Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (3): 91-106.DOI: 10.11686/cyxb2022094
Previous Articles Next Articles
Wen LI1,2(), Li-rong ZHAO1,2, Jian-ping ZHANG1,2(), Zi-gang LIU1(), Yan-ni QI2, Wen-juan LI2, Ya-ping XIE2
Received:
2022-02-23
Revised:
2022-04-06
Online:
2023-03-20
Published:
2022-12-30
Contact:
Jian-ping ZHANG,Zi-gang LIU
Wen LI, Li-rong ZHAO, Jian-ping ZHANG, Zi-gang LIU, Yan-ni QI, Wen-juan LI, Ya-ping XIE. Genome-wide identification and analysis of the DMP gene family in flax (Linum usitatissimum)[J]. Acta Prataculturae Sinica, 2023, 32(3): 91-106.
引物名称Primer name | 序列Primer sequence (5′-3′) | 用途Usage |
---|---|---|
DMP-F | ATGGAGGAAGACGACTATGGAATCA | 基因克隆Gene cloning |
DMP-R | CTAACTAGCACTGCACCCAATCCC | |
qDMP-F | CACTTCACGGACAGTTTCAAGGATC | 定量反转录聚合酶连锁反应Quantificational RT-PCR |
qDMP-R | CAAGCCACTACAAACAACACCAACC | |
GAPDH-F | CTTTACCCTCAGCAAATCCG | 内参Reference gene |
GAPDH-R | AGGTTCTTCCCGCTCTCAAT |
Table 1 Primers used in this research
引物名称Primer name | 序列Primer sequence (5′-3′) | 用途Usage |
---|---|---|
DMP-F | ATGGAGGAAGACGACTATGGAATCA | 基因克隆Gene cloning |
DMP-R | CTAACTAGCACTGCACCCAATCCC | |
qDMP-F | CACTTCACGGACAGTTTCAAGGATC | 定量反转录聚合酶连锁反应Quantificational RT-PCR |
qDMP-R | CAAGCCACTACAAACAACACCAACC | |
GAPDH-F | CTTTACCCTCAGCAAATCCG | 内参Reference gene |
GAPDH-R | AGGTTCTTCCCGCTCTCAAT |
基因名Gene name | 基因号 Gene-ID | 染色体位置 Chromosome location | 外显子数 No. of exons | 蛋白 长度 Protein length (aa) | 总平均亲水性Grand average of hydropathicity (GRAVY) | 等电点 Isoelectric point | 分子量 Molecular weight (Da) | 亚细胞定位 Subcellular location | 跨膜结 构域 Transmembrane domain |
---|---|---|---|---|---|---|---|---|---|
LuDMP-1 | L.us.o.g.scaffold34.203 | Chr1:885721-886419(+) | 1 | 232 | 0.107 | 8.08 | 25392.66 | CM,Nucleus | 5 |
LuDMP-2 | L.us.o.g.scaffold0.456 | Chr2:21280161-21280973(+) | 1 | 198 | 0.231 | 8.63 | 21293.48 | CM | 4 |
LuDMP-3 | L.us.o.g.scaffold0.36 | Chr2:21635014-21637816(-) | 1 | 195 | 0.244 | 8.28 | 20946.10 | CM | 4 |
LuDMP-4 | L.us.o.g.scaffold30.59 | Chr4:20534605-20535300(+) | 1 | 231 | 0.202 | 4.89 | 25126.95 | CM | 2 |
LuDMP-5 | L.us.o.g.scaffold30.58 | Chr4:20536021-20536638(+) | 1 | 205 | 0.364 | 6.93 | 22745.70 | CP | 3 |
LuDMP-6 | L.us.o.g.scaffold30.57 | Chr4:20537649-20538317(+) | 1 | 222 | 0.310 | 6.18 | 23847.58 | CM | 4 |
LuDMP-7 | L.us.o.g.scaffold70.212 | Chr7:9831303-9832001(+) | 1 | 232 | 0.057 | 8.08 | 25375.63 | CM,Nucleus | 4 |
LuDMP-8 | L.us.o.g.scaffold136.194 | Chr8:1238120-1238776(+) | 1 | 218 | 0.064 | 9.19 | 23883.09 | CP | 2 |
LuDMP-9 | L.us.o.g.scaffold69.277 | Chr10:17296812-17298353(-) | 2 | 229 | 0.093 | 9.71 | 25372.99 | CM | 5 |
LuDMP-10 | L.us.o.g.scaffold305.10 | Chr12:5379664-5380827(-) | 1 | 217 | 0.313 | 9.06 | 23577.41 | CM | 4 |
LuDMP-11 | L.us.o.g.scaffold48.30 | Chr14:1446411-1447221(+) | 1 | 237 | 0.061 | 9.19 | 23746.92 | CM,CP | 4 |
LuDMP-12 | L.us.o.g.scaffold28.148 | Chr15:5929885-5930780(-) | 1 | 226 | 0.283 | 9.28 | 24020.92 | CM | 4 |
LuDMP-13 | L.us.o.g.scaffold107.51 | Chr15:7942536-7943540(+) | 1 | 233 | 0.184 | 4.76 | 25373.19 | CM | 2 |
LuDMP-14 | L.us.o.g.scaffold107.50 | Chr15:7944336-7945076(+) | 1 | 205 | 0.582 | 6.50 | 22782.72 | CM,Nucleus | 3 |
LuDMP-15 | L.us.o.g.scaffold107.49 | Chr15:7946004-7946771(+) | 1 | 222 | 0.252 | 6.18 | 23865.56 | CM | 4 |
LuDMP-16 | L.us.o.g.scaffold107.46 | Chr15:7954525-7955820(+) | 2 | 230 | 0.275 | 5.28 | 24596.32 | CM | 4 |
LuDMP-17 | L.us.o.g.scaffold107.45 | Chr15: 7957608-7959009(+) | 2 | 240 | 0.256 | 5.01 | 25829.65 | CM | 2 |
