Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (6): 219-226.DOI: 10.11686/cyxb2023252
Pei-di ZHAO1(), Ke YANG1, Yu-qi JIANG1, Ke-pan HUANG1, Ming-yu MA1, Kai-dong LI3, Hui XU4, Wan-hong LI1,2()
Received:
2023-07-19
Revised:
2023-11-03
Online:
2024-06-20
Published:
2024-03-20
Contact:
Wan-hong LI
Pei-di ZHAO, Ke YANG, Yu-qi JIANG, Ke-pan HUANG, Ming-yu MA, Kai-dong LI, Hui XU, Wan-hong LI. Effects of dietary energy levels on testis development and the expression of related genes in sheep[J]. Acta Prataculturae Sinica, 2024, 33(6): 219-226.
原料 Ingredients | 高能量组 High energy group (A) | 中能量组 Middle energy group (B) | 低能量组 Low energy group (C) |
---|---|---|---|
玉米秸秆 Corn stalk (%) | 20.00 | 20.00 | 20.00 |
玉米 Corn (%) | 35.00 | 35.00 | 35.00 |
糖蜜 Molasses (%) | 4.00 | 4.00 | 4.00 |
棉粕 Cotton meal (%) | 2.00 | 4.50 | 7.00 |
豆粕 Soybean meal (%) | 7.00 | 7.00 | 7.00 |
膨化大豆 Extruded soybean (%) | 8.00 | 3.50 | 0.00 |
过瘤胃脂肪粉 Rumen protected fat powder (%) | 1.50 | 0.75 | 0.00 |
玉米胚芽粕 Corn germ meal (%) | 10.50 | 9.00 | 9.00 |
玉米皮 Corn hull (%) | 9.00 | 13.25 | 15.00 |
石粉 Limestone powder (%) | 1.20 | 1.20 | 1.20 |
氯化钠 Sodium chloride (%) | 0.70 | 0.70 | 0.70 |
膨化尿素 Extruded urea (%) | 0.60 | 0.60 | 0.60 |
预混料 Premix1 (%) | 0.50 | 0.50 | 0.50 |
合计 Total (%) | 100.00 | 100.00 | 100.00 |
粗蛋白 Crude protein (%) | 14.62 | 14.61 | 14.63 |
淀粉 Starch (%) | 24.33 | 24.05 | 24.32 |
粗纤维 Crude fiber (%) | 10.12 | 10.38 | 10.60 |
钙 Calcium (%) | 0.60 | 0.60 | 0.60 |
磷 Phosphorus (%) | 0.30 | 0.30 | 0.31 |
代谢能 Metabolic energy (MJ·kg-1) | 10.50 | 10.10 | 9.70 |
Table 1 Composition and nutrient level of experimental diet
原料 Ingredients | 高能量组 High energy group (A) | 中能量组 Middle energy group (B) | 低能量组 Low energy group (C) |
---|---|---|---|
玉米秸秆 Corn stalk (%) | 20.00 | 20.00 | 20.00 |
玉米 Corn (%) | 35.00 | 35.00 | 35.00 |
糖蜜 Molasses (%) | 4.00 | 4.00 | 4.00 |
棉粕 Cotton meal (%) | 2.00 | 4.50 | 7.00 |
豆粕 Soybean meal (%) | 7.00 | 7.00 | 7.00 |
膨化大豆 Extruded soybean (%) | 8.00 | 3.50 | 0.00 |
过瘤胃脂肪粉 Rumen protected fat powder (%) | 1.50 | 0.75 | 0.00 |
玉米胚芽粕 Corn germ meal (%) | 10.50 | 9.00 | 9.00 |
玉米皮 Corn hull (%) | 9.00 | 13.25 | 15.00 |
石粉 Limestone powder (%) | 1.20 | 1.20 | 1.20 |
氯化钠 Sodium chloride (%) | 0.70 | 0.70 | 0.70 |
膨化尿素 Extruded urea (%) | 0.60 | 0.60 | 0.60 |
预混料 Premix1 (%) | 0.50 | 0.50 | 0.50 |
合计 Total (%) | 100.00 | 100.00 | 100.00 |
粗蛋白 Crude protein (%) | 14.62 | 14.61 | 14.63 |
淀粉 Starch (%) | 24.33 | 24.05 | 24.32 |
粗纤维 Crude fiber (%) | 10.12 | 10.38 | 10.60 |
钙 Calcium (%) | 0.60 | 0.60 | 0.60 |
磷 Phosphorus (%) | 0.30 | 0.30 | 0.31 |
代谢能 Metabolic energy (MJ·kg-1) | 10.50 | 10.10 | 9.70 |
