草业学报 ›› 2025, Vol. 34 ›› Issue (6): 59-69.DOI: 10.11686/cyxb2024301
曾燕霞(
), 陈志龙, 尚继红, 沙晓弟, 吴娟, 陈彩锦(
)
收稿日期:2024-07-31
修回日期:2024-09-20
出版日期:2025-06-20
发布日期:2025-04-03
通讯作者:
陈彩锦
作者简介:Corresponding author. E-mail: ccj401224@126.com基金资助:
Yan-xia ZENG(
), Zhi-long CHEN, Ji-hong SHANG, Xiao-di SHA, Juan WU, Cai-jin CHEN(
)
Received:2024-07-31
Revised:2024-09-20
Online:2025-06-20
Published:2025-04-03
Contact:
Cai-jin CHEN
摘要:
为探讨太空诱变对聚乙二醇6000(PEG-6000)模拟干旱胁迫下紫花苜蓿材料苗期生长的影响,以14份诱变和14份未诱变材料为研究对象,以蒸馏水处理作为对照,采用PEG-6000模拟干旱胁迫处理方式,测定处理后生长相关指标,并利用隶属函数法进行综合评价。结果表明,干旱胁迫处理降低了大部分材料的株高、基茎粗、根长、单株鲜重、叶面积、叶周长、叶长和叶宽,而SPAD值反而升高。与未诱变材料相比,部分材料太空诱变后可缓解干旱胁迫引起的生长指标降低,而促进SPAD值升高。其中,巨能7诱变材料除株高外,其余生长指标均显著高于未诱变材料(P<0.05);除此,诱变材料中,WL354的基茎粗和叶长, DS310FY的叶面积、叶周长、叶长和SPAD值,盐宝的叶面积、叶宽和SPAD值,WL343的叶面积、叶长、叶宽和SPAD值,甘农3号的叶长和SPAD值,皇冠的叶宽,中苜1号、南苜501和阿迪娜的SPAD值均显著高于其未诱变材料(P<0.05);而未诱变材料中,阿迪娜的基茎粗,甘农6号的单株鲜重,甘农4号的叶面积、叶周长、叶长及WL354的叶宽和SPAD值均显著高于其诱变材料(P<0.05)。将各材料苗期耐旱性生长指标进行隶属函数综合分析得出,经PEG-6000干旱胁迫后,甘农3号、DS310FY、巨能7、南苜501、皇冠、盐宝、WL343和阿迪娜这8份材料的太空诱变材料生长指标隶属函数平均值较其未诱变材料高,说明从生长指标来看,这8份材料经太空诱变后耐旱性能得到提升。
曾燕霞, 陈志龙, 尚继红, 沙晓弟, 吴娟, 陈彩锦. 太空诱变对PEG-6000模拟干旱胁迫下紫花苜蓿材料苗期生长的影响[J]. 草业学报, 2025, 34(6): 59-69.
Yan-xia ZENG, Zhi-long CHEN, Ji-hong SHANG, Xiao-di SHA, Juan WU, Cai-jin CHEN. Effects of space mutagenesis on the growth of alfalfa (Medicago sativa) seedlings under PEG-6000 simulated drought stress[J]. Acta Prataculturae Sinica, 2025, 34(6): 59-69.
序号 Serial number | 材料名称 Material name | 未诱变材料Unmutagenic materials | 诱变材料Mutagenic materials | ||
|---|---|---|---|---|---|
胁迫浓度 Stress concentration (%) | 胁迫时间 Stress time (h) | 胁迫浓度 Stress concentration (%) | 胁迫时间 Stress time (h) | ||
| 1 | 劲能Jinneng | 30 | 2.0 | 30 | 2.0 |
| 2 | 中苜1号 Zhongmu No.1 | 30 | 2.0 | 30 | 2.0 |
| 3 | 甘农3号Gannong No.3 | 30 | 2.0 | 30 | 3.0 |
| 4 | WL354 | 30 | 2.0 | 30 | 2.0 |
| 5 | DS310FY | 30 | 2.0 | 30 | 3.0 |
| 6 | 甘农6号Gannong No.6 | 30 | 2.0 | 30 | 2.0 |
| 7 | 甘农4号Gannong No.4 | 30 | 2.5 | 30 | 2.0 |
| 8 | 中苜3号Zhongmu No.3 | 30 | 2.0 | 30 | 2.0 |
| 9 | 巨能7 Juneng 7 | 30 | 2.0 | 30 | 3.0 |
| 10 | 南苜501 Nanmu 501 | 30 | 2.0 | 30 | 2.0 |
| 11 | 皇冠 Huangguan | 20 | 2.0 | 20 | 2.0 |
| 12 | 盐宝 Yanbao | 30 | 2.0 | 30 | 2.5 |
| 13 | WL343 | 20 | 2.0 | 20 | 2.0 |
| 14 | 阿迪娜 Adina | 30 | 2.0 | 30 | 2.0 |
表1 各材料PEG-6000 模拟干旱胁迫最佳浓度和时间
Table 1 The optimal concentration and time of PEG-6000 simulated drought stress for each material
序号 Serial number | 材料名称 Material name | 未诱变材料Unmutagenic materials | 诱变材料Mutagenic materials | ||
|---|---|---|---|---|---|
胁迫浓度 Stress concentration (%) | 胁迫时间 Stress time (h) | 胁迫浓度 Stress concentration (%) | 胁迫时间 Stress time (h) | ||
| 1 | 劲能Jinneng | 30 | 2.0 | 30 | 2.0 |
| 2 | 中苜1号 Zhongmu No.1 | 30 | 2.0 | 30 | 2.0 |
| 3 | 甘农3号Gannong No.3 | 30 | 2.0 | 30 | 3.0 |
| 4 | WL354 | 30 | 2.0 | 30 | 2.0 |