Table 2 Basic characteristics of flax LuDMP members
基因名Gene name | 基因号 Gene-ID | 染色体位置 Chromosome location | 外显子数 No. of exons | 蛋白 长度 Protein length (aa) | 总平均亲水性Grand average of hydropathicity (GRAVY) | 等电点 Isoelectric point | 分子量 Molecular weight (Da) | 亚细胞定位 Subcellular location | 跨膜结 构域 Transmembrane domain |
---|---|---|---|---|---|---|---|---|---|
LuDMP-1 | L.us.o.g.scaffold34.203 | Chr1:885721-886419(+) | 1 | 232 | 0.107 | 8.08 | 25392.66 | CM,Nucleus | 5 |
LuDMP-2 | L.us.o.g.scaffold0.456 | Chr2:21280161-21280973(+) | 1 | 198 | 0.231 | 8.63 | 21293.48 | CM | 4 |
LuDMP-3 | L.us.o.g.scaffold0.36 | Chr2:21635014-21637816(-) | 1 | 195 | 0.244 | 8.28 | 20946.10 | CM | 4 |
LuDMP-4 | L.us.o.g.scaffold30.59 | Chr4:20534605-20535300(+) | 1 | 231 | 0.202 | 4.89 | 25126.95 | CM | 2 |
LuDMP-5 | L.us.o.g.scaffold30.58 | Chr4:20536021-20536638(+) | 1 | 205 | 0.364 | 6.93 | 22745.70 | CP | 3 |
LuDMP-6 | L.us.o.g.scaffold30.57 | Chr4:20537649-20538317(+) | 1 | 222 | 0.310 | 6.18 | 23847.58 | CM | 4 |
LuDMP-7 | L.us.o.g.scaffold70.212 | Chr7:9831303-9832001(+) | 1 | 232 | 0.057 | 8.08 | 25375.63 | CM,Nucleus | 4 |
LuDMP-8 | L.us.o.g.scaffold136.194 | Chr8:1238120-1238776(+) | 1 | 218 | 0.064 | 9.19 | 23883.09 | CP | 2 |
LuDMP-9 | L.us.o.g.scaffold69.277 | Chr10:17296812-17298353(-) | 2 | 229 | 0.093 | 9.71 | 25372.99 | CM | 5 |
LuDMP-10 | L.us.o.g.scaffold305.10 | Chr12:5379664-5380827(-) | 1 | 217 | 0.313 | 9.06 | 23577.41 | CM | 4 |
LuDMP-11 | L.us.o.g.scaffold48.30 | Chr14:1446411-1447221(+) | 1 | 237 | 0.061 | 9.19 | 23746.92 | CM,CP | 4 |
LuDMP-12 | L.us.o.g.scaffold28.148 | Chr15:5929885-5930780(-) | 1 | 226 | 0.283 | 9.28 | 24020.92 | CM | 4 |
LuDMP-13 | L.us.o.g.scaffold107.51 | Chr15:7942536-7943540(+) | 1 | 233 | 0.184 | 4.76 | 25373.19 | CM | 2 |
LuDMP-14 | L.us.o.g.scaffold107.50 | Chr15:7944336-7945076(+) | 1 | 205 | 0.582 | 6.50 | 22782.72 | CM,Nucleus | 3 |
LuDMP-15 | L.us.o.g.scaffold107.49 | Chr15:7946004-7946771(+) | 1 | 222 | 0.252 | 6.18 | 23865.56 | CM | 4 |
LuDMP-16 | L.us.o.g.scaffold107.46 | Chr15:7954525-7955820(+) | 2 | 230 | 0.275 | 5.28 | 24596.32 | CM | 4 |
LuDMP-17 | L.us.o.g.scaffold107.45 | Chr15: 7957608-7959009(+) | 2 | 240 | 0.256 | 5.01 | 25829.65 | CM | 2 |
基因ID Gene ID | AtDMP8 | AtDMP9 | ZmDMP | |||
---|---|---|---|---|---|---|
E值 E value | 同源性Per ident (%) | E值 E value | 同源性 Per ident (%) | E值 E value | 同源性 Per ident (%) | |
LuDMP-1 | 1×1086 | 57.55 | 3×1086 | 67.39 | 2×1090 | 67.98 |
LuDMP-2 | 2×1034 | 33.15 | 9×1033 | 32.58 | 9×1028 | 36.05 |
LuDMP-3 | 9×1036 | 33.71 | 2×1033 | 32.58 | 3×1029 | 35.80 |
LuDMP-4 | 2×1047 | 33.76 | 6×1046 | 38.71 | 4×1045 | 44.94 |
LuDMP-5 | 7×1043 | 35.68 | 4×1041 | 35.14 | 6×1041 | 39.33 |
LuDMP-6 | 1×1042 | 34.76 | 1×1042 | 36.22 | 3×1040 | 39.11 |
LuDMP-7 | 1×1088 | 57.96 | 4×1086 | 67.39 | 1×1090 | 67.98 |
LuDMP-8 | 6×1041 | 39.56 | 2×1038 | 38.46 | 1×1036 | 39.33 |
LuDMP-9 | 7×1028 | 33.88 | 8×1026 | 32.07 | 5×1025 | 33.88 |
LuDMP-10 | 7×1046 | 36.94 | 6×1043 | 39.13 | 5×1044 | 43.58 |
LuDMP-11 | 4×1040 | 37.50 | 1×1037 | 36.41 | 1×1035 | 37.64 |
LuDMP-12 | 2×1041 | 36.02 | 8×1040 | 36.56 | 1×1039 | 44.89 |
LuDMP-13 | 3×1047 | 33.47 | 7×1046 | 38.71 | 1×1045 | 45.51 |
LuDMP-14 | 5×1041 | 34.59 | 7×1040 | 33.51 | 6×1040 | 38.76 |
LuDMP-15 | 2×1042 | 35.11 | 9×1044 | 36.76 | 8×1040 | 40.56 |
LuDMP-16 | 1×1040 | 35.48 | 3×1042 | 37.30 | 7×1041 | 40.45 |
LuDMP-17 | 4×1044 | 37.63 | 2×1045 | 38.38 | 9×1043 | 42.46 |
Table 3 LuDMP gene homology comparison
