Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (5): 115-123.DOI: 10.11686/cyxb2021375
Jie-ping DING1(), Yong-qing LUO2(), Wei-chun LIU3, Fei WEN1, Li-long WANG2, Xu-yang WANG2, Yu-long DUAN2, Jie LIAN2
Received:
2021-10-19
Revised:
2021-11-23
Online:
2022-05-20
Published:
2022-03-30
Contact:
Yong-qing LUO
Jie-ping DING, Yong-qing LUO, Wei-chun LIU, Fei WEN, Li-long WANG, Xu-yang WANG, Yu-long DUAN, Jie LIAN. Effects of mycorrhiza on nutrient release during fine root decomposition in degraded sandy grassland[J]. Acta Prataculturae Sinica, 2022, 31(5): 115-123.
元素Elements | 平均值Mean value | 标准差Standard deviation | 最大值Maximum | 最小值Minimum |
---|---|---|---|---|
碳Carbon (C) | 40.76 | 1.00 | 39.66 | 41.59 |
氮Nitrogen (N) | 1.43 | 0.16 | 1.26 | 1.63 |
磷Phosphorus (P) | 0.22 | 0.01 | 0.21 | 0.24 |
钾Potassium (K) | 1.43 | 0.10 | 1.29 | 1.54 |
钠Sodium (Na) | 0.03 | 0.01 | 0.02 | 0.05 |
钙Calcium (Ca) | 0.47 | 0.05 | 0.38 | 0.51 |
镁Magnesium (Mg) | 0.16 | 0.02 | 0.14 | 0.19 |
Table 1 Initial value of element content in fine roots of A. halodendron (%, n=5)
元素Elements | 平均值Mean value | 标准差Standard deviation | 最大值Maximum | 最小值Minimum |
---|---|---|---|---|
碳Carbon (C) | 40.76 | 1.00 | 39.66 | 41.59 |
氮Nitrogen (N) | 1.43 | 0.16 | 1.26 | 1.63 |
磷Phosphorus (P) | 0.22 | 0.01 | 0.21 | 0.24 |
钾Potassium (K) | 1.43 | 0.10 | 1.29 | 1.54 |
钠Sodium (Na) | 0.03 | 0.01 | 0.02 | 0.05 |
钙Calcium (Ca) | 0.47 | 0.05 | 0.38 | 0.51 |
镁Magnesium (Mg) | 0.16 | 0.02 | 0.14 | 0.19 |
指标 Parameters | 处理 Treatments (T) | 分解时间Decomposition time (DT) | 处理×分解时间T×DT | |||
---|---|---|---|---|---|---|
F值F-value | P值P-value | F值F-value | P值P-value | F值F-value | P值P-value | |
氮含量N content | 5.090 | 0.008 | 98.740 | <0.001 | 3.680 | 0.001 |
磷含量P content | 17.144 | <0.001 | 13.617 | <0.001 | 3.548 | 0.001 |
钾含量K content | 6.877 | 0.002 | 494.427 | <0.001 | 0.970 | 0.465 |
N∶P | 10.414 | <0.001 | 56.373 | <0.001 | 5.955 | <0.001 |
N∶K | 4.779 | 0.011 | 118.078 | <0.001 | 1.282 | 0.264 |
P∶K | 0.037 | 0.963 | 55.034 | <0.001 | 0.862 | 0.551 |
Table 2 Two-Way ANOVA analysis of the effect of different treatments and decomposition time on A. halodendron fine root litter contents of N, P and K
指标 Parameters | 处理 Treatments (T) | 分解时间Decomposition time (DT) | 处理×分解时间T×DT | |||
---|---|---|---|---|---|---|
F值F-value | P值P-value | F值F-value | P值P-value | F值F-value | P值P-value | |
氮含量N content | 5.090 | 0.008 | 98.740 | <0.001 | 3.680 | 0.001 |
磷含量P content | 17.144 | <0.001 | 13.617 | <0.001 | 3.548 | 0.001 |
钾含量K content | 6.877 | 0.002 | 494.427 | <0.001 | 0.970 | 0.465 |
N∶P | 10.414 | <0.001 | 56.373 | <0.001 | 5.955 | <0.001 |
N∶K | 4.779 | 0.011 | 118.078 | <0.001 | 1.282 | 0.264 |
P∶K | 0.037 | 0.963 | 55.034 | <0.001 | 0.862 | 0.551 |
指标 Parameters | 处理 Treatments (T) | 分解时间Decomposition time (DT) | 处理×分解时间T×DT | |||
---|---|---|---|---|---|---|
F值 F-value | P值 P-value | F值 F-value | P值 P-value | F值 F-value | P值 P-value | |
N | 8.709 | <0.001 | 10.350 | <0.001 | 1.455 | 0.186 |
P | 19.953 | <0.001 | 87.194 | <0.001 | 1.008 | 0.436 |
K | 5.549 | 0.005 | 564.419 | <0.001 | 1.035 | 0.417 |
Table 3 Two-Way ANOVA analysis of the effect of different treatments and decomposition time on A. halodendron fine root litter mass remaining rate of N, P and K
指标 Parameters | 处理 Treatments (T) | 分解时间Decomposition time (DT) | 处理×分解时间T×DT | |||
---|---|---|---|---|---|---|
F值 F-value | P值 P-value | F值 F-value | P值 P-value | F值 F-value | P值 P-value | |
N | 8.709 | <0.001 | 10.350 | <0.001 | 1.455 | 0.186 |
P | 19.953 | <0.001 | 87.194 | <0.001 | 1.008 | 0.436 |
K | 5.549 | 0.005 | 564.419 | <0.001 | 1.035 | 0.417 |
