensis and Wedelia trilobata. Journal of Northwest A & F University (Natural Science Edition), 2021, 49(4): 113-122. |
| 赵英, 吴敏, 邓平, 等. 干旱与复水对2种蟛蜞菊生长及生理生化特性的影响. 西北农林科技大学学报(自然科学版), 2021, 49(4): 113-122. | |
| 38 | He F, Liu P F, Wang L, et al. Effect of drought stress and rewatering on physiological characteristics of Eucommia ulmoides seedling. Plant Physiology Journal, 2021, 57(3): 661-671. |
| 何凤, 刘攀峰, 王璐, 等. 干旱胁迫及复水对杜仲苗生理特性的影响. 植物生理学报, 2021, 57(3): 661-671. | |
| 39 | Wang Y X, Shan L S, Xie T T, et al. The effects of drought-rehydration on non-structural carbohydrates in Reaumuria soongorica seedlings. Chinese Journal of Ecology, 2024, 43(2): 383-394. |
| 王雲霞, 单立山, 解婷婷, 等. 干旱-复水对红砂幼苗各器官非结构性碳水化合物的影响. 生态学杂志, 2024, 43(2): 383-394. | |
| 40 | Wang C M, Wang M, Wang H X, et al. Transcriptomics of glucose metabolism in quinoa seeds under drought stress treatment. Journal of Plant Genetic Resources, 2024, 25(8): 1370-1384. |
| 王春妹, 王梅, 王红霞, 等. 干旱胁迫下藜麦种子糖代谢转录组学研究. 植物遗传资源学报, 2024, 25(8): 1370-1384. | |
| 41 | Jiang Y, Zhang M, Tang J, et al. Effects of cold shock combined with salicylic acid treatment on chilling injury, energy and proline metabolism of postharvest cucumber fruit. Journal of Nuclear Agricultural Sciences, 2021, 35(1): 128-137. |
| 姜玉, 张苗, 汤静, 等. 冷激结合水杨酸处理对黄瓜果实冷害及能量和脯氨酸代谢的影响. 核农学报, 2021, 35(1): 128-137. | |
| 42 | Zhao H M, Deng S F, Yang Y J, et al. Effect of drought stress on anatomical structure and physiological characteristics of quinoa seedlings. Journal of Nuclear Agricultural Sciences, 2021, 35(6): 1476-1483. |
| 赵红梅, 邓素芳, 杨艳君, 等. 干旱胁迫对藜麦幼苗组织解剖结构和生理特性的影响. 核农学报, 2021, 35(6): 1476-1483. | |
| 43 | Jiang S X, Liu D X, Pang H X, et al. Effects of PEG stress and recovery on activities of key enzymes involved in proline metabolism in wheat cultivars with difference in drought tolerance. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(8): 1581-1587. |
| 姜淑欣, 刘党校, 庞红喜, 等. PEG胁迫及复水对不同抗旱性小麦幼苗脯氨酸代谢关键酶活性的影响. 西北植物学报, 2014, 34(8): 1581-1587. |
| [1] | 雍嘉仪, 马霜, 马风华, 赵小娜, 张译尹, 胡海英. 干旱及复水对河北木蓝生物量分配与渗透调节特征的影响[J]. 草业学报, 2025, 34(7): 158-170. |
| [2] | 温小月, 赵颖, 王宝强, 王贤, 朱晓林, 王义真, 魏小红. 外源NO调控干旱胁迫下紫花苜蓿AP2/ERFs基因的表达分析[J]. 草业学报, 2025, 34(6): 154-167. |
| [3] | 曾燕霞, 陈志龙, 尚继红, 沙晓弟, 吴娟, 陈彩锦. 太空诱变对PEG-6000模拟干旱胁迫下紫花苜蓿材料苗期生长的影响[J]. 草业学报, 2025, 34(6): 59-69. |
| [4] | 王小风, 马步东, 黄海霞, 罗永忠, 齐建伟, 邓卓. 干旱胁迫及复水对裸果木幼苗生理特性的影响[J]. 草业学报, 2025, 34(4): 93-103. |
| [5] | 王宝, 谢占玲, 郭璟, 唐永鹏, 孟清, 彭清青, 杨家宝, 董德誉, 徐鸿雁, 高太侦, 张凡, 段迎珠. 真菌发酵液浸种燕麦对其抗旱性及根际真菌群落结构的影响[J]. 草业学报, 2024, 33(9): 126-139. |
| [6] | 张婷婷, 刘宇乐, 陈红, 许凌欣, 陈祥伟, 王恩姮, 严俊鑫. 不同外源物质对盐、碱及干旱胁迫下草木樨种子萌发、幼苗生长及生理的影响[J]. 草业学报, 2024, 33(8): 122-132. |
| [7] | 魏娜, 敬文茂, 许尔文, 王荣新, 赵晶忠, 马雪娥, 张吉宇, 刘文献. 白花草木樨MaERF058基因耐旱功能验证[J]. 草业学报, 2024, 33(8): 159-169. |
| [8] | 曾露婧, 王国华. 干旱及复水对荒漠绿洲过渡带一年生草本植物生长及生理特性的影响[J]. 草业学报, 2024, 33(5): 41-57. |
| [9] | 李硕, 李培英, 孙宗玖, 李雯. 基于转录组测序的狗牙根抗旱根系关键代谢途径分析[J]. 草业学报, 2024, 33(4): 186-198. |
| [10] | 邢静, 范文强, 王佳妮, 石凤翎. 干旱胁迫下 2个扁蓿豆品种根际细菌多样性及土壤灭菌对其生长的影响[J]. 草业学报, 2024, 33(12): 147-159. |
| [11] | 王雨欣, 陶佳丽, 朱慧森, 许涛, 张逸飞, 岑慧芳. 异源表达偏关苜蓿miR397-5p增强烟草干旱胁迫耐受能力[J]. 草业学报, 2024, 33(11): 123-134. |
| [12] | 姜瑛, 张辉红, 魏畅, 徐正阳, 赵颖, 刘芳, 李鸽子, 张雪海, 柳海涛. 外源褪黑素对干旱胁迫下玉米幼苗根系发育及生理生化特性的影响[J]. 草业学报, 2023, 32(9): 143-159. |
| [13] | 王宝强, 马文静, 王贤, 朱晓林, 赵颖, 魏小红. 一氧化氮对干旱胁迫下紫花苜蓿幼苗次生代谢产物的影响[J]. 草业学报, 2023, 32(8): 141-151. |
| [14] | 张一龙, 李雯, 喻启坤, 李培英, 孙宗玖. 狗牙根叶与根氮代谢对不同干旱胁迫的响应机制[J]. 草业学报, 2023, 32(7): 175-187. |
| [15] | 张浩, 胡海英, 李惠霞, 贺海明, 马霜, 马风华, 宋柯辰. 荒漠草原优势植物牛枝子对干旱胁迫的生理响应与转录组分析[J]. 草业学报, 2023, 32(7): 188-205. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||