基因ID Gene ID | AtDMP8 | AtDMP9 | ZmDMP | |||
---|---|---|---|---|---|---|
E值 E value | 同源性Per ident (%) | E值 E value | 同源性 Per ident (%) | E值 E value | 同源性 Per ident (%) | |
LuDMP-1 | 1×1086 | 57.55 | 3×1086 | 67.39 | 2×1090 | 67.98 |
LuDMP-2 | 2×1034 | 33.15 | 9×1033 | 32.58 | 9×1028 | 36.05 |
LuDMP-3 | 9×1036 | 33.71 | 2×1033 | 32.58 | 3×1029 | 35.80 |
LuDMP-4 | 2×1047 | 33.76 | 6×1046 | 38.71 | 4×1045 | 44.94 |
LuDMP-5 | 7×1043 | 35.68 | 4×1041 | 35.14 | 6×1041 | 39.33 |
LuDMP-6 | 1×1042 | 34.76 | 1×1042 | 36.22 | 3×1040 | 39.11 |
LuDMP-7 | 1×1088 | 57.96 | 4×1086 | 67.39 | 1×1090 | 67.98 |
LuDMP-8 | 6×1041 | 39.56 | 2×1038 | 38.46 | 1×1036 | 39.33 |
LuDMP-9 | 7×1028 | 33.88 | 8×1026 | 32.07 | 5×1025 | 33.88 |
LuDMP-10 | 7×1046 | 36.94 | 6×1043 | 39.13 | 5×1044 | 43.58 |
LuDMP-11 | 4×1040 | 37.50 | 1×1037 | 36.41 | 1×1035 | 37.64 |
LuDMP-12 | 2×1041 | 36.02 | 8×1040 | 36.56 | 1×1039 | 44.89 |
LuDMP-13 | 3×1047 | 33.47 | 7×1046 | 38.71 | 1×1045 | 45.51 |
LuDMP-14 | 5×1041 | 34.59 | 7×1040 | 33.51 | 6×1040 | 38.76 |
LuDMP-15 | 2×1042 | 35.11 | 9×1044 | 36.76 | 8×1040 | 40.56 |
LuDMP-16 | 1×1040 | 35.48 | 3×1042 | 37.30 | 7×1041 | 40.45 |
LuDMP-17 | 4×1044 | 37.63 | 2×1045 | 38.38 | 9×1043 | 42.46 |
基因对 Gene pair | 复制事件 Duplication events | 同义替换率 Ks | 非同义替换率 Ka | Ka/Ks | 选择类型 Select type | 分歧时间 Divergence Time |
---|---|---|---|---|---|---|
LuDMP-4/LuDMP-5 | 串联复制 Tandem duplication | 1.6616 | 0.2819 | 0.169656 | 纯化选择 Purifying selection | 136.19670 |
LuDMP-13/LuDMP-14 | 串联复制 Tandem duplication | 2.0752 | 0.2957 | 0.142492 | 纯化选择 Purifying selection | 170.09840 |
LuDMP-16/LuDMP-17 | 串联复制 Tandem duplication | 0.8487 | 0.6472 | 0.762578 | 纯化选择 Purifying selection | 69.56557 |
LuDMP-1/LuDMP-7 | 片段复制 Segmental duplication | 0.2499 | 0.0097 | 0.038816 | 纯化选择 Purifying selection | 20.48361 |
LuDMP-2/LuDMP-3 | 片段复制 Segmental duplication | 0.1296 | 0.0278 | 0.214506 | 纯化选择 Purifying selection | 10.62295 |
LuDMP-4/LuDMP-13 | 片段复制 Segmental duplication | 0.2225 | 0.0025 | 0.011236 | 纯化选择 Purifying selection | 18.23770 |
LuDMP-6/LuDMP-9 | 片段复制 Segmental duplication | n.a. | 0.4789 | n.a. | n.a. | n.a. |
LuDMP-8/LuDMP-9 | 片段复制 Segmental duplication | 1.6678 | 0.2323 | 0.139285 | 纯化选择 Purifying selection | 136.70490 |
LuDMP-8/LuDMP-11 | 片段复制 Segmental duplication | 0.2826 | 0.0484 | 0.171267 | 纯化选择 Purifying selection | 23.16393 |
LuDMP-9/LuDMP-11 | 片段复制 Segmental duplication | 1.6134 | 0.2380 | 0.147515 | 纯化选择 Purifying selection | 132.24590 |
LuDMP-9/LuDMP-15 | 片段复制 Segmental duplication | n.a. | 0.4402 | n.a. | n.a. | n.a. |
Table 4 Duplication analysis of LuDMP genes
基因对 Gene pair | 复制事件 Duplication events | 同义替换率 Ks | 非同义替换率 Ka | Ka/Ks | 选择类型 Select type | 分歧时间 Divergence Time |
---|---|---|---|---|---|---|
LuDMP-4/LuDMP-5 | 串联复制 Tandem duplication | 1.6616 | 0.2819 | 0.169656 | 纯化选择 Purifying selection | 136.19670 |
LuDMP-13/LuDMP-14 | 串联复制 Tandem duplication | 2.0752 | 0.2957 | 0.142492 | 纯化选择 Purifying selection | 170.09840 |
LuDMP-16/LuDMP-17 | 串联复制 Tandem duplication | 0.8487 | 0.6472 | 0.762578 | 纯化选择 Purifying selection | 69.56557 |
LuDMP-1/LuDMP-7 | 片段复制 Segmental duplication | 0.2499 | 0.0097 | 0.038816 | 纯化选择 Purifying selection | 20.48361 |
LuDMP-2/LuDMP-3 | 片段复制 Segmental duplication | 0.1296 | 0.0278 | 0.214506 | 纯化选择 Purifying selection | 10.62295 |
LuDMP-4/LuDMP-13 | 片段复制 Segmental duplication | 0.2225 | 0.0025 | 0.011236 | 纯化选择 Purifying selection | 18.23770 |
LuDMP-6/LuDMP-9 | 片段复制 Segmental duplication | n.a. | 0.4789 | n.a. | n.a. | n.a. |