基因Gene | 上游引物Forward primer (5'-3') | 下游引物Reverse primer (5'-3') |
---|---|---|
IGF-1 | GCGCAATGGAATAAAGTCCTCAAAA | TAGAAGAGATGCGAGGAGGATG |
IGF-1R | GAGGATCAGCGGGAATGTGT | TGGGCAGAGCAATCATCAGG |
HMGCR | AGCGTGCGTAGAGCGAAAGT | ACAAAGAGGCCGTGCATTCG |
PCNA | GTGATTCCACCACCATGTTC | TGAGACGAGTCCATGCTCTG |
CYP19A1 | GTTGTGCCTATTGCCAGCAT | AACCTGCAGTGGGAAATGAG |
StAR | CCCAGCTGCGTGGATTTATC | CTCTCCTTCTTCCAGCCCTC |
3βHSD | GAATCGGCATGGTTCTGTCC | CCGTAGATGTACATGGGCCT |
HPRT1 | CGACTGGCTCGAGATGTGAT | TCACCTGTTGACTGGTCGTT |
RPS18 | CACTGAGGACGAGGTGGAAC | CTGTGGGCCCGAATCTTCTT |
RPLP2 | AGCGCCAAGGACATCAAAAAG | TGGCCAGCTTGCCGATAC |
Table 2 Sequences of primer used for RT-qPCR
基因Gene | 上游引物Forward primer (5'-3') | 下游引物Reverse primer (5'-3') |
---|---|---|
IGF-1 | GCGCAATGGAATAAAGTCCTCAAAA | TAGAAGAGATGCGAGGAGGATG |
IGF-1R | GAGGATCAGCGGGAATGTGT | TGGGCAGAGCAATCATCAGG |
HMGCR | AGCGTGCGTAGAGCGAAAGT | ACAAAGAGGCCGTGCATTCG |
PCNA | GTGATTCCACCACCATGTTC | TGAGACGAGTCCATGCTCTG |
CYP19A1 | GTTGTGCCTATTGCCAGCAT | AACCTGCAGTGGGAAATGAG |
StAR | CCCAGCTGCGTGGATTTATC | CTCTCCTTCTTCCAGCCCTC |
3βHSD | GAATCGGCATGGTTCTGTCC | CCGTAGATGTACATGGGCCT |
HPRT1 | CGACTGGCTCGAGATGTGAT | TCACCTGTTGACTGGTCGTT |
RPS18 | CACTGAGGACGAGGTGGAAC | CTGTGGGCCCGAATCTTCTT |
RPLP2 | AGCGCCAAGGACATCAAAAAG | TGGCCAGCTTGCCGATAC |
项目 Items | 高能量组 High energy group (A) | 中能量组 Middle energy group (B) | 低能量组 Low energy group (C) | P值 P-value |
---|---|---|---|---|
体重Body weight (kg) | 51.73±0.56 | 50.69±0.55 | 51.51±1.03 | |
左侧睾丸长径Left long aix of testis (mm) | 83.03±3.37 | 84.86±1.94 | 80.77±2.59 | |
左侧睾丸短径Left short aix of testis (mm) | 61.00±2.27 | 61.86±1.22 | 60.75±1.59 | |
右侧睾丸长径Right long aix of testis (mm) | 79.76±3.04 | 82.79±2.82 | 84.05±2.95 | |
右侧睾丸短径Right short aix of testis (mm) | 60.05±2.29 | 61.56±1.53 | 59.57±1.62 | |
两侧睾丸重量Testes weight of both sides (g) | 253.60±19.69 | 274.60±14.17 | 262.40±19.91 | |
睾丸系数Testicular index (g·kg-1) | 4.91±0.38 | 5.43±0.30 | 5.05±0.30 |
Table 3 Effect of dietary energy levels on testicular development in Merino sheep
项目 Items | 高能量组 High energy group (A) | 中能量组 Middle energy group (B) | 低能量组 Low energy group (C) | P值 P-value |
---|---|---|---|---|
体重Body weight (kg) | 51.73±0.56 | 50.69±0.55 | 51.51±1.03 | |
左侧睾丸长径Left long aix of testis (mm) | 83.03±3.37 | 84.86±1.94 | 80.77±2.59 | |
左侧睾丸短径Left short aix of testis (mm) | 61.00±2.27 | 61.86±1.22 | 60.75±1.59 | |
右侧睾丸长径Right long aix of testis (mm) | 79.76±3.04 | 82.79±2.82 | 84.05±2.95 | |
右侧睾丸短径Right short aix of testis (mm) | 60.05±2.29 | 61.56±1.53 | 59.57±1.62 | |
两侧睾丸重量Testes weight of both sides (g) | 253.60±19.69 | 274.60±14.17 | 262.40±19.91 | |