| 5 | DS310FY | 30 | 2.0 | 30 | 3.0 |
| 6 | 甘农6号Gannong No.6 | 30 | 2.0 | 30 | 2.0 |
| 7 | 甘农4号Gannong No.4 | 30 | 2.5 | 30 | 2.0 |
| 8 | 中苜3号Zhongmu No.3 | 30 | 2.0 | 30 | 2.0 |
| 9 | 巨能7 Juneng 7 | 30 | 2.0 | 30 | 3.0 |
| 10 | 南苜501 Nanmu 501 | 30 | 2.0 | 30 | 2.0 |
| 11 | 皇冠 Huangguan | 20 | 2.0 | 20 | 2.0 |
| 12 | 盐宝 Yanbao | 30 | 2.0 | 30 | 2.5 |
| 13 | WL343 | 20 | 2.0 | 20 | 2.0 |
| 14 | 阿迪娜 Adina | 30 | 2.0 | 30 | 2.0 |
图1 太空诱变对PEG模拟干旱胁迫下紫花苜蓿材料苗期株高的影响1:劲能Jinneng;2:中苜1号 Zhongmu No.1;3:甘农3号Gannong No.3;4:WL354;5:DS310FY;6:甘农6号Gannong No.6;7:甘农4号Gannong No.4;8:中苜3号Zhongmu No.3;9:巨能7 Juneng 7;10:南苜501 Nanmu 501;11:皇冠 Huangguan;12:盐宝 Yanbao;13:WL343;14:阿迪娜 Adina. *代表未诱变或诱变材料干旱胁迫处理与其相应蒸馏水空白处理间差异显著(P<0.05),未标记代表差异不显著。下同。* represents the significant difference between drought stress treatment of unmutagenic or mutagenic materials and the corresponding distilled water blank treatment (P<0.05), and unlabeled represents no significant difference. The same below.
Fig.1 Effect of space mutagenesis on plant height of alfalfa materials at seedling stage under PEG simulated drought stress
图2 太空诱变对PEG模拟干旱胁迫下紫花苜蓿材料苗期基茎粗的影响#代表干旱胁迫处理后未诱变和诱变材料间差异显著(P<0.05)。未标记代表差异不显著。下同。# represents the significant difference between non-mutagenic and mutagenic materials after drought stress treatment (P<0.05), and unlabeled represents no significant difference. The same below.
Fig.2 Effect of space mutagenesis on base stem diameter of alfalfa materials at seedling stage under PEG simulated drought stress
图3 太空诱变对PEG模拟干旱胁迫下紫花苜蓿材料苗期根长的影响
Fig.3 Effect of space mutagenesis on root length of alfalfa materials at seedling stage under PEG simulated drought stress
图4 太空诱变对PEG模拟干旱胁迫下紫花苜蓿材料苗期单株鲜重的影响
Fig.4 Effect of space mutagenesis on fresh weight per plant of alfalfa materials at seedling stage under PEG simulated drought stress
图5 太空诱变对PEG模拟干旱胁迫下紫花苜蓿材料苗期叶面积的影响
Fig.5 Effect of space mutagenesis on leaf area of alfalfa materials at seedling stage under PEG simulated drought stress
图6 太空诱变对PEG模拟干旱胁迫下紫花苜蓿材料苗期叶周长的影响
Fig.6 Effect of space mutagenesis on leaf circumference of alfalfa materials at seedling stage under PEG simulated drought stress
图7 太空诱变对PEG模拟干旱胁迫下紫花苜蓿材料苗期叶长的影响
Fig.7 Effect of space mutagenesis on leaf length of alfalfa materials at seedling stage under PEG simulated drought stress
图8 太空诱变对PEG模拟干旱胁迫下紫花苜蓿材料苗期叶宽的影响
Fig.8 Effect of space mutagenesis on leaf width of alfalfa materials at seedling stage under PEG simulated drought stress
图9 太空诱变对PEG模拟干旱胁迫下紫花苜蓿材料苗期SPAD值的影响
Fig.9 Effect of space mutagenesis on SPAD of alfalfa materials at seedling stage under PEG simulated drought stress
材料名称 Material name | 各指标隶属函数值The subordinative function values of each index | 排序Rank | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