LuDMP-8/LuDMP-9 | 片段复制 Segmental duplication | 1.6678 | 0.2323 | 0.139285 | 纯化选择 Purifying selection | 136.70490 |
LuDMP-8/LuDMP-11 | 片段复制 Segmental duplication | 0.2826 | 0.0484 | 0.171267 | 纯化选择 Purifying selection | 23.16393 |
LuDMP-9/LuDMP-11 | 片段复制 Segmental duplication | 1.6134 | 0.2380 | 0.147515 | 纯化选择 Purifying selection | 132.24590 |
LuDMP-9/LuDMP-15 | 片段复制 Segmental duplication | n.a. | 0.4402 | n.a. | n.a. | n.a. |
顺式元件 Cis-element | 典型序列 Typical sequence | 特性 Characteristic | 基因Gene |
---|---|---|---|
TATA-box | TATA | 转录开始的-30左右的核心启动子元件Core promoter element around -30 of transcript-ion start | LuDMP-1、LuDMP-2、LuDMP-4、LuDMP-5、LuDMP-6、LuDMP-7、LuDMP-8、LuDMP-9、LuDMP-10、LuDMP-11、LuDMP-12、LuDMP-13、LuDMP-14、 LuDMP-15、LuDMP-16、LuDMP-17 |
ARE | AAACCA | 厌氧诱导所必需的顺式调节元件Cis-acting regulatory element essential for the anaerobic induction | LuDMP-1、LuDMP-2、LuDMP-3、LuDMP-4、LuDMP-5、LuDMP-6、LuDMP-7、LuDMP-8、LuDMP-9、LuDMP-10、LuDMP-11、LuDMP-12、LuDMP-13、LuDMP-14、 LuDMP-15、LuDMP-16、LuDMP-17 |
Sp1 | GGGCGG | 光响应元件Light responsive element | LuDMP-1、LuDMP-3、LuDMP-6、LuDMP-8 |
ABRE | ACGTG | 参与脱落酸反应的顺式作用元件Cis-acting element involved in the abcisic acid responsiveness | LuDMP-1、LuDMP-4、LuDMP-5、LuDMP-6、LuDMP-7、LuDMP-8、LuDMP-9、LuDMP-10、LuDMP-11、LuDMP-13、LuDMP-16 |
TGACG-motif | TGACG | 参与甲基茉莉酸(MeJA)反应的顺式调节元件Cis-acting regulatory element involved in the MeJA-responsiveness | LuDMP-1、LuDMP-4、LuDMP-5、LuDMP-7、LuDMP-8、LuDMP-9、LuDMP-12、LuDMP-13、LuDMP-14、 LuDMP-15、LuDMP-16、LuDMP-17 |
CGTCA-motif | CGTCA | 参与甲基茉莉酸(MeJA)反应的顺式调节元件Cis-acting regulatory element involved in the MeJA-responsiveness | LuDMP-1、LuDMP-3、LuDMP-4、LuDMP-5、LuDMP-7、LuDMP-8、LuDMP-9、LuDMP-12、LuDMP-13、LuDMP-14、 LuDMP-16、LuDMP-17 |
GCN4_motif | TGAGTCA | 参与胚乳表达的顺式调控元件Cis-regulatory elements involved in endosperm expression | LuDMP-2、LuDMP-9、LuDMP-12、LuDMP-15 |
O2-site | GATGATGTGG | 参与玉米醇溶蛋白代谢调控的顺式调控元件Cis-acting regulatory element involved in zein metabolism regulation | LuDMP-1、LuDMP-2、LuDMP-3、LuDMP-4、LuDMP-5、LuDMP-8、LuDMP-10、LuDMP-12、LuDMP-16、LuDMP-17 |
MBS | CAACTG | 与干旱诱导相关的MYB结合位点MYB binding site involved in drought-inducibility | LuDMP-1、LuDMP-3、LuDMP-6、LuDMP-7、LuDMP-8、LuDMP-9、LuDMP-10、LuDMP-14 |
SARE | TTCGACCATCTT | 水杨酸响应元件Cis-acting element involved in salicylic acid responsiveness | LuDMP-1、LuDMP-7 |
TC-rich repeats | GTTTTCTTAC | 防御和应激响应元件Cis-acting element involved in defense and stress responsiveness | LuDMP-1、LuDMP-5、LuDMP-13、LuDMP-15、LuDMP-16 |
CAT-box | GCCACT | 与分生组织表达相关的顺式作用调控元件Cis-acting regulatory element related to meristem expression | LuDMP-3、LuDMP-5、LuDMP-10、LuDMP-12、LuDMP-13、LuDMP-15 |
P-box | CCTTTTG | 赤霉素响应元件Gibberellin-responsive element | LuDMP-6、LuDMP-10、LuDMP-13、LuDMP-14 |
TGA-element | AACGAC | 生长素响应元件Auxin-responsive element | LuDMP-6、LuDMP-12、LuDMP-14 |
TATC-box | TATCCCA | 赤霉素响应元件Cis-acting element involved in gibberellin-responsiveness | LuDMP-8、LuDMP-9、LuDMP-10、LuDMP-15 |
GC-motif | CCCCCG | 参与缺氧特异性诱导的增强剂样元件Enhancer-like element involved in anoxic specific inducibility | LuDMP-9、LuDMP-15、LuDMP-17 |
DRE | TACCGACAT | 脱水、低温及盐胁迫响应元件Cis-acting element involved in dehydration, low-temperature, salt stresses | LuDMP-3 |
RY-element | CATGCATG | 参与种子特异性调控的顺式调控元件Cis-regulatory elements involved in seed-specific regulation | LuDMP-2 |
GARE-motif | TCTGTTG | 赤霉素响应元件Gibberellin-responsive element | LuDMP-7、LuDMP-8、LuDMP-9、LuDMP-10、LuDMP-12 |
TCA-element | CCATTTTTT | 水杨酸响应元件Cis-acting element involved in salicylic acid responsiveness | LuDMP-2、LuDMP-5、LuDMP-10、LuDMP-14、LuDMP-16、LuDMP-17 |