1 | Luo Y Q, Zhou J, Yue X F, et al. Effect of precipitation frequency on litter decomposition of three annual species (Setaria viridis, Artemisia sacrorum, and Chenopodium acuminatum) in a semi-arid sandy grassland of northeastern China. Arid Land Research and Management, 2021, 35(4): 397-413. |
2 | Luo Y Q, Zhao X Y, Li Y Q, et al. Wind disturbance on litter production affects soil carbon accumulation in degraded sandy grasslands in semi-arid sandy grassland. Ecological Engineering, 2021, 171: 106373. |
3 | Luo Y Q, Zhao X Y, Wang T, et al. Characteristics of the plant-root system and its relationships with soil organic carbon and total nitrogen in a degraded sandy grassland. Acta Prataculturae Sinica, 2017, 26(8): 200-206. |
罗永清, 赵学勇, 王涛, 等. 沙地植物根系特征及其与土壤有机碳和总氮的关系. 草业学报, 2017, 26(8): 200-206. | |
4 | Liu Y, Liu S, Wan S, et al. Effects of experimental throughfall reduction and soil warming on fine root biomass and its decomposition in a warm temperate oak forest. Science of the Total Environment, 2017, 574: 1448-1455. |
5 | Luo Y Q, Ding J P, Zhao X Y, et al. Grazing exclusion altered the effect of plant root diameter on decomposition rates in a semiarid grassland ecosystem, northeastern China. Ecological Research, 2020, 35(3): 405-415. |
6 | Li Y Y, Wang Z W, Sun T. Response of fine root decomposition to long-term nitrogen addition in the temperate forest. Bulletin of Botanical Research, 2017, 37(6): 848-854. |
李媛媛, 王正文, 孙涛. 氮添加对温带森林细根长期分解的影响. 植物研究, 2017, 37(6): 848-854. | |
7 | Hong H B, Lin C F, Peng J Q, et al. Effects of phosphorus addition on fine root decomposition and enzyme activity of Castanopsis carlesii and Cunninghamia lanceolata in subtropical forest. Acta Ecologica Sinica, 2017, 37(1): 136-146. |
洪慧滨, 林成芳, 彭建勤, 等. 磷添加对中亚热带米槠和杉木细根分解及其酶活性的影响. 生态学报, 2017, 37(1): 136-146. | |
8 | Peng J Q. Effects of phosphorus availability on fine roots decomposition in mid-subtropical forest. Fuzhou: Fujian Normal University, 2016. |
彭建勤. 磷有效性对中亚热带林木细根分解的影响. 福州: 福建师范大学, 2016. | |
9 | Lin C F, Yang Y S, Guo J F, et al. Fine root decomposition of evergreen broadleaved and coniferous tree species in mid-subtropical China: Dynamics of dry mass, nutrient and organic fractions. Plant and Soil, 2011, 338: 311-327. |
10 | Sall S N, Masse D, Bernhard-Reversat F, et al. Microbial activities during the early stage of laboratory decomposition of tropical leaf litters: The effect of interactions between litter quality and exogenous inorganic nitrogen. Biology and Fertility of Soils, 2003, 39(2): 103-111. |
11 | Luo Y Q, Zhao X Y, Li Y Q, et al. Root decomposition of Artemisia halodendron and its effect on soil nitrogen and soil organic carbon in the Horqin Sandy Land, northeastern China. Ecological Research, 2016, 31(4): 535-545. |
12 | Phillips R P, Meier I C, Bernhardt E S, et al. Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2. Ecology Letters, 2012, 15: 1042-1049. |
13 | Jin W H, Shao S, Chen J H, et al. Research progress in the impact of different mycorrhizal types on soil carbon cycling. Journal of Zhejiang A&F University, 2021, 38(5): 953-962. |
金文豪, 邵帅, 陈俊辉, 等. 不同类型菌根对土壤碳循环的影响差异研究进展. 浙江农林大学学报, 2021, 38(5): 953-962. | |
14 | Phillips R P, Brzostek E, Midgley M G. The mycorrhizal-associated nutrient economy: A new framework for predicting carbon-nutrient couplings in temperate forests. New Phytologist, 2013, 199: 41-51. |
15 | Hodge A, Fitter A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107: 13754-13759. |
16 | Qian Y Q, Peng X Q, Zeng W J, et al. The effect of mycorrhizal fungi on soil respiration and litter decomposition. Microbiology China, 2013, 40(12): 2306-2318. |