株高 Plant height | 基茎粗 Stem size | 根长 Root length | 单株鲜重 Fresh weight per plant | 叶面积 Leaf area | 叶周长 Leaf circumference | 叶长 Leaf length | 叶宽 Leaf width | SPAD值 SPAD value | 平均 Average | ||
| 劲能(未诱变)Jinneng (unmutagenesis) | 0.3796 | 0.5000 | 0.6830 | 0.4362 | 0.6426 | 0.6409 | 0.5480 | 0.7293 | 0.6881 | 0.5831 | 1 |
| 劲能(诱变)Jinneng (mutagenesis) | 0.3981 | 0.5167 | 0.7054 | 0.3253 | 0.6740 | 0.6339 | 0.5296 | 0.7178 | 0.7423 | 0.5826 | 2 |
| 中苜1号(未诱变)Zhongmu No.1 (unmutagenesis) | 0.5833 | 0.2900 | 0.6696 | 0.3909 | 0.5050 | 0.7452 | 0.6001 | 0.7310 | 0.4518 | 0.5519 | 1 |
| 中苜1号(诱变)Zhongmu No.1 (mutagenesis) | 0.3241 | 0.0000 | 0.6741 | 0.2840 | 0.5713 | 0.4923 | 0.4369 | 0.6486 | 0.7179 | 0.4610 | 2 |
| 甘农3号(未诱变)Gannong No.3 (unmutagenesis) | 0.3796 | 0.3033 | 0.5893 | 0.1636 | 0.1070 | 0.2146 | 0.2053 | 0.2618 | 0.4286 | 0.2948 | 2 |
| 甘农3号(诱变)Gannong No.3 (mutagenesis) | 0.3194 | 0.3067 | 0.8036 | 0.2572 | 0.3916 | 0.3909 | 0.6266 | 0.2773 | 0.9982 | 0.4857 | 1 |
| WL354(未诱变)WL354 (unmutagenesis) | 0.1574 | 0.1867 | 0.5357 | 0.3086 | 0.1887 | 0.1665 | 0.2244 | 0.3735 | 0.8774 | 0.3354 | 1 |
| WL354(诱变)WL354 (mutagenesis) | 0.0417 | 0.5367 | 0.4286 | 0.1379 | 0.2283 | 0.2846 | 0.4820 | 0.2551 | 0.5982 | 0.3326 | 2 |
| DS310FY(未诱变)DS310FY (unmutagenesis) | 0.0046 | 0.4367 | 0.3884 | 0.4568 | 0.0583 | 0.1725 | 0.2536 | 0.0188 | 0.4869 | 0.2530 | 2 |
| DS310FY(诱变)DS310FY (mutagenesis) | 0.0000 | 0.5567 | 0.3482 | 0.4444 | 0.3102 | 0.5240 | 0.4466 | 0.0132 | 0.9256 | 0.3966 | 1 |
| 甘农6号(未诱变)Gannong No.6 (unmutagenesis) | 0.1296 | 0.4633 | 0.4866 | 0.2531 | 0.2046 | 0.1327 | 0.2286 | 0.3298 | 0.7595 | 0.3320 | 1 |
| 甘农6号(诱变)Gannong No.6 (mutagenesis) | 0.0972 | 0.4900 | 0.6161 | 0.0021 | 0.2931 | 0.0000 | 0.2224 | 0.2695 | 0.6077 | 0.2887 | 2 |
| 甘农4号(未诱变)Gannong No.4 (unmutagenesis) | 0.3657 | 0.3667 | 0.6384 | 0.1975 | 0.3512 | 0.6418 | 0.6159 | 0.5641 | 0.2750 | 0.4463 | 1 |
| 甘农4号(诱变)Gannong No.4 (mutagenesis) | 0.0787 | 0.4433 | 0.4598 | 0.1523 | 0.1554 | 0.2574 | 0.1833 | 0.3336 | 0.2548 | 0.2576 | 2 |
| 中苜3号(未诱变)Zhongmu No.3 (unmutagenesis) | 0.5046 | 0.5567 | 0.9688 | 0.7160 | 0.4538 | 0.5482 | 0.5814 | 0.6316 | 0.2899 | 0.5834 | 1 |
| 中苜3号(诱变)Zhongmu No.3 (mutagenesis) | 0.5556 | 0.4233 | 0.9554 | 0.4177 | 0.4486 | 0.4732 | 0.4339 | 0.4807 | 0.4720 | 0.5178 | 2 |
| 巨能7(未诱变)Juneng 7(unmutagenesis) | 0.2824 | 0.2633 | 0.3705 | 0.3827 | 0.4085 | 0.4152 | 0.3420 | 0.4738 | 0.3863 | 0.3694 | 2 |
| 巨能7(诱变)Juneng 7 (mutagenesis) | 0.4907 | 0.7000 | 0.8750 | 0.6790 | 0.7677 | 0.8753 | 0.7086 | 0.6610 | 0.5327 | 0.6989 | 1 |
| 南苜501(未诱变)Nanmu 501 (unmutagenesis) | 0.2593 | 0.5000 | 0.6429 | 0.1965 | 0.0000 | 0.1991 | 0.0196 | 0.0434 | 0.2732 | 0.2371 | 2 |
| 南苜501(诱变)Nanmu 501 (mutagenesis) | 0.1343 | 0.6167 | 0.5357 | 0.1029 | 0.0220 | 0.2395 | 0.1432 | 0.0012 | 0.5292 | 0.2583 | 1 |
