Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (1): 61-74.DOI: 10.11686/cyxb2023076
Previous Articles Next Articles
Shang-qin HU1,2(), Jun-cheng WANG1,3, Li-rong YAO1,3, Er-jing SI1,3, Xiao-le MA1,3, Ke YANG1,3, Hong ZHANG1,3, Ya-xiong MENG1,3, Hua-jun WANG1,3, Bao-chun LI1,2()
Received:
2023-03-13
Revised:
2023-05-15
Online:
2024-01-20
Published:
2023-11-23
Contact:
Bao-chun LI
Shang-qin HU, Jun-cheng WANG, Li-rong YAO, Er-jing SI, Xiao-le MA, Ke YANG, Hong ZHANG, Ya-xiong MENG, Hua-jun WANG, Bao-chun LI. Cloning and preliminary functional analysis of the root gene HgAKR6C of Halogeton glomeratus[J]. Acta Prataculturae Sinica, 2024, 33(1): 61-74.
引物名称 Name of primers | 引物序列 Sequences of primers (5′→3′) |
---|---|
HgAKR6C-F1 | GC |
HgAKR6C-R1 | TC |
HgAKR6C-F2 | CC |
HgAKR6C-R2 | GC |
HgAKR6C-q1F | AGGAAGCACATCGTTGAGGG |
HgAKR6C-q1R | TTCATTGCCCGGACAGTCTC |
HgActin-F | TGTTCTCAGTGGTGGTACAA |
HgActin-R | GTGCCACCACCTTAATCTTC |
Table 1 Primers used in the study
引物名称 Name of primers | 引物序列 Sequences of primers (5′→3′) |
---|---|
HgAKR6C-F1 | GC |
HgAKR6C-R1 | TC |
HgAKR6C-F2 | CC |
HgAKR6C-R2 | GC |
HgAKR6C-q1F | AGGAAGCACATCGTTGAGGG |
HgAKR6C-q1R | TTCATTGCCCGGACAGTCTC |
HgActin-F | TGTTCTCAGTGGTGGTACAA |
HgActin-R | GTGCCACCACCTTAATCTTC |
理化性质Physical and chemical properties | 预测结果Prediction results |
---|---|
编码的氨基酸数Number of amino acids | 317 |
理论等电点Theoretical pI | 6.25 |
蛋白质分子量Molecular weight (Da) | 35151.21 |
分子式Formula | C1575H2473N419O468S12 |
负电荷的残基总数(天冬氨酸+谷氨酸)Total number of negatively charged residues (Asparticacid+glutamicacid, Asp+Glu) | 36 |
正电荷的残基总数(精氨酸+赖氨酸)Total number of positively charged residues (Arginine+lysine, Arg+Lys) | 34 |
脂肪系数Aliphatic index | 90.41 |
亲水性平均值Grand average of hydropathicity | -0.219 |
不稳定系数The instability index (II) | 32.06 |
Table 2 Analysis of physical and chemical properties of HgAKR6C
理化性质Physical and chemical properties | 预测结果Prediction results |
---|---|
编码的氨基酸数Number of amino acids | 317 |
理论等电点Theoretical pI | 6.25 |
蛋白质分子量Molecular weight (Da) | 35151.21 |
分子式Formula | C1575H2473N419O468S12 |
负电荷的残基总数(天冬氨酸+谷氨酸)Total number of negatively charged residues (Asparticacid+glutamicacid, Asp+Glu) | 36 |
正电荷的残基总数(精氨酸+赖氨酸)Total number of positively charged residues (Arginine+lysine, Arg+Lys) | 34 |
脂肪系数Aliphatic index | 90.41 |
亲水性平均值Grand average of hydropathicity | -0.219 |
不稳定系数The instability index (II) | 32.06 |
定位Positioning | 预测占比Forecast proportion (%) |
---|---|
细胞质Cytoplasm | 60.9 |
细胞核 | 13.0 |
线粒体Mitochondrium | 13.0 |
细胞骨架Cytoskeleton | 4.3 |
Table 3 Subcellular localization prediction (%)
定位Positioning | 预测占比Forecast proportion (%) |
---|---|
细胞质Cytoplasm | 60.9 |
细胞核 | 13.0 |
线粒体Mitochondrium | 13.0 |
细胞骨架Cytoskeleton | 4.3 |
1 | Daliakopoulos I N, Tsanis I K, Koutroulis A, et al. The threat of soil salinity: A European scale review. Science of the Total Environment, 2016, 573: 727-739. |
2 | Yang J S, Yao R J, Wang X P, et al. Research on salt-affected soils in China: History, status quo and prospect. Acta Pedologica Sinica, 2022, 59(1): 10-27. |