钱雨奇, 彭晓茜, 曾文静, 等. 菌根真菌对土壤呼吸以及凋落物分解的影响. 微生物学通报, 2013, 40(12): 2306-2318. | |
17 | Colpaert J V, VanLaere A. A comparison of the extracellular enzyme activities of two ectomycorrhizal and a leaf-saprotrophic basidiomycete colonizing beech leaf litter. New Phytologist, 1996, 134(1): 133-141. |
18 | Hodge A, Campbell C D, Fitter A H. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature, 2001, 413(6853): 297-299. |
19 | Cheng L, Booker F L, Tu C, et al. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science, 2012, 337(6098): 1084-1087. |
20 | Te B Q. Diversity and seasonality of arbuscular mycorrhizal fungi of Artemisia halodendron community in Horqin sandy land. Hohhot: Inner Mongolia University, 2007. |
特布沁. 科尔沁沙地差不嘎蒿群落AM真菌多样性及其动态变化的研究. 呼和浩特: 内蒙古大学, 2007. | |
21 | Li F R, Zhang A S, Duan S S, et al. Patterns of reproductive allocation in Artemisia halodendron inhabiting two contrasting habitats. Acta Oecologica, 2005, 28(1): 57-64. |
22 | Zhang J Y, Zhao H L, Zhang T H, et al. Community succession along a chronosequence of vegetation restoration on sand dunes in Horqin Sandy Land. Journal of Arid Environments, 2005, 62: 555-566. |
23 | Luo Y Q, Du Z, Yan Z Q, et al. Artemisia halodendron litters have strong negative allelopathic effects on earlier successional plants in a semi-arid sandy dune region in China. Frontiers in Plant Science, 2020, 11: 961. |
24 | Yin H J, Liu Q. Ecological studies on root exudation of subalpine forest in southwest China. Beijing: Science Press, 2019: 102-107. |
尹华军, 刘庆. 西南亚高山森林根系分泌物生态学研究. 北京: 科学出版社, 2019: 102-107. | |
25 | Lu R K. Methods of soil agrochemical analysis. Beijing: China Agricultural Science and Technology Press, 2000. |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. | |
26 | Liu X P, Luo Y Q, Cheng L, et al. Effect of root and mycelia on fine root decomposition and release of carbon and nitrogen under Artemisia halodendron in a semi-arid sandy grassland in China. Frontiers in Plant Science, 2021, 12: 698054. |
27 | Nygren C M R, Edqvist J, Elfstrand M, et al. Detection of extracellular protease activity in different species and genera of ectomycorrhizal fungi. Mycorrhiza, 2007, 17(3): 241-248. |
28 | Chen W, Koide R T, Adams T S, et al. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proceedings of the National Academy of Sciences, 2016, 113(31): 8741-8746. |
29 | Tan Q Y, Si J P, He Y J, et al. Improvement of karst soil nutrients by arbuscular mycorrhizal fungi through promoting nutrient release from the litter. International Journal of Phytoremediation, 2021, 23(12): 1244-1254. |
30 | He Y J, Cornelissen J H C, Zhong Z C, et al. How interacting fungal species and mineral nitrogen inputs affect transfer of nitrogen from litter via arbuscular mycorrhizal mycelium. Environmental Science and Pollution Research, 2017, 24(10): 9791-9801. |
31 | Hodge A, Storer K. Arbuscular mycorrhiza and nitrogen: Implications for individual plants through to ecosystems. Plant and Soil, 2015, 386: 1-19. |
32 | Chigineva N I, Aleksandrova A V, Marhan S, et al. The importance of mycelial connection at the soil-litter interface for nutrient translocation, enzyme activity and litter decomposition. Applied Soil Ecology, 2011, 51: 35-41. |
33 | Luo Y Q, Zhao X Y, Wang T, et al. Plant root decomposition and its responses to biotic and abiotic factors. Acta Prataculturae Sinica, 2017, 26(2): 197-207. |
罗永清, 赵学勇, 王涛, 等. 植物根系分解及其对生物和非生物因素的响应机理研究进展. 草业学报, 2017, 26(2): 197-207. |
[1] | Hong SUN, Yu-long ZHENG, Yan-li LIN, Chao CHEN, Fu-yu YANG. Effects of biochar, phosphorus addition and AMF inoculation on switchgrass growth and soil properties under Cd stress [J]. Acta Prataculturae Sinica, 2021, 30(12): 71-80. |