| 皇冠(未诱变)Huangguan (unmutagenesis) | 0.4120 | 0.5933 | 0.8259 | 0.6996 | 0.4688 | 0.4542 | 0.3330 | 0.5510 | 0.6256 | 0.5515 | 2 |
| 皇冠(诱变)Huangguan (mutagenesis) | 0.5139 | 0.7133 | 0.7723 | 0.7130 | 0.6364 | 0.5256 | 0.6009 | 0.7634 | 0.6643 | 0.6559 | 1 |
| 盐宝(未诱变)Yanbao (unmutagenesis) | 0.5417 | 0.5400 | 0.5670 | 0.3673 | 0.3667 | 0.4168 | 0.4315 | 0.4002 | 0.4708 | 0.4558 | 2 |
| 盐宝(诱变)Yanbao (mutagenesis) | 0.5000 | 0.5700 | 0.6161 | 0.6276 | 0.7605 | 0.5502 | 0.6685 | 0.7549 | 0.6756 | 0.6359 | 1 |
| WL343(未诱变)WL343 (unmutagenesis) | 0.3171 | 0.6100 | 0.3884 | 0.4516 | 0.3550 | 0.2812 | 0.2210 | 0.3473 | 0.3524 | 0.3693 | 2 |
| WL343(诱变)WL343 (mutagenesis) | 0.4861 | 0.5600 | 0.5580 | 0.4321 | 0.5465 | 0.4333 | 0.6330 | 0.5391 | 0.5762 | 0.5294 | 1 |
| 阿迪娜(未诱变)Adina (unmutagenesis) | 0.0278 | 0.6833 | 0.1027 | 0.3230 | 0.1813 | 0.0780 | 0.0000 | 0.2440 | 0.2429 | 0.2092 | 2 |
| 阿迪娜(诱变)Adina (mutagenesis) | 0.2083 | 0.4133 | 0.1339 | 0.3539 | 0.2830 | 0.1080 | 0.2183 | 0.0500 | 0.5274 | 0.2551 | 1 |
表2 各材料生长指标隶属函数值及排名
Table 2 The subordinative function values and ranking of growth indicators of each material
材料名称 Material name | 各指标隶属函数值The subordinative function values of each index | 排序Rank | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
株高 Plant height | 基茎粗 Stem size | 根长 Root length | 单株鲜重 Fresh weight per plant | 叶面积 Leaf area | 叶周长 Leaf circumference | 叶长 Leaf length | 叶宽 Leaf width | SPAD值 SPAD value | 平均 Average | ||
| 劲能(未诱变)Jinneng (unmutagenesis) | 0.3796 | 0.5000 | 0.6830 | 0.4362 | 0.6426 | 0.6409 | 0.5480 | 0.7293 | 0.6881 | 0.5831 | 1 |
| 劲能(诱变)Jinneng (mutagenesis) | 0.3981 | 0.5167 | 0.7054 | 0.3253 | 0.6740 | 0.6339 | 0.5296 | 0.7178 | 0.7423 | 0.5826 | 2 |
| 中苜1号(未诱变)Zhongmu No.1 (unmutagenesis) | 0.5833 | 0.2900 | 0.6696 | 0.3909 | 0.5050 | 0.7452 | 0.6001 | 0.7310 | 0.4518 | 0.5519 | 1 |
| 中苜1号(诱变)Zhongmu No.1 (mutagenesis) | 0.3241 | 0.0000 | 0.6741 | 0.2840 | 0.5713 | 0.4923 | 0.4369 | 0.6486 | 0.7179 | 0.4610 | 2 |
| 甘农3号(未诱变)Gannong No.3 (unmutagenesis) | 0.3796 | 0.3033 | 0.5893 | 0.1636 | 0.1070 | 0.2146 | 0.2053 | 0.2618 | 0.4286 | 0.2948 | 2 |
| 甘农3号(诱变)Gannong No.3 (mutagenesis) | 0.3194 | 0.3067 | 0.8036 | 0.2572 | 0.3916 | 0.3909 | 0.6266 | 0.2773 | 0.9982 | 0.4857 | 1 |
| WL354(未诱变)WL354 (unmutagenesis) | 0.1574 | 0.1867 | 0.5357 | 0.3086 | 0.1887 | 0.1665 | 0.2244 | 0.3735 | 0.8774 | 0.3354 | 1 |
| WL354(诱变)WL354 (mutagenesis) | 0.0417 | 0.5367 | 0.4286 | 0.1379 | 0.2283 | 0.2846 | 0.4820 | 0.2551 | 0.5982 | 0.3326 | 2 |
| DS310FY(未诱变)DS310FY (unmutagenesis) | 0.0046 | 0.4367 | 0.3884 | 0.4568 | 0.0583 | 0.1725 | 0.2536 | 0.0188 | 0.4869 | 0.2530 | 2 |
| DS310FY(诱变)DS310FY (mutagenesis) | 0.0000 | 0.5567 | 0.3482 | 0.4444 | 0.3102 | 0.5240 | 0.4466 | 0.0132 | 0.9256 | 0.3966 | 1 |