杨劲松, 姚荣江, 王相平, 等. 中国盐渍土研究: 历程、现状与展望. 土壤学报, 2022, 59(1): 10-27. | |
3 | Zhang H O. An analysis of the distribution and evolutionary characteristics of saline soils in China. Agriculture and Technology, 2022, 42(5): 104-107. |
张海欧. 浅析中国盐渍土分布及演变特征. 农业与技术, 2022, 42(5): 104-107. | |
4 | Ma H Y, Guo R, Li H A, et al. Study on salinity tolerance of tomatoes during seed germination under different salt stress conditions. Journal of Anhui Agricultural Sciences, 2008, 36(32): 13947-13948, 13956. |
马洪英, 郭锐, 李洪安, 等. 不同盐胁迫处理下番茄种子萌发期的耐盐性研究. 安徽农业科学, 2018, 36(32): 13947-13948, 13956. | |
5 | Pan J, Huang C H, Luo J, et al. Effects of salt stress on plant and the mechanism of arbuscular mycorrhizal fungi enhancing salt tolerance of plants. Advances in Earth Science, 2018, 33(4): 361-372. |
潘晶, 黄翠华, 罗君, 等. 盐胁迫对植物的影响及AMF提高植物耐盐性的机制. 地球科学进展, 2018, 33(4): 361-372. | |
6 | Munns R, Day D A, Fricke W, et al. Energy costs of salt tolerance in crop plants. New Phytologist, 2020, 225(3): 1072-1090. |
7 | Zelm E V, Zhang Y, Testerink C. Salt tolerance mechanisms of plants. Annual Review of Plant Biology, 2020, 71: 403-433. |
8 | Shah K, Dubey R S. Effect of cadmium on RNA level as well as activity and molecular forms of ribonuclease in growing rice seedlings. Plant Physiology and Biochemistry, 1995, 33(5): 577-584. |
9 | Pan Y, Weng J, Cao Y, et al. Functional coupling between the Kv1.1 channel and an aldo-keto reductase Kvβ1. Journal of Biological Chemistry, 2008, 283(13): 8634-8642. |
10 | Auiyawong B, Narawongsanont R, Tantitadapitak C. Characterization of AKR4C15, a novel member of aldo-keto reductase, in comparison with other rice AKR(s). The Protein Journal, 2017, 36(4): 257-269. |
11 | Penning T M. The aldo-keto reductases (AKRs): Overview. Chemico-Biological Interactions, 2015, 234(5): 236-246. |
12 | Giuseppe P O D, Santos M L D, Sousa S M D, et al. A comparative structural analysis reveals distinctive features of co-factor binding and substrate specificity in plant aldo-keto reductases. Biochemical and Biophysical Research Communications, 2016, 474(4): 696-701. |
13 | Sengupta D, Naik D, Reddy A R. Plant aldo-keto reductases (AKRs) as multi-tasking soldiers involved in diverse plant metabolic processes and stress defense: A structure-function update. Journal of Plant Physiology, 2015, 179(1): 40-55. |
14 | Simpson P J, Tantitadapitak C, Reed A M, et al. Characterization of two novel aldo-keto reductases from Arabidopsis: Expression patterns, broad substrate specificity, and an open active-site structure suggest a role in toxicant metabolism following stress. Journal of Molecular Biology, 2009, 392(2): 465-480. |
15 | Narawongsanont R, Kabinpong S, Auiyawong B, et al. Cloning and characterization of AKR4C14, a rice aldo-keto reductase, from Thai Jasmine rice. The Protein Journal, 2012, 31(1): 35-42. |
16 | Editorial Committee of Flora Reipublicae Popularis Sinicae, Chinese Academy of Sciences. Flora reipublicae popularis sinicae. Beijing: Science Press, 1979. |