睾丸系数Testicular index (g·kg-1) | 4.91±0.38 | 5.43±0.30 | 5.05±0.30 |
基因 Gene | 高能量组 High energy group (A) | 中能量组 Middle energy group (B) | 低能量组 Low energy group (C) | P值 P-value |
---|---|---|---|---|
IGF-1R | 1.30±0.06b | 2.19±0.24a | 0.71±0.03c | 0.001 |
IGF-1 | 1.34±0.08b | 1.98±0.19a | 0.94±0.05b | 0.003 |
CYP19A1 | 1.13±0.05b | 1.74±0.25a | 1.02±0.06b | 0.030 |
StAR | 1.36±0.07a | 1.07±0.21a | 1.01±0.27a | 0.454 |
3βHSD | 1.20±0.07b | 2.02±0.36a | 1.00±0.04b | 0.032 |
PCNA | 1.10±0.04a | 1.06±0.20a | 0.93±0.06a | 0.638 |
HMGCR | 1.36±0.08a | 1.30±0.27a | 1.46±0.10a | 0.808 |
Table 4 Relative expression of testicular genes in Merino sheep at different dietary energy levels
基因 Gene | 高能量组 High energy group (A) | 中能量组 Middle energy group (B) | 低能量组 Low energy group (C) | P值 P-value |
---|---|---|---|---|
IGF-1R | 1.30±0.06b | 2.19±0.24a | 0.71±0.03c | 0.001 |
IGF-1 | 1.34±0.08b | 1.98±0.19a | 0.94±0.05b | 0.003 |
CYP19A1 | 1.13±0.05b | 1.74±0.25a | 1.02±0.06b | 0.030 |
StAR | 1.36±0.07a | 1.07±0.21a | 1.01±0.27a | 0.454 |
3βHSD | 1.20±0.07b | 2.02±0.36a | 1.00±0.04b | 0.032 |
PCNA | 1.10±0.04a | 1.06±0.20a | 0.93±0.06a | 0.638 |
HMGCR | 1.36±0.08a | 1.30±0.27a | 1.46±0.10a | 0.808 |
项目 Items | 高能量组 High energy group (A) | 中能量组 Middle energy group (B) | 低能量组 Low energy group (C) | P值 P-value |
---|---|---|---|---|
总抗氧化能力Total antioxidant capacity (U·mg-1 prot) | 10.59±1.13 | 8.60±1.00 | 7.86±1.73 | 0.356 |
谷胱甘肽过氧化物酶Glutathione peroxidase viability (U·mg-1 prot) | 0.28±0.08 | 0.14±0.03 | 0.23±0.03 | 0.171 |
丙二醛Malondialdehyde (nmol·mg-1 prot) | 0.50±0.06 | 0.45±0.03 | 0.66±0.10 | 0.134 |
睾酮Testosterone (ng·mg-1 prot) | 0.52±0.07 | 0.35±0.05 | 0.44±0.06 | 0.141 |
Table 5 Effect of dietary energy levels on antioxidant capacity and testosterone content in testicular tissue of Merino sheep
项目 Items | 高能量组 High energy group (A) | 中能量组 Middle energy group (B) | 低能量组 Low energy group (C) | P值 P-value |
---|---|---|---|---|
总抗氧化能力Total antioxidant capacity (U·mg-1 prot) | 10.59±1.13 | 8.60±1.00 | 7.86±1.73 | 0.356 |
谷胱甘肽过氧化物酶Glutathione peroxidase viability (U·mg-1 prot) | 0.28±0.08 | 0.14±0.03 | 0.23±0.03 | 0.171 |
丙二醛Malondialdehyde (nmol·mg-1 prot) | 0.50±0.06 | 0.45±0.03 | 0.66±0.10 | 0.134 |
睾酮Testosterone (ng·mg-1 prot) | 0.52±0.07 | 0.35±0.05 | 0.44±0.06 | 0.141 |
1 | Guan Y, Malecki I A, Hawken P, et al. Under-nutrition reduces spermatogenic efficiency and sperm velocity, and increases sperm DNA damage in sexually mature male sheep. Animal Reproduction Science, 2014, 149(3/4): 163-172. |