| 甘农6号(未诱变)Gannong No.6 (unmutagenesis) | 0.1296 | 0.4633 | 0.4866 | 0.2531 | 0.2046 | 0.1327 | 0.2286 | 0.3298 | 0.7595 | 0.3320 | 1 |
| 甘农6号(诱变)Gannong No.6 (mutagenesis) | 0.0972 | 0.4900 | 0.6161 | 0.0021 | 0.2931 | 0.0000 | 0.2224 | 0.2695 | 0.6077 | 0.2887 | 2 |
| 甘农4号(未诱变)Gannong No.4 (unmutagenesis) | 0.3657 | 0.3667 | 0.6384 | 0.1975 | 0.3512 | 0.6418 | 0.6159 | 0.5641 | 0.2750 | 0.4463 | 1 |
| 甘农4号(诱变)Gannong No.4 (mutagenesis) | 0.0787 | 0.4433 | 0.4598 | 0.1523 | 0.1554 | 0.2574 | 0.1833 | 0.3336 | 0.2548 | 0.2576 | 2 |
| 中苜3号(未诱变)Zhongmu No.3 (unmutagenesis) | 0.5046 | 0.5567 | 0.9688 | 0.7160 | 0.4538 | 0.5482 | 0.5814 | 0.6316 | 0.2899 | 0.5834 | 1 |
| 中苜3号(诱变)Zhongmu No.3 (mutagenesis) | 0.5556 | 0.4233 | 0.9554 | 0.4177 | 0.4486 | 0.4732 | 0.4339 | 0.4807 | 0.4720 | 0.5178 | 2 |
| 巨能7(未诱变)Juneng 7(unmutagenesis) | 0.2824 | 0.2633 | 0.3705 | 0.3827 | 0.4085 | 0.4152 | 0.3420 | 0.4738 | 0.3863 | 0.3694 | 2 |
| 巨能7(诱变)Juneng 7 (mutagenesis) | 0.4907 | 0.7000 | 0.8750 | 0.6790 | 0.7677 | 0.8753 | 0.7086 | 0.6610 | 0.5327 | 0.6989 | 1 |
| 南苜501(未诱变)Nanmu 501 (unmutagenesis) | 0.2593 | 0.5000 | 0.6429 | 0.1965 | 0.0000 | 0.1991 | 0.0196 | 0.0434 | 0.2732 | 0.2371 | 2 |
| 南苜501(诱变)Nanmu 501 (mutagenesis) | 0.1343 | 0.6167 | 0.5357 | 0.1029 | 0.0220 | 0.2395 | 0.1432 | 0.0012 | 0.5292 | 0.2583 | 1 |
| 皇冠(未诱变)Huangguan (unmutagenesis) | 0.4120 | 0.5933 | 0.8259 | 0.6996 | 0.4688 | 0.4542 | 0.3330 | 0.5510 | 0.6256 | 0.5515 | 2 |
| 皇冠(诱变)Huangguan (mutagenesis) | 0.5139 | 0.7133 | 0.7723 | 0.7130 | 0.6364 | 0.5256 | 0.6009 | 0.7634 | 0.6643 | 0.6559 | 1 |
| 盐宝(未诱变)Yanbao (unmutagenesis) | 0.5417 | 0.5400 | 0.5670 | 0.3673 | 0.3667 | 0.4168 | 0.4315 | 0.4002 | 0.4708 | 0.4558 | 2 |
| 盐宝(诱变)Yanbao (mutagenesis) | 0.5000 | 0.5700 | 0.6161 | 0.6276 | 0.7605 | 0.5502 | 0.6685 | 0.7549 | 0.6756 | 0.6359 | 1 |
| WL343(未诱变)WL343 (unmutagenesis) | 0.3171 | 0.6100 | 0.3884 | 0.4516 | 0.3550 | 0.2812 | 0.2210 | 0.3473 | 0.3524 | 0.3693 | 2 |
| WL343(诱变)WL343 (mutagenesis) | 0.4861 | 0.5600 | 0.5580 | 0.4321 | 0.5465 | 0.4333 | 0.6330 | 0.5391 | 0.5762 | 0.5294 | 1 |
| 阿迪娜(未诱变)Adina (unmutagenesis) | 0.0278 | 0.6833 | 0.1027 | 0.3230 | 0.1813 | 0.0780 | 0.0000 | 0.2440 | 0.2429 | 0.2092 | 2 |
| 阿迪娜(诱变)Adina (mutagenesis) | 0.2083 | 0.4133 | 0.1339 | 0.3539 | 0.2830 | 0.1080 | 0.2183 | 0.0500 | 0.5274 | 0.2551 | 1 |
| 1 | Chen H Y, Huang R, Zhao L, et al. Effects of Cp2-EPS on the morphology and photosynthesis characteristics of alfalfa seedlings under salt stress. Acta Agrestia Sinica, 2024, 32(1): 229-238. |
| 陈海雁, 黄荣, 赵亮, 等. Cp2-EPS对盐胁迫下紫花苜蓿苗期形态及光合特性的影响. 草地学报, 2024, 32(1): 229-238. | |
| 2 | Fu C M. Effect of spatial mutagenesis on drought resistance of Medicago sativa Deqin. Kunming: Yunnan Agricultural University, 2023. |