LTR | CCGAAA | 低温响应元件Cis-acting element involved in low-temperature responsiveness | LuDMP-1、LuDMP-2、LuDMP-5、LuDMP-6、LuDMP-7、LuDMP-8、LuDMP-9、LuDMP-10、LuDMP-11、LuDMP-12、LuDMP-13、LuDMP-14 |
Table 5 Analysis of cis-elements of flax LuDMP promoters
顺式元件 Cis-element | 典型序列 Typical sequence | 特性 Characteristic | 基因Gene |
---|---|---|---|
TATA-box | TATA | 转录开始的-30左右的核心启动子元件Core promoter element around -30 of transcript-ion start | LuDMP-1、LuDMP-2、LuDMP-4、LuDMP-5、LuDMP-6、LuDMP-7、LuDMP-8、LuDMP-9、LuDMP-10、LuDMP-11、LuDMP-12、LuDMP-13、LuDMP-14、 LuDMP-15、LuDMP-16、LuDMP-17 |
ARE | AAACCA | 厌氧诱导所必需的顺式调节元件Cis-acting regulatory element essential for the anaerobic induction | LuDMP-1、LuDMP-2、LuDMP-3、LuDMP-4、LuDMP-5、LuDMP-6、LuDMP-7、LuDMP-8、LuDMP-9、LuDMP-10、LuDMP-11、LuDMP-12、LuDMP-13、LuDMP-14、 LuDMP-15、LuDMP-16、LuDMP-17 |
Sp1 | GGGCGG | 光响应元件Light responsive element | LuDMP-1、LuDMP-3、LuDMP-6、LuDMP-8 |
ABRE | ACGTG | 参与脱落酸反应的顺式作用元件Cis-acting element involved in the abcisic acid responsiveness | LuDMP-1、LuDMP-4、LuDMP-5、LuDMP-6、LuDMP-7、LuDMP-8、LuDMP-9、LuDMP-10、LuDMP-11、LuDMP-13、LuDMP-16 |
TGACG-motif | TGACG | 参与甲基茉莉酸(MeJA)反应的顺式调节元件Cis-acting regulatory element involved in the MeJA-responsiveness | LuDMP-1、LuDMP-4、LuDMP-5、LuDMP-7、LuDMP-8、LuDMP-9、LuDMP-12、LuDMP-13、LuDMP-14、 LuDMP-15、LuDMP-16、LuDMP-17 |
CGTCA-motif | CGTCA | 参与甲基茉莉酸(MeJA)反应的顺式调节元件Cis-acting regulatory element involved in the MeJA-responsiveness | LuDMP-1、LuDMP-3、LuDMP-4、LuDMP-5、LuDMP-7、LuDMP-8、LuDMP-9、LuDMP-12、LuDMP-13、LuDMP-14、 LuDMP-16、LuDMP-17 |
GCN4_motif | TGAGTCA | 参与胚乳表达的顺式调控元件Cis-regulatory elements involved in endosperm expression | LuDMP-2、LuDMP-9、LuDMP-12、LuDMP-15 |
O2-site | GATGATGTGG | 参与玉米醇溶蛋白代谢调控的顺式调控元件Cis-acting regulatory element involved in zein metabolism regulation | LuDMP-1、LuDMP-2、LuDMP-3、LuDMP-4、LuDMP-5、LuDMP-8、LuDMP-10、LuDMP-12、LuDMP-16、LuDMP-17 |
MBS | CAACTG | 与干旱诱导相关的MYB结合位点MYB binding site involved in drought-inducibility | LuDMP-1、LuDMP-3、LuDMP-6、LuDMP-7、LuDMP-8、LuDMP-9、LuDMP-10、LuDMP-14 |
SARE | TTCGACCATCTT | 水杨酸响应元件Cis-acting element involved in salicylic acid responsiveness | LuDMP-1、LuDMP-7 |
TC-rich repeats | GTTTTCTTAC | 防御和应激响应元件Cis-acting element involved in defense and stress responsiveness | LuDMP-1、LuDMP-5、LuDMP-13、LuDMP-15、LuDMP-16 |
CAT-box | GCCACT | 与分生组织表达相关的顺式作用调控元件Cis-acting regulatory element related to meristem expression | LuDMP-3、LuDMP-5、LuDMP-10、LuDMP-12、LuDMP-13、LuDMP-15 |
P-box | CCTTTTG | 赤霉素响应元件Gibberellin-responsive element | LuDMP-6、LuDMP-10、LuDMP-13、LuDMP-14 |
TGA-element | AACGAC | 生长素响应元件Auxin-responsive element | LuDMP-6、LuDMP-12、LuDMP-14 |
TATC-box | TATCCCA | 赤霉素响应元件Cis-acting element involved in gibberellin-responsiveness | LuDMP-8、LuDMP-9、LuDMP-10、LuDMP-15 |
GC-motif | CCCCCG | 参与缺氧特异性诱导的增强剂样元件Enhancer-like element involved in anoxic specific inducibility | LuDMP-9、LuDMP-15、LuDMP-17 |
DRE | TACCGACAT | 脱水、低温及盐胁迫响应元件Cis-acting element involved in dehydration, low-temperature, salt stresses | LuDMP-3 |
RY-element | CATGCATG | 参与种子特异性调控的顺式调控元件Cis-regulatory elements involved in seed-specific regulation | LuDMP-2 |
GARE-motif | TCTGTTG | 赤霉素响应元件Gibberellin-responsive element | LuDMP-7、LuDMP-8、LuDMP-9、LuDMP-10、LuDMP-12 |
TCA-element | CCATTTTTT | 水杨酸响应元件Cis-acting element involved in salicylic acid responsiveness | LuDMP-2、LuDMP-5、LuDMP-10、LuDMP-14、LuDMP-16、LuDMP-17 |
LTR | CCGAAA | 低温响应元件Cis-acting element involved in low-temperature responsiveness | LuDMP-1、LuDMP-2、LuDMP-5、LuDMP-6、LuDMP-7、LuDMP-8、LuDMP-9、LuDMP-10、LuDMP-11、LuDMP-12、LuDMP-13、LuDMP-14 |