2 | Lino B F. The output of spermatozoa in rams Ⅱ. Relationship to scrotal circumference, testis weight, and the number of spermatozoa in different parts of the urogenital tract. Australian Journal of Biological Sciences, 1972, 25(2): 359-366. |
3 | Cameron A W N, Murphy P M, Oldham C M. Nutrition of rams and output of spermatozoa. Proceedings of the Australian Society of Animal Production, 1988, 17: 162-165. |
4 | Mekoya A, Oosting S J, Fernandez-Rivera S, et al. Effect of supplementation of Sesbania sesban on reproductive performance of sheep. Livestock Science, 2009, 121(1): 117-125. |
5 | Lin W M, Liu W D, Fu Y B, et al. Effects of breeding environment on reproductive performance of southern Xinjiang Duolang Ram. Animals Breeding and Feed, 2020(6): 44-46. |
林为民, 刘卫东, 付云宝, 等. 养殖环境对南疆多浪公羊繁殖性能的影响. 养殖与饲料, 2020(6): 44-46. | |
6 | Sun H X, Zhang Y J, Dun W T, et al. Effect of nutrition and gene interaction on reproductive performance of sheep. Hebei Provincial Association of Animal Science and Veterinary Medicine. Proceedings of “innovation driven, ecological breeding, transformation and development ”. Shijiazhuang: Beimu Publishing Co., Ltd, 2014: 57-59. |
孙洪新, 张英杰, 敦伟涛, 等. 营养与基因相互作用对绵羊繁殖性能的影响.河北省畜牧兽医学会.“创新驱动、生态养殖、转型发展”论文集. 石家庄: 北牧出版有限公司, 2014: 57-59. | |
7 | Li W L. Effects of nutrition on reproductive performance of male animals. Feed China, 1991(4): 23-25. |
李文立. 营养对公畜繁殖性能的影响. 饲料广角, 1991(4): 23-25. | |
8 | Wang Z. Energy restriction and compensation on production performance and reproduction performance. Nanjing: Nanjing Agricultural University, 2017. |
王震. 能量限饲和补偿对湖羊生产性能和繁殖性能的影响. 南京: 南京农业大学, 2017. | |
9 | Wang X Q. Factors affecting goat reproductive performance. Sichuan Animal & Veterinary Sciences, 2009, 36(11): 37-38. |
王小强. 影响山羊繁殖性能的因素. 四川畜牧兽医, 2009, 36(11): 37-38. | |
10 | Martin G B, Blache D, Miller D W, et al. Interactions between nutrition and reproduction in the management of the mature male ruminant. Animal, 2010, 4(7): 1214-1226. |
11 | Fui M N T, Dupuis P, Grossmann M. Lowered testosterone in male obesity: mechanisms, morbidity and management. Asian Journal of Andrology, 2014, 16(2): 223-231. |
12 | Zhai L L, Zhao J, Bai Y L, et al. Relationship between oxidative stress and reproductive dysfunction caused by obesity. Chinese Journal of School Health, 2010, 31(11): 1299-1300, 1303. |
翟玲玲, 赵剑, 白英龙, 等. 膳食诱导肥胖小鼠生殖功能变化及其与氧化应激的关系. 中国学校卫生, 2010, 31(11): 1299-1300, 1303. | |
13 | Wang Y, Chen F, Ye L, et al. Steroidogenesis in leydig cells: effects of aging and environmental factors. Reproduction, 2017, 154(4): 111-122. |
14 | Ochi H, Takeyama T, Yanagisawa Y. Increased energy investment in testes following territory acquisition in a maternal mouthbrooding cichlid. Ichthyological Research, 2009(56): 227-231. |