| 伏春美. 空间诱变对德钦紫花苜蓿抗旱性的影响. 昆明: 云南农业大学, 2023. | |
| 3 | Yang H S, Wang Y R, Chang G Z, et al. A study on the space mutation of forages. Chinese Journal of Grassland, 2015, 37(1): 104-110. |
| 杨红善, 王彦荣, 常根柱, 等. 牧草的航天诱变研究. 中国草地学报, 2015, 37(1): 104-110. | |
| 4 | Yang H S. Breeding of a new alfalfa variety with multifoliate traits by space mutation. Lanzhou: Lanzhou University, 2018. |
| 杨红善. 航天诱变多叶紫花苜蓿新品种选育研究. 兰州: 兰州大学, 2018. | |
| 5 | Ren W B, Wang M, Chen L B, et al. Effects of spaceflight on seed germination and seedling growth for different alfalfa lines. Seed, 2009, 28(1): 1-2, 6. |
| 任卫波, 王蜜, 陈立波, 等. 卫星搭载对不同品系紫花苜蓿种子萌发及其幼苗生长的影响. 种子, 2009, 28(1): 1-2, 6. | |
| 6 | Zhang L Q, Jia X H, Zhao J W. Effects of PEG simulated drought stress on seed germination and seedling growth of alfalfa. Molecular Plant Breeding, 2020, 18(11): 3759-3764. |
| 张立全, 贾旭慧, 赵静玮. PEG模拟干旱胁迫对紫花苜蓿种子发芽及幼苗生长的影响. 分子植物育种, 2020, 18(11): 3759-3764. | |
| 7 | Zeng Z T. Germination ability of 3 alfalfa under drought stress and response of alfalfa growth. Lanzhou: Gansu Agricultural University, 2018. |
| 曾泽堂. 模拟干旱胁迫环境下3种紫花苜蓿的萌芽能力与紫花苜蓿生长. 兰州: 甘肃农业大学, 2018. | |
| 8 | Hui Z L, Li Z L, Liu W Y, et al. Effects of seed soaking in fulvic acid solution on seed germination and seedling growth in Medicago sativa under PEG simulated drought stress. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(8): 1621-1629. |
| 回振龙, 李自龙, 刘文瑜, 等. 黄腐酸浸种对PEG模拟干旱胁迫下紫花苜蓿种子萌发及幼苗生长的影响. 西北植物学报, 2013, 33(8): 1621-1629. | |
| 9 | Cheng B, Hu S R, Gao Y, et al. Drought resistance of 5 alfalfa species at germination period under PEG simulated drought stress. Journal of Northwest A&F University (Natural Science Edition), 2019, 47(1): 53-59. |
| 程波, 胡生荣, 高永, 等. PEG模拟干旱胁迫下5种紫花苜蓿萌发期抗旱性的评估. 西北农林科技大学学报(自然科学版), 2019, 47(1): 53-59. | |
| 10 | Li H X, Ye Z B, Liao X Y, et al. Effect of microgravity in the space on the growth and development of tomato. Journal of Huazhong Agricultural University, 1994(3): 310-312. |
| 李汉霞, 叶志彪, 廖祥云, 等. 空间微重力处理对番茄生长发育的影响. 华中农业大学学报, 1994(3): 310-312. | |
| 11 | Li S J, Zhu Y P, Sun K M, et al. The present status and prospect of space breeding in China. Chinese Agricultural Science Bulletin, 2005(1): 159-162. |
| 李世娟, 诸叶平, 孙开梦, 等. 中国太空育种现状及其前景展望. 中国农学通报, 2005(1): 159-162. | |
| 12 | Li J, Ren W B, Guo H Q, et al. Effect of space flight factors on the peroxidase polymorphism and its activity of alfalfa. Seed, 2012, 31(4): 46-48. |
| 李晶, 任卫波, 郭慧琴, 等. 空间诱变对紫花苜蓿过氧化物同工酶影响. 种子, 2012, 31(4): 46-48. | |
| 13 | Li Q. Identification of drought tolerance and expression analysis of related genes in seedlings of Medicago falcata. Urumqi: Xinjiang Agricultural University, 2018. |
| 李倩. 黄花苜蓿苗期耐旱性鉴定及相关基因表达分析. 乌鲁木齐: 新疆农业大学, 2018. | |