中国科学院中国植物志编辑委员会. 中国植物志. 北京: 科学出版社, 1979. | |
17 | Sun H Y, Zhang X M, Li L, et al. Estimation on aboveground biomass and the characteristics of population families of the halophilous herbaceous plants in three different areas of south Tarim Basin. Journal of Arid Land Resources and Environment, 2008(4): 193-197. |
孙红叶, 张希明, 李利, 等. 塔里木盆地南缘不同生境盐生草种群分布特征及地上生物量初步估测. 干旱区资源与环境, 2008(4): 193-197. | |
18 | Munns R. Genes and salt tolerance: Bringing them together. New Phytologist, 2005, 167(3): 645-663. |
19 | Wang J C. Study on the salt tolerance mechanisms of ion compartmentation in halophyte Halogeton glomeratus. Lanzhou: Gansu Agricultural University, 2017. |
汪军成. 盐生草盐分区隔化耐盐机制研究. 兰州: 甘肃农业大学, 2017. | |
20 | Yao L R. Study on the salt uptake mechanisms of roots in halophyte Halogeton glomeratus. Lanzhou: Gansu Agricultural University, 2018. |
姚立蓉. 盐生草根系对盐分吸收机理的研究. 兰州: 甘肃农业大学, 2018. | |
21 | Wang J C, Yao L R, Li B C, et al. Single-molecule long-read transcriptome dataset of halophyte Halogeton glomeratus. Frontiers in Genetics, 2017, 8: 197. |
22 | Xu K. The novel plant Na+/H+ antiporter gene evolved by DNA shuffling confers yeast and Arabidopsis improved salt tolerance. Shanghai: East China Normal University, 2010. |
徐凯. 通过体外DNA改组技术获得新的植物强耐盐Na+/H+逆向转运蛋白基因. 上海: 华东师范大学, 2010. | |
23 | Henning P M, Roalson E H, Mir W, et al. Annotation of the Turnera subulata (Passifloraceae) draft genome reveals the S-locus evolved after the divergence of turneroideae from Passifloroideae in a stepwise manner. Plants, 2023, 12(2): 286. |
24 | Rajewski A, Carter-House D, Stajich J, et al. Datura genome reveals duplications of psychoactive alkaloid biosynthetic genes and high mutation rate following tissue culture. BMC Genomics, 2021, 22(1): 1-19. |
25 | Tang H, Vasconcelos A C, Ma J, et al. In vivo expression pattern of a plant K+ channel β subunit. Plant Science, 1998, 134(2): 117-128. |
26 | Johnson A R, Yue Y, Carey S B, et al. Chromosome-level genome assembly of Euphorbia peplus, a model system for plant latex, reveals that relative lack of Ty3 transposons contributed to its small genome size. Genome Biology and Evolution, 2022, 15(3): evad018. |
27 | Blom N, Gammol S, Brunak S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. Journal of Molecular Biology, 1999, 294(5): 1351-1362. |
28 | Wang D, Hao Z, Zhao J, et al. Comparative physiological and transcriptomic analyses reveal salt tolerance mechanisms of Zygosaccharomyces rouxii. Process Biochemistry, 2019, 82: 59-67. |
29 | Wang D, Zhang M, Huang J, et al. Heat preadaptation improved the ability of Zygosaccharomyces rouxii to salt stress: A combined physiological and transcriptomic analysis. Applied Microbiology and Biotechnology, 2021, 10(5): 259-270. |
30 | Wong M M, Bhaskara G B, Wen T N, et al. Phosphoproteomics of Arabidopsis highly ABA-induced1 identifies AT-Hook-Like10 phosphorylation required for stress growth regulation. Proceedings of the National Academy of Sciences, 2019, 116(6): 2354-2363. |