15 | National Research Council (US) Subcommittee on Sheep Nutrition. Nutrient requirements of sheep. Washington, D.C: National Academies Press, 1985. |
16 | Mao C Q. Effects of different energy levels on fattening performance of F1 weaned lambs of hybrid between Alpine Merino and South African mutton Merino. Lanzhou: Gansu Agricultural University, 2020. |
毛彩琴. 不同能量水平对高×南 F1代断奶羔羊育肥性能的影响. 兰州: 甘肃农业大学, 2020. | |
17 | Liu J M. Study on the fatty acid composition and antioxidant activity of cauda epididymis of Hu sheep with different fertility. Lanzhou: Lanzhou University, 2023. |
刘佳美. 不同繁殖力湖羊附睾尾脂肪酸组成及抗氧化性能的研究. 兰州: 兰州大学, 2023. | |
18 | Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408. |
19 | Fu D H, Liu J B, Mao C Q, et al. Effects of different energy levels on fattening performance of F1 weaned lambs of hybrid between Alpine Merino and South African mutton Merino. Chinese Agricultural Science Bulletin, 2021, 37(16): 138-143. |
付德海, 刘建斌, 毛彩琴, 等. 不同能量水平对高×南F1代断奶羔羊育肥性能的影响. 中国农学通报, 2021, 37(16): 138-143. | |
20 | Song N M, Sang J L, Xu H. Research progress on molecular structure and biological function of proliferating cell nuclear antigen (PCNA). Progress in Natural Science, 2006(10): 1201-1209. |
宋楠萌, 桑建利, 徐恒. 增殖细胞核抗原(PCNA)的分子结构及其生物学功能研究进展. 自然科学进展, 2006(10): 1201-1209. | |
21 | Yao T. Effects and mechanism of antioxidant capacity on testis development of Hu sheep. Lanzhou: Lanzhou University, 2023. |
姚婷. 湖羊睾丸组织抗氧化能力对其发育程度影响及机制研究. 兰州: 兰州大学, 2023. | |
22 | Li C H, Hao L L, Yu H, et al. Research on the tissue expression patterns of IGF-1 and IGF-1R in pigs. Chinese Journal of Veterinary Science, 2013, 33(10): 1568-1572. |
李常红, 郝林琳, 于浩, 等. 猪IGF-1及其受体基因部分组织表达规律的研究. 中国兽医学报, 2013, 33(10): 1568-1572. | |
23 | Pas M F W T, Vissche A H, Greef K H D. Molecular genetic and physiologic background of the growth hormone-IGF-I axis in relation to breeding for growth rate and leanness in pigs. Domestic Animal Endocrinology, 2004, 27(3): 287-301. |
24 | Baker J, Zhou J, Bondy C, et al. Effects of an IGF-1 gene null mutation on mouse reproduction. Molecular Endocrinology, 1996, 10(7): 903-918. |
25 | Liao P, Wang H, Hemmerlin A, et al. Past achievements, current status and future perspectives of studies on 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS) in the mevalonate (MVA) pathway. Plant Cell Reports, 2014, 33(7): 1005-1022. |
26 | Jung H J, Suh Y. Regulation of IGF-1 signaling by microRNAs. Frontiers in Genetics, 2015, 5(472): 472. |