1 | Yamada K, Osakabe Y, Mizoi J, et al. Functional analysis of an Arabidopsis thaliana abiotic stress-inducible facilitated diffusion transporter for monosaccharides. Journal of Biological Chemistry, 2010, 285(2): 1138-1146. |
2 | Xicluna J, Lacombe B, Dreyer I, et al. Increased functional diversity of plant K+ channels by preferential heteromerization of the shakerlike subunits AKT2 and KAT2. Journal of Biological Chemistry, 2007, 282(1): 486-494. |
3 | Chen Y, Heazlewood J. Organellar proteomic profiling to analyze membrane traf-ficking pathways. Trends in Plant Science, 2020, 26(3): 299-300. |
4 | Chen Y, Weckwerth W. Mass spectrometry untangles plant membrane protein sig-naling networks. Trends in Plant Science, 2020, 25(9): 930-944. |
5 | Mori T, Igawa T, Tamiya G, et al. Gamete attachment re-quires GEX2 for successful fertilization in Arabidopsis. Current Biology, 2014, 24(2): 170-175. |
6 | Kasaras A, Melzer M, Kunze R. Arabidopsis senescence-associated protein DMP1 is involved in membrane remodeling of the ER and tonoplast. BMC Plant Biology, 2012, 12: 54. |
7 | Kasaras A, Kunze R. Expression, localisation and phylogeny of a novel family of plant-specific membrane proteins. Plant Biology, 2010, 12(Supple 1): 140-152. |
8 | Zhong Y, Liu C X, Qi X L, et al. Mutation of ZmDMP enhances haploid induction in maize. Nature Plants, 2019, 5(6): 575-580. |
9 | Zhong Y, Chen B J, Mengran L, et al. A DMP-triggered in vivo maternal haploid induction system in the dicotyledonous Arabidopsis. Nature Plants, 2020, 6(5): 466-467. |
10 | Zhu S, Wang X, Chen W, et al. Cotton DMP gene family: Characterization, evolution, and expression profiles during development and stress. International Journal of Biological Macromolecules, 2021, 183(2): 1257-1269. |
11 | Wei Y H, Kong J P, Zhang Y H, et al. Development status, research and development trend and countermeasures of flax at home and abroad. Xinjiang Agricultural Sciences, 2007, 44(Supple 2): 70-75. |
魏彦宏, 孔建平, 张彦红, 等. 国内外亚麻发展现状、研发趋势与对策. 新疆农业科学, 2007, 44(增刊2): 70-75. | |
12 | Huis R, Hawkins S, Neutelings G. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.). BMC Plant Biology, 2010, 10(1): 71. |
13 | Chytilova M, Mudronova D, Nemcova R, et al. Anti-inflammatory and immunoregulatory effects of flax-seed oil and Lactobacillus plantarum-BiocenolTM LP96 in gnotobiotic pigs challenged with enterotoxigenic Escherichia coli. Research in Veterinary Science, 2013, 95(1): 103-109. |
14 | Heller K, Sheng Q C, Guan F, et al. A comparative study between Europe and China in crop management of two types of flax: Linseed and fibre flax. Industrial Crops and Products, 2015, 68: 24-31. |
15 | Liu Q, Talboot M, Llewellyn D J. Pectin methylesterase and pectin remodelling differ in the fibre walls of two Gossypium species with very different fibre properties. PLoS One, 2013, 8(6): e65131. |
16 | Guo D, Du M, Zhou B Y, et al. Identification and bioinformatics analysis of CCT gene family in maize. Journal of Plant Genetic Resources, 2019, 20(4): 1001-1010. |
郭栋, 杜媚, 周宝元, 等. 玉米CCT基因家族的鉴定与生物信息学分析. 植物遗传资源学报, 2019, 20(4): 1001-1010. | |
17 | Zheng L, Bai X T, Li H Y. Genome-wide identification and expression analysis of TCP gene family in Sorghum bicolor. Journal of Henan Agricultural Sciences, 2019, 48(10): 30-36. |
郑玲, 白雪婷, 李会云. 高粱TCP基因家族全基因组鉴定及表达分析. 河南农业科学, 2019, 48(10): 30-36. | |