31 | Chen Q, Xu X Y, Wang J C, et al. Identification of a WRKY gene family based on full-length transcriptome sequences and analysis of response patterns under salt stress in Halogeton glomeratus. Acta Prataculturae Sinica, 2022, 31(12): 146-157. |
陈倩, 徐晓芸, 汪军成, 等. 基于全长转录组的盐生草WRKY基因家族的鉴定及其盐胁迫响应模式分析. 草业学报, 2022, 31(12): 146-157. | |
32 | Wu P M, Cheng B, Leng Y, et al. Analysis of aldo-keto reductase genes in Vigna radiata and its response to cadmium stress. Journal of Lanzhou Jiaotong University, 2023, 42(1): 118-126. |
吴萍民, 程斌, 冷艳, 等. 绿豆醛酮还原酶基因及其响应镉胁迫的分析. 兰州交通大学学报, 2023, 42(1): 118-126. | |
33 | Mgobozi V, Afolayan A J, Otunola G A. Heavy metal uptake potential of Egeria densa (Plach) Casp. South African Journal of Botany, 2016, 103: 331-332. |
34 | Yu J, Sun H, Zhang J, et al. Analysis of aldo-keto reductase gene family and their responses to salt, drought, and abscisic acid stresses in Medicago truncatula. International Journal of Molecular Sciences, 2020, 21(3): 754. |
35 | Schachtman D P, Schroeder J, Lucas W J, et al. Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA. Science, 1992, 258(5088): 1654-1658. |
36 | Tang H, Vasconcelos A C, Berkowitz G A. Evidence that plant K+ channel proteins have two different types of subunits. Plant Physiology, 1995, 109(1): 327-330. |
37 | Jan L Y, Jan Y N. Potassium channels and their evolving gates. Nature, 1994, 371(6493): 119-122. |
38 | Sussman M R. Shaking Arabidopsis thaliana. Science, 1992, 256(5057): 619. |
39 | Amtmann A, Fischer M, Marsh E L, et al. The wheat cDNA LCT1 generates hypersensitivity to sodium in a salt-sensitive yeast strain. Plant Physiology, 2001, 126(3): 1061-1071. |
40 | Mäser P, Eckelman B, Vaidyanathan R, et al. Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS Letters, 2002, 531(2): 157-161. |
41 | Fan L, Sun T J, Yang J, et al. Cloning and functional characterization of a vacuolar Na+/H+ antiporter gene (GmNHX1) from soybean. Journal of Agricultural University of Hebei, 2015, 38(6): 7-12. |
范龙, 孙天杰, 杨郡, 等. 大豆GmNHX1基因克隆及其在酵母中的耐盐性分析. 河北农业大学学报, 2015, 38(6): 7-12. | |
42 | Guo H. The molecular basis of Atriplex canescens, a secretohalophyte with salt bladders, in response to NaCl. Lanzhou: Lanzhou University, 2020. |
郭欢. 盐囊泡类泌盐植物四翅滨藜响应NaCl的分子基础研究. 兰州: 兰州大学, 2020. | |
43 | Wang W Y. Functional characterization of HKT transporters in the succulent xerophyte Zygophyllum xanthoxylum. Lanzhou: Lanzhou University, 2019. |
王文颖. 多浆旱生植物霸王HKT转运蛋白的功能研究. 兰州: 兰州大学, 2019. | |
44 | Zhang H W, Xiao W, Yu W W, et al. Halophytic Hordeum brevisubulatum HbHAK1 facilitates potassium retention and contributes to salt tolerance. International Journal of Molecular Sciences, 2020, 21(15): 5292. |
[1] | Yuan WANG, Jing WANG, Shu-xia LI. Cloning of MsBBX24 from alfalfa (Medicago sativa) and determination of its role in salt tolerance [J]. Acta Prataculturae Sinica, 2023, 32(3): 107-117. |
[2] | Fu LIU, Cheng CHEN, Kai-xuan ZHANG, Mei-liang ZHOU, Xin-quan ZHANG. Cloning and identification of drought tolerance function of the LjbHLH34 gene in Lotus japonicus [J]. Acta Prataculturae Sinica, 2023, 32(1): 178-191. |