27 | Cecilia P, Converso D P, Paula M, et al. A mitochondrial kinase complex is essential to mediate an ERK1/2-dependent phosphorylation of a key regulatory protein in steroid biosynthesis. PLoS One, 2008, 3(1): e1443. |
28 | Zeng S Y, Cheng R L, Wang Z, et al. Progress on steroidogenic acute regulatory protein on reproductive regulation. Progress in Veterinary Medicine, 2023, 44(7): 97-101. |
曾思雨, 程蕊娈, 王重, 等. 类固醇激素合成急性调节蛋白对生殖调控作用的研究进展. 动物医学进展, 2023, 44(7): 97-101. | |
29 | Zhou Z N, Ao Y, Luo J H, et al. Expression of CYP19A1, STS genes in different tissues of Qianbei Ma goat. Genomics and Applied Biology, 2020, 39(11): 5045-5051. |
周志楠, 敖叶, 骆金红, 等. CYP19A1, STS基因在黔北麻羊不同组织中的表达. 基因组学与应用生物学, 2020, 39(11): 5045-5051. | |
30 | Li W H, Li F D, Weng X X, et al. Effects of ALA on mice TM3 leydig cell viability and relative gene expression. Journal of Jilin Agricultural University, 2019, 41(1): 102-107. |
李万宏, 李发弟, 翁秀秀, 等. α-亚麻酸对TM3细胞活性及相关基因表达的影响. 吉林农业大学学报, 2019, 41(1): 102-107. | |
31 | Cao B Y, Li J, Wang J C, et al. The mechanism of IGF-1 on regulating testosterone secretion in cultured goat leydig cells. Chinese Journal of Veterinary Science, 1998(3): 68-71. |
曹斌云, 李键, 王建辰, 等. IGF-1对山羊睾丸间质细胞分泌睾酮的调节机理. 中国兽医学报, 1998(3): 68-71. |
[1] | Jian-feng NING, Tong LI, Rui-kun ZENG, Jian-wu YAO, Yong CHEN, Zi-wei LIANG. Soil fertility in perennial vegetable fields in the latosolic red soil zone of the Pearl River Delta [J]. Acta Prataculturae Sinica, 2024, 33(5): 25-40. |
[2] | Zi-li LI, Shang-li SHI, Yun A, Hui-hui ZHANG, Xiao-long LI. Identification and physiological study of variation in reproductive fertility in clonal lines of Medicago sativa cultivar ‘Qingshui’ [J]. Acta Prataculturae Sinica, 2022, 31(10): 135-144. |
[3] | Ke-sheng WU, Zong-xian CHE, Xing-guo BAO, Jiu-dong ZHANG, Bing-lin LU, Xin-qiang YANG, Rui-ju YANG. Analysis of soil fertility and crop yield characteristics following long-term straw return to the field in a Hexi Oasis irrigated area [J]. Acta Prataculturae Sinica, 2021, 30(12): 59-70. |
[4] | HE Guo-xing, SONG Jian-chao, WEN Ya-jie, LIU Cai-ting, QI Juan. Effects of different rhizobium fertilizers on alfalfa productivity and soil fertility [J]. Acta Prataculturae Sinica, 2020, 29(5): 109-120. |
[5] | HAN Bing-cheng, SHEN Qin, HAN Yang-yang, ZHU Pu-jia, LI Wan-hong, WENG Xiu-xiu, LI Fa-di, WANG Chao, REN Fang. Effect of grape pomace extract on serum luteinizing hormone, testosterone and estradiol concentrations in Hu rams [J]. Acta Prataculturae Sinica, 2020, 29(2): 193-198. |
[6] | LIU Shu-jun, YAO Xin-zhuan, ZHAO De-gang, LÜ Li-tang. An evaluation of soil nutrient status and balance in Meitan tea plantations [J]. Acta Prataculturae Sinica, 2020, 29(11): 33-45. |