18 | Yuan H, Guo W, Zhao L, et al. Genome-wide identification and expression analysis of the WRKY transcription factor family in flax (Linum usitatissimum L.). BMC Genomics, 2021, 22(1): 375. |
19 | Cai X X, Shen Y, Zhou W H, et al. Genome-wide identification and bioinformatics analysis of soybean CHX gene family. Genomics and Applied Biology, 2018, 37(12): 5360-5369. |
才晓溪, 沈阳, 周伍红, 等. 大豆CHX基因家族全基因组鉴定与生物信息学分析. 基因组学与应用生物学, 2018, 37(12): 5360-5369. | |
20 | Wang X H, Xu N L, Yao M M, et al. Identification and evolution analysis of LBD gene family in Lophopyrum elongatum. Acta Agriculturae Boreali-Occidentalis Sinica, 2022, 31(2): 202-216. |
王新华, 许娜丽, 姚明明, 等. 长穗偃麦草LBD基因家族的鉴定与进化分析. 西北农业学报, 2022, 31(2): 202-216. | |
21 | Huang C, Liang X M, Dai C, et al. Genome-wide identification and analysis of BnAPs gene family members in Brassica napus. Acta Agronomica Sinica, 2022, 48(3): 597-607. |
黄成, 梁晓梅, 戴成, 等. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析. 作物学报, 2022, 48(3): 597-607. | |
22 | Chen D F, Wei X Q, Xu L, et al. Genome-wide identification and expression analysis of wax apple PG gene family. Journal of Fruit Science, 2022, 39(4): 16. |
陈迪飞, 魏秀清, 许玲, 等. 莲雾PG基因家族全基因组鉴定及表达分析. 果树学报, 2022, 39(4): 16. | |
23 | Dang Z, Zhang J P, Wang L M, et al. Breeding technology report on new flax variety Longya-15. Plant Fiber Sciences in China, 2020, 42(4): 145-149. |
党照, 张建平, 王利民, 等. 胡麻新品种陇亚15号选育技术报告.中国麻业科学, 2020, 42(4): 145-149. | |
24 | Lynch M, Conery J S. The evolutionary fate and consequences of duplicate genes. Science, 2000, 290(5494): 1151-1155. |
25 | Tang Y K, Jia Y Y. Method of processing real time PCR data. Biotechnology, 2008, 18(3): 89-91. |
唐永凯, 贾永义. 荧光定量PCR数据处理方法的探讨. 生物技术, 2008, 18(3): 89-91. | |
26 | Ren R, Wang H, Guo C, et al. Widespread whole genome duplications contribute to genome complexity and species diversity in angiosperms. Molecular Plant, 2018, 11(3): 414-428. |
27 | Zhang L, Jian H J, Yang B, et al. Identification and expression analysis of sucrose phosphate synthase (SPS) gene family members in Brassica napus. Acta Agronomica Sinica, 2018, 44(2): 197-207. |
张莉, 荐红举, 杨博, 等. 甘蓝型油菜蔗糖磷酸合酶(SPS)基因家族成员鉴定及表达分析. 作物学报, 2018, 44(2): 197-207. | |
28 | Soltis P S, Soltis D E. Ancient WGD events as drivers of key innovations in angiosperms. Current Opinion in Plant Biology, 2016, 30: 159-165. |
29 | Kelliher T, Starr D, Su X, et al. One-step genome editing of elite crop germplasm during haploid induction. Nature Biotechnology, 2019, 37(3): 287-292. |
30 | Jacquier N M A, Gilles L M, Pyott D E, et al. Puzzling out plant reproduction by haploid induction for innovations in plant breeding. Nature Plants, 2020, 6(6): 610-619. |
31 | Gilles L M, Khaled A, Laffaire J B, et al. Loss of pollen-specific phospholipase not like dad triggers gynogenesis in maize. The EMBO Journal, 2017, 36(6): 707-717. |
32 | Kelliher T, Starr D, Richbourg L, et al. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature, 2017, 542(7639): 105-109. |
33 | Liu C X, Li X, Meng D X, et al. A 4-bp insertion at ZmPLA1 encoding a putative phospholipase a generates haploid induction in maize. Molecular Plant, 2017, 10(3): 520-522. |
34 | Yao L, Zhang Y, Liu C, et al. OsMATL mutation induces haploid seed formation in indica rice. Nature Plants, 2018, 4(8): 530-533. |
35 | Liu H Y, Wang K, Jia Z M, et al. Efficient induction of haploid plants in wheat by editing of TaMTL using an optimized Agrobacterium-mediated CRISPR system. Journal of Experimental Botany, 2020, 71(4): 1337-1349. |