| 14 | Wang J Y, Xu W N, Su Y, et al. Effects of drought stress on drought resistance of different Medicago falcata L. germplasm at seedling stage. Guizhou Agricultural Sciences, 2023, 51(11): 14-24. |
| 王江银, 徐婉宁, 苏洋, 等. 干旱胁迫对不同苜蓿种质苗期抗旱性的影响. 贵州农业科学, 2023, 51(11): 14-24. | |
| 15 | Wu J X, Zeng R Q, Yin H L, et al. Mechanisms of plant response to water stress. Modern Agricultural Research, 2024, 30(10): 64-68. |
| 吴佳芯, 曾冉琦, 尹会兰, 等. 植物对水分胁迫的响应机制.现代农业研究, 2024, 30(10): 64-68. | |
| 16 | Chen F Q, Ha X, Li Y J, et al. Evaluation of drought resistance of 23 alfalfa germplasm materials during seedling stage under PEG simulated drought stress. Grassland and Turf, 1-11[2024-10-23]. http://kns.cnki.net/kcms/detail/62.1156.s.20240620.1602.012.html. |
| 陈奋奇, 哈雪, 李亚君, 等. PEG模拟干旱胁迫下23份紫花苜蓿种质材料苗期抗旱性评价. 草原与草坪, 1-11[2024-10-23]. http://kns.cnki.net/kcms/detail/62.1156.s.20240620.1602.012.html. | |
| 17 | Han R H, Jiang C, Dong Z X, et al. Comprehensive evaluation of drought resistance of 47 Medicago germplasm materials under drought stress. Chinese Journal of Grassland, 2017, 39(4): 27-35. |
| 韩瑞宏, 蒋超, 董朝霞, 等. 47份苜蓿种质材料抗旱性综合评价. 中国草地学报, 2017, 39(4): 27-35. | |
| 18 | Zhang C M, Shi S L, Liu Z, et al. Effects of drought stress on the root morphology and anatomical structure of alfalfa (Medicago sativa) varieties with differing drought-tolerance. Acta Prataculturae Sinica, 2019, 28(5): 79-89. |
| 张翠梅, 师尚礼, 刘珍, 等. 干旱胁迫对不同抗旱性苜蓿品种根系形态及解剖结构的影响. 草业学报, 2019, 28(5): 79-89. | |
| 19 | Nan S R, Luo Y Z, Yu S M, et al. Effects of rewatering after drought stress on photosynthesis and chlorophyll fluorescence of Medicago sativa cv. xingjiangdaye seedlings. Acta Agrestia Sinica, 2022, 30(5): 1141-1149. |
| 南思睿, 罗永忠, 于思敏, 等. 干旱胁迫后复水对新疆大叶苜蓿幼苗光合和叶绿素荧光的影响. 草地学报, 2022, 30(5): 1141-1149. | |
| 20 | Chen L, Wang J, Qiu X, et al. Difference of physiological responses and transcriptional regulation of alfalfa with different drought tolerances under drought stress. Acta Agronomica Sinica, 2023, 49(8): 2122-2132. |
| 陈力, 王靖, 邱晓, 等. 不同耐旱性紫花苜蓿干旱胁迫下生理响应和转录调控的差异研究. 作物学报, 2023, 49(8): 2122-2132. | |
| 21 | Zou C J, Han S J, Xu W D, et al. Eco-physiological responses of Picea mangolica ecotypes to drought stress. Chinese Journal of Applied Ecology, 2003, 14(9): 1446-1450. |
| 邹春静, 韩士杰, 徐文铎, 等. 沙地云杉生态型对干旱胁迫的生理生态响应. 应用生态学报, 2003, 14(9): 1446-1450. | |
| 22 | Hu H G, Liu J X, Guo H L. Spaceflight mutation breeding of China and its application in grass. Acta Prataculturae Sinica, 2006, 15(1): 15-21. |
| 胡化广, 刘建秀, 郭海林. 我国植物空间诱变育种及其在草类植物育种中的应用. 草业学报, 2006, 15(1): 15-21. | |
| 23 | Zhang Y W, Han J G, Ren W B, et al. Breeding by spaceflight mutagenesis and its application in forage breeding. Pratacultural Science, 2005, 22(10): 59-63. |
| 张蕴微, 韩建国, 任卫波, 等. 植物空间诱变育种及其在牧草上的应用. 草业科学, 2005, 22(10): 59-63. | |