[7] | YANG Feng-ke, HE Bao-lin, ZHANG Guo-ping, ZHANG Li-gong, GAO Ying-ping. Effects of straw incorporation with decomposer and film mulched ridge furrow tillage on soil carbon and nitrogen accumulation and soil fertility characters in dryland, China [J]. Acta Prataculturae Sinica, 2019, 28(9): 67-76. |
[8] | KANG Jing-peng, WANG Wen-ji, GUO Ya-min, JING Xiao-ping, ZHONG Chong-liang, GUO Wei, LONG Rui-jun, ZHOU Jian-wei. Effects of different dietary energy levels on apparent digestibility, nitrogen metabolism and growth performance of Tibetan sheep under low nitrogen conditions [J]. Acta Prataculturae Sinica, 2018, 27(9): 166-174. |
[9] | Saiyaremu·Halifu, Aikebaier·Yilahong, SONG Rui-qing, Abudousaimaiti·Naihemaiti, Mirenisha·Maimaitiming, Diliduer·Aili. Correlation between soil enzyme activities and soil physical chemical properties in Chabuchar Grassland [J]. Acta Prataculturae Sinica, 2018, 27(3): 116-125. |
[10] | SUI Zong-ming, LIU Hai, YIN Jie, GUO Ming-quan, WANG Yong, YUAN Ling. Effects of Eupatorium adenophorum compost on soil characteristics and yield and quality of grape [J]. Acta Prataculturae Sinica, 2018, 27(2): 88-96. |
[11] | CHEN Guang-Rong, WANG Li-Ming, YANG Ru-Ping, DONG Bo, ZHANG Guo-Hong, YANG Gui-Fang. Crop yield and soil fertility affected by continuous potato/soybean intercropping systems along the Yellow River [J]. Acta Prataculturae Sinica, 2017, 26(10): 46-55. |
[12] | DENG Xiao-Jun, CHEN Xiao-Long, TANG Jian, WANG Hui-Li, HAN Hua, XU Yong-Teng, HE Wen-Ping. Assessment of forest soil fertility using an integrated index based on the Nemerow meth [J]. Acta Prataculturae Sinica, 2016, 25(7): 34-41. |
[13] | GAO Jun-Liang, LUO Feng-Min, GAO Yong, YUAN Wei-Jie, WANG Huai-Liang, DANG Xiao-Hong. Analysis of soil nutrient characteristics under different land use patterns in the northern piedmont of Yinshan Mountain [J]. Acta Prataculturae Sinica, 2016, 25(4): 230-238. |
[14] | CHEN Guo-Jun, YAN Hui-Feng, WU Kai, YANG Ju-Tian, TIAN Lei, TAN Xiao-Lei, ZONG Hao, CHEN Xiu-Zhai, ZHANG Yong-Chun, SUN Yan-Guo, LIU Hai-Wei, SHI Yi. Green manure returning effect of Amaranthus hypochondriacus harvested at different times on soil fertility [J]. Acta Prataculturae Sinica, 2016, 25(3): 215-224. |
[15] | ZHANG Ting, ZHANG Bin, ZHANG Pei-Hua, ZHOU Xiao-Qiao, TIAN Yao, ZHU Dan, ZHAO Meng, LIU Shi-Jie, ZHANG Kai-Zhan, CHEN Yu-Guang, BU Deng-Pan, William P.Weiss. Effects of different energy levels and corn processing diets on ruminal fermentation parameters in vitro [J]. Acta Prataculturae Sinica, 2015, 24(12): 102-111. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||