Welcome to Acta Prataculturae Sinica ! Today is Share:

Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (1): 12-23.DOI: 10.11686/cyxb2020064

Previous Articles     Next Articles

Community diversity, patterns of productivity, and factors influencing them in Stipa in Ningxia grassland

Wan-di LIU1(), Xiao-wei LI1(), Wen-guang HUANG2, Hui-cheng MA1, Hong-ying MA1, Wen-xiao WANG1   

  1. 1.College of Agriculture,Ningxia University,Yinchuan 750021,China
    2.Grassland Workstation of Ningxia,Yinchuan 750021,China
  • Received:2020-02-20 Revised:2020-05-18 Online:2021-01-20 Published:2021-01-08
  • Contact: Xiao-wei LI

Abstract:

Species diversity and productivity are core indicators of grassland ecosystems and the fundamental factors for characterizing the services and functions of grassland ecosystems. The temperate grasslands in Ningxia are located in the transitional area between arid and semi-arid grasslands. Stipa is the dominant plant genus and it is sensitive to changes in water and heat. Therefore, in this study, we focused on the diversity of Stipa plant communities in Ningxia grasslands in the context of global climate change. A knowledge of the patterns of diversity and productivity, and the factors that influence them at the macro-scale, is not only of great value for research on ecological theory, but is also significant for the production and management of natural grasslands in Ningxia. In this study, 15 Stipa plant communities in the temperate grassland of Ningxia were studied in detail. Fifteen field observation plots were established along an environmental gradient, and the characteristics of the plant community, soil nutrient status, and climatic factors were measured. The spatial distribution patterns of plant community diversity and productivity, and the responses of plant communities to ecological factors were also determined. These analyses clarified the relationship between plant community species diversity and productivity. We found that: 1) The productivity of the Stipa community in Ningxia was significantly positively correlated with latitude and negatively correlated with altitude and longitude; species diversity was significantly negatively correlated with latitude and significantly positively correlated with altitude, but not significantly correlated with longitude; 2) The results of redundancy analyses showed that soil available nitrogen, annual average temperature, soil organic carbon, soil total nitrogen, annual average radiation, soil moisture, soil bulk density, soil total phosphorus, average annual precipitation, average monthly precipitation of the growing season, and average monthly precipitation of the dry season were the main factors affecting species diversity and productivity. Soil factors explained, respectively, 15.6%, 17.8%, and 19.8% of the variation in productivity, diversity, and overall interpretation, and hydrothermal factors explained, respectively, 13.8%, 37.9%, and 25.2% of the variation in the same factors, while the interaction between hydrothermal factors and soil factors explained, respectively, 68.7%, 39.6%, and 50.6% of the variation in the same factors. In general, water, heat, and soil factors were identified as the drivers of the productivity and diversity patterns of Stipa in Ningxia, but the sizes of their contributions to diversity and productivity differed, and showed certain trends. Community diversity and productivity tended to be positively correlated, but this was not statistically significant. The results of this study provide a theoretical basis for the production and management of natural grasslands in Ningxia.

Key words: Stipa community, diversity, productivity, hydrothermal conditions, soil