| 24 | Xu Y Y, Jia J F, Niu B T. The influences of space condition on three legume forages. Chinese Journal of Space Science, 1996, 16(S1): 136-141. |
| 徐云远, 贾敬芬, 牛炳韬. 空间条件对3种豆科牧草的影响. 空间科学学报, 1996, 16(S1): 136-141. | |
| 25 | Yin Q, Wu J H, Chen C. The study on the morphological diversity of Qiancao No.1 Festuca arundinacea with space mutation. Tillage and Cultivation, 2022, 42(4): 20-23. |
| 尹琼, 吴佳海, 陈超. 航天诱变黔草1号高羊茅形态多样性研究. 耕作与栽培, 2022, 42(4): 20-23. | |
| 26 | Kuang Q, Zong Y Q, Yang W, et al. The impact of spatial mutagenesis on agronomic traits and nutrient quality of Deqin alfalfa. Acta Agrestia Sinica, 2024, 32(6): 1962-1967. |
| 匡倩, 宗亚倩, 杨文, 等. 空间诱变对‘德钦’紫花苜蓿农艺性状和营养品质的影响. 草地学报, 2024, 32(6): 1962-1967. | |
| 27 | Hu J, Shi F L, Gao C P. Variation analysis of single plant agronomic traits of space-induced mutant SP1 in Festuca rubra. Chinese Journal of Grassland, 2022, 44(8): 46-51. |
| 胡洁, 石凤翎, 高翠萍. 紫羊茅空间诱变SP1代单株材料田间农艺性状的变异分析. 中国草地学报, 2022, 44(8): 46-51. | |
| 28 | Hou R H, Du K, Huang W Y, et al. Evaluation of drought resistance of 10 wild Medicago ruthenica L. materials from different provenances at germination period. Acta Agrestia Sinica, 2024, 32(2): 489-494. |
| 侯瑞虹, 杜柯, 黄伟业, 等. 10份不同种源野生花苜蓿材料种子萌发期抗旱性评价. 草地学报, 2024, 32(2): 489-494. |
| [1] | 温小月, 赵颖, 王宝强, 王贤, 朱晓林, 王义真, 魏小红. 外源NO调控干旱胁迫下紫花苜蓿AP2/ERFs基因的表达分析[J]. 草业学报, 2025, 34(6): 154-167. |
| [2] | 张晴晴, 马兴羽, 鲁艳, 赵广兴, 曾凡江, 黄彩变. 沙化盐渍土地不同生长时期油莎豆的耐盐性差异研究[J]. 草业学报, 2025, 34(6): 168-180. |
| [3] | 张英豪, 刘楚波, 周坤, 郭家存, 刘世鹏, 孙娈姿. 果草系统中枣树对不同方位紫花苜蓿和鸭茅生长的影响[J]. 草业学报, 2025, 34(6): 203-212. |
| [4] | 崔灿, 王梦琦, 赵琬璐, 刘新颖, 鉴晶晶, 严俊鑫. 胺鲜酯浸种对NaCl胁迫下紫花苜蓿种子萌发及幼苗生长的影响[J]. 草业学报, 2025, 34(6): 46-58. |
| [5] | 张敏, 杨锐, 黄逸州, 林芷昕, 郑贤跃, 刘庆华, 高玉云, 林冬梅, 林占熺, 金灵. 巨菌草对育肥从江香猪生长性能及肠道健康的影响[J]. 草业学报, 2025, 34(5): 171-188. |
| [6] | 祁帅, 张艳丽, 万永杰, 牛伟强, 张积鑫, 高雪, 茆达干. 菌酶协同发酵豆秸对湖羊生长性能、血清指标和瘤胃微生物的影响[J]. 草业学报, 2025, 34(5): 189-201. |
| [7] | 尚栋亮, 臧辉. 成坪高尔夫草坪上一年生早熟禾的化学防除研究进展[J]. 草业学报, 2025, 34(5): 223-236. |
| [8] | 刘文谨, 蒋福祯, 祁凯斌, 宋明丹, 李正鹏. 不同施肥量和播种量对高寒矿区植被恢复和土壤质量的影响及综合评价[J]. 草业学报, 2025, 34(5): 27-39. |
| [9] | 魏孔钦, 张盈盈, 回金峰, 马春晖, 张前兵. 菌磷配施对紫花苜蓿根系非结构碳水化合物及碳氮磷化学计量特征的影响[J]. 草业学报, 2025, 34(5): 40-50. |
| [10] | 周昕越, 王丽萍, 蒋庆雪, 马晓冉, 仪登霞, 王学敏. 紫花苜蓿低温诱导蛋白MsLTI65的分离及其对不同逆境的响应[J]. 草业学报, 2025, 34(5): 89-104. |
| [11] | 罗天蓉, 马健芝, 杜明阳, 多杰措, 熊辉岩, 段瑞君. 紫花苜蓿LACS基因家族成员鉴定及表达分析[J]. 草业学报, 2025, 34(4): 124-136. |
| [12] | 冯雅琪, 陈嘉慧, 张静妮, 隋超, 陈基伟, 刘志鹏, 周强, 刘文献. 基于重测序紫花苜蓿高蛋白、高产关联InDel分子标记开发[J]. 草业学报, 2025, 34(4): 137-149. |
| [13] | 马召, 李晓帆, 孙莉琼, 黄智, 许垒, 鲁霆, 唐晓清, 王康才. 三株丹参根内生细菌对宿主生长及药用品质的影响[J]. 草业学报, 2025, 34(4): 175-188. |
| [14] | 董拓轩, 陈训锋, 梅大海, 郭永莎, 魏旭红, 宋秋艳. 纳米铁与铜对苜蓿壳二孢及其引致春季黑茎病的抑制与防治作用[J]. 草业学报, 2025, 34(4): 201-211. |
| [15] | 王小风, 马步东, 黄海霞, 罗永忠, 齐建伟, 邓卓. 干旱胁迫及复水对裸果木幼苗生理特性的影响[J]. 草业学报, 2025, 34(4): 93-103. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||