[1] | Yong ZHANG, Hai-di WANG, Yu-hong GAO, Bing WU, Bin YAN, Yi-fan WANG, Zheng-jun CUI, Ze-dong WEN. Effect of multivariate flax rotation mode on soil aggregation characteristics and nitrogen content [J]. Acta Prataculturae Sinica, 2023, 32(1): 75-88. |
[2] | Jiao-yang TIAN, Qiu-xia WANG, Shu-wen ZHENG, Wen-xian LIU. Genome-wide identification and expression profile analysis of the CPP gene family in Medicago truncatula [J]. Acta Prataculturae Sinica, 2022, 31(7): 111-121. |
[3] | Hai-di WANG, Yong ZHANG, Yu-hong GAO, Bing WU, Bin YAN, Zheng-jun CUI, Yi-fan WANG, Xue ZHANG. Response of grain yield and related agronomic traits of oilseed flax to diversified cropping rotations [J]. Acta Prataculturae Sinica, 2022, 31(12): 52-65. |
[4] | Na WEI, Yan-peng LI, Yi-tong MA, Wen-xian LIU. Genome-wide identification of the alfalfa TCP gene family and analysis of gene transcription patterns in alfalfa (Medicago sativa) under drought stress [J]. Acta Prataculturae Sinica, 2022, 31(1): 118-130. |
[5] | LUO Wei, SHU Jian-hong, LIU Xiao-xia, WANG Zi-yuan, MU Qiong, WANG Xiao-li, WU Jia-hai. Cloning, subcellular localization and expression analysis of the RVE8 gene from Festuca arundinacea [J]. Acta Prataculturae Sinica, 2020, 29(7): 60-69. |
[6] | YANG Ting, ZHANG Jian-ping, LIU Zi-gang, QI Yan-ni, LI Wen-juan, XIE Ya-ping. Molecular cloning and expression of heteromeric ACCase subunit genes from flax [J]. Acta Prataculturae Sinica, 2020, 29(4): 111-120. |
[7] | XIA Zeng-run, WANG Wen-ying, LIU Ya-qi, WANG Suo-min. Cloning and expression analysis of the K+ channel gene AvAKT1 in Apocynum venetum [J]. Acta Prataculturae Sinica, 2019, 28(8): 180-189. |
[8] | LU Shan-shan, HONG Yuan-shu, LIU Ping. Expression analysis of SaLDC promoter from Sophora alopecuroides in Arabidopsis thaliana [J]. Acta Prataculturae Sinica, 2019, 28(11): 159-167. |
[9] | LI Wen-juan, QI Yan-ni, WANG Li-min, DANG Zhao, ZHAO Li, ZHAO Wei, XIE Ya-ping, WANG Bin, ZHANG Jian-ping, LI Shu-jie. Correlation between oil content or fatty acid composition and expression levels of genes involved in TAG biosynthesis in flax [J]. Acta Prataculturae Sinica, 2019, 28(1): 138-149. |
[10] | LI Yue, Wu Ling, Gao Zhen-ni, Niu Jun-yi. Simulation model of photosynthesis and dry matter accumulation in oilseed flax based on APSIM [J]. Acta Prataculturae Sinica, 2018, 27(3): 57-66. |
[11] | LIU Dong, CUI Zheng-jun, GAO Yu-hong, YAN Bin, ZHANG Zhong-kai, WU Bing. Effect of rotation sequence on stability of soil organic carbon in dry-land oil flax [J]. Acta Prataculturae Sinica, 2018, 27(12): 45-57. |
[12] | DONG Di, TENG Ke, YU An-Dong, TAN Peng-Hui, LIANG Xiao-Hong, HAN Lie-Bao. Cloning, subcellular localization and expression analysis of a novel phytoene synthase gene, ZmPSY, in Zoysia matrella [J]. Acta Prataculturae Sinica, 2017, 26(11): 69-76. |
[13] | ZHANG Yin-Bing, SUN Xin-Bo, FAN Bo, HAN Lie-Bao, ZHANG Xue, YUAN Jian-Bo, XU Li-Xin. Cloning and expression of ZjNAC from Zoysia japonica [J]. Acta Prataculturae Sinica, 2016, 25(4): 239-245. |
[14] | YANG Ping, LI Jie, ZHANG Zhong-Kai, CUI Zheng-Jun, YANG Tian-Qing, NIU Jun-Yi. Effect of nitrogen application on intercropping advantages and crop interactions under an oil flax and soybean intercrop system [J]. Acta Prataculturae Sinica, 2016, 25(3): 181-190. |
[15] | DUAN Hui-Rong, WANG Suo-Min. Cloning and expression analysis of a high-affinity K+ transporter gene SsHAK2 in Suaeda salsa [J]. Acta Prataculturae Sinica, 2016, 25(2): 114-123. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||