[3] | Qian CHEN, Xiao-yun XU, Jun-cheng WANG, Li-rong YAO, Er-jing SI, Ke YANG, Xiao-ling WEI, Xiao-le MA, Bao-chun LI, Xun-wu SHANG, Ya-xiong MENG, Hua-jun WANG. Identification of a WRKY gene family based on full-length transcriptome sequences and analysis of response patterns under salt stress in Halogeton glomeratus [J]. Acta Prataculturae Sinica, 2022, 31(12): 146-157. |
[4] | HOU Jie-ru, DUAN Xiao-yue, LI Zhou, PENG Yan. Cloning and expression analysis of TrSAMDC1 in white clover [J]. Acta Prataculturae Sinica, 2020, 29(8): 170-178. |
[5] | LUO Wei, SHU Jian-hong, LIU Xiao-xia, WANG Zi-yuan, MU Qiong, WANG Xiao-li, WU Jia-hai. Cloning, subcellular localization and expression analysis of the RVE8 gene from Festuca arundinacea [J]. Acta Prataculturae Sinica, 2020, 29(7): 60-69. |
[6] | YANG Ting, ZHANG Jian-ping, LIU Zi-gang, QI Yan-ni, LI Wen-juan, XIE Ya-ping. Molecular cloning and expression of heteromeric ACCase subunit genes from flax [J]. Acta Prataculturae Sinica, 2020, 29(4): 111-120. |
[7] | XIA Zeng-run, WANG Wen-ying, LIU Ya-qi, WANG Suo-min. Cloning and expression analysis of the K+ channel gene AvAKT1 in Apocynum venetum [J]. Acta Prataculturae Sinica, 2019, 28(8): 180-189. |
[8] | SHAO Lin-Hui, ZHENG Xing-Wei, LI Cong. Cloning and expression analysis of a U-box gene of E3 ubiquitin ligase from Medicago truncatula [J]. Acta Prataculturae Sinica, 2016, 25(7): 62-72. |
[9] | LUO Jun,WANG Yin-quan,WEN Sui-chao,LI Jing,ZHANG Jin-lin,XIA Qi. Cloning and tissue-specific expression analysis of phenylalanine ammonia-lyase gene fragment in Angelica sinensis [J]. Acta Prataculturae Sinica, 2014, 23(4): 130-137. |
[10] | WANG Jia,ZHENG Lin-lin,GU Tian-pei,WANG Xue-feng,WANG Ying-chun. Cloning and expression analysis of two WRKY transcription factors from the rare recretohalophyte Reaumuria trigyna [J]. Acta Prataculturae Sinica, 2014, 23(4): 122-129. |
[11] | GUO Yu-peng. A study on advances in plant photorespiration [J]. Acta Prataculturae Sinica, 2014, 23(4): 322-329. |
[12] | ZOU Xue,ZHANG Ye,WU Ming-yang,WANG Xi-yao. Cloning and analysis of the cytosolic glyceraldehyde 3-phosphate dehydrogenase (GAPC) gene from Solanum tuberosum and Arabidopsis thaliana [J]. Acta Prataculturae Sinica, 2014, 23(1): 239-247. |
[13] |
LU Yan-mei, ZHANG Jun-lian.
Cloning and sequence analysis of terminase gene of glycoalkaloid biosynthesis metabolismic pathway in potato [J]. Acta Prataculturae Sinica, 2012, 21(3): 106-116. |
[14] | Nikolay D, SUN Gui-zhi, GAO Hong-wen. Cloning and analysis of the dehydrin (DHN) gene from Galega orientalis [J]. Acta Prataculturae Sinica, 2012, 21(1): 176-183. |
[15] | LI Ping, YANG Ling-ling, CHEN Qi-xin, SHI Ying-hua, YAN Xue-bing, CHEN Zhan-kuan, WANG Cheng-zhang. Two strategies of cloning Medicago sativa phytochrome A and B genes [J]. Acta Prataculturae Sinica, 2011, 20(6): 85-92. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||