[2] | Rong-rong LIU, Ping WANG, Xin-ling DAI, Ke-yu CHEN, Guo-liang LI, Xin-rong WAN, Bao-ming JI. Effects of different densities of Brandt’s voles on communities of mycorrhizal fungal in the typical steppe of Inner Mongolia [J]. Acta Prataculturae Sinica, 2021, 30(11): 76-86. |
[3] | Cong-cong LI, Ya-xing ZHOU, Qiang GU, Ming-xin YANG, Chuan-lu ZHU, Zi-yuan PENG, Kai XUE, Xin-quan ZHAO, Yan-fen WANG, Bao-ming JI, Jing ZHANG. The species diversity and community assembly of arbuscular mycorrhizal fungi in typical alpine grassland in Sanjiangyuan region [J]. Acta Prataculturae Sinica, 2021, 30(1): 46-58. |
[4] | JIA Hong-mei, FANG Qian, ZHANG Shu-hua, YAN Zhu-yun, LIU Min. Effects of AM fungi on growth and rhizosphere soil enzyme activities of Salvia miltiorrhiza [J]. Acta Prataculturae Sinica, 2020, 29(6): 83-92. |
[5] | ZHAO Xin, WU Zi-long, ZHANG Hao, YANG Xu-zhao, HAN Chao, GAO Jie. Arbuscular mycorrhizal fungal infection rates of flora of the Fengfeng mining area coal gob piles and influence on plant Cd content [J]. Acta Prataculturae Sinica, 2020, 29(5): 78-87. |
[6] | WEI Yong, WANG Xiao-yu, LI Ying-de, DUAN Ting-yu. Stress tolerance signal transfer by arbuscular mycorrhizal fungi in a white clover-perennial ryegrass mixture [J]. Acta Prataculturae Sinica, 2020, 29(4): 138-146. |
[7] | Ying-kui WANG, Yu-rong YANG, De-li WANG. Effects of arbuscular mycorrhizal fungi on ion absorption and distribution in Leymus chinensis under saline-alkaline stress [J]. Acta Prataculturae Sinica, 2020, 29(12): 95-104. |
[8] | GAO Ya-min, LUO Hui-qin, YAO Tuo, ZHANG Jian-gui, LI Hai-yun, YANG Yan-shan, LAN Xiao-jun. Isolation, identification and growth promotion of arbuscular mycorrhizal fungi (AMF) from Potentilla chinensis in degraded alpine grassland in the Qilian Mountains [J]. Acta Prataculturae Sinica, 2020, 29(1): 145-154. |
[9] | LI Wen-bin, NING Chu-han, LI Wei, LI Feng, GUO Shao-xia. Responses of AMF and PGPR to Festuca elata under phenanthrene and pyrene stress [J]. Acta Prataculturae Sinica, 2019, 28(8): 84-94. |
[10] | LI Ji-wei, YUE Fei-xue, WANG Yan-fang, ZHANG Ya-mei, NI Rui-jing, WANG Fa-yuan, FU Guo-zhan, LIU Ling. Effects of biochar amendment and arbuscular mycorrhizal inoculation on maize growth and physiological biochemistry under cadmium stress [J]. Acta Prataculturae Sinica, 2018, 27(5): 120-129. |
[11] | QI Lin, YANG Ying-bo, ZHANG Bo, ZHAO Wei, WANG Xiao-ling, LIU Yu-hua. Arbuscular mycorrhizal fungi (AMF) enhance phytoremediation of strontium-contaminated soil by Sorghum bicolor seedlings [J]. Acta Prataculturae Sinica, 2018, 27(12): 103-112. |
[12] | LI Wen-bin, NING Chu-han, XU Meng, LIU Run-jin, GUO Shao-xia. Arbuscular mycorrhizal fungi and Festuca elata can improve fertility of compacted soil [J]. Acta Prataculturae Sinica, 2018, 27(11): 131-141. |
[13] | GUO Xiong-fei. Effects of biochar and arbuscular mycorrhizal fungi on soil nutrients and growth of Cassia occidentalis under heavy metal contamination [J]. Acta Prataculturae Sinica, 2018, 27(11): 150-161. |
[14] | LI Fang, LI Yan-Zhong, DUAN Ting-Yu. Effects of interactions between a grass endophyte and an arbuscular mycorrhizal fungus on perennial ryegrass growth [J]. Acta Prataculturae Sinica, 2017, 26(9): 132-140. |
[15] | LIU Fang, JING Shu-Xuan, HU Jian, XIAO Yan, ZHANG Ying-Jun. Effects of cadmium and arbuscular mycorrhizal fungi inoculation on the growth and nitrogen uptake of alfalfa (Medicago sativa) [J]. Acta Prataculturae Sinica, 2017, 26(2): 69-77. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||