Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (6): 175-186.DOI: 10.11686/cyxb2023281
Jin-zhu GAO(), Dong-hao ZHAO, Le GAO, Xi-hao SU, Xue-qing HE()
Received:
2023-08-09
Revised:
2023-09-27
Online:
2024-06-20
Published:
2024-03-20
Contact:
Xue-qing HE
Jin-zhu GAO, Dong-hao ZHAO, Le GAO, Xi-hao SU, Xue-qing HE. Effects of cerium nitrate and abscisic acid treatment on alfalfa seed germination and seedling physiological characteristics[J]. Acta Prataculturae Sinica, 2024, 33(6): 175-186.
项目Item | 来源Source | 自由度df | 均方MS | F | P |
---|---|---|---|---|---|
发芽势 GE | Ce | 3 | 0.470 | 0.707 | |
ABA | 3 | 0.000 | |||
ABA×Ce | 3 | 0.281 | |||
发芽率 GP | Ce | 3 | 0.737 | ||
ABA | 3 | 0.000 | |||
ABA×Ce | 3 | 0.416 | |||
活力指数 VI | Ce | 3 | 0.181 | ||
ABA | 3 | 0.000 | |||
ABA×Ce | 3 | 0.507 | |||
发芽指数 GI | Ce | 3 | 0.067 | ||
ABA | 3 | 0.000 | |||
ABA×Ce | 3 | 0.123 | |||
芽长 SL | Ce | 3 | |||
ABA | 3 | 0.000 | |||
ABA×Ce | 3 | ||||
根长 RL | Ce | 3 | |||
ABA | 3 | ||||
ABA×Ce | 3 | ||||
根粗 RT | Ce | 3 | 0.007 | ||
ABA | 3 | ||||
ABA×Ce | 3 | ||||
下胚轴长HL | Ce | 3 | |||
ABA | 3 | ||||
ABA×Ce | 3 |
Table 1 Two-way ANOVA of the effect of cerium nitrate and ABA interactive processing on alfalfa seed germination and seedling growth
项目Item | 来源Source | 自由度df | 均方MS | F | P |
---|---|---|---|---|---|
发芽势 GE | Ce | 3 | 0.470 | 0.707 | |
ABA | 3 | 0.000 | |||
ABA×Ce | 3 | 0.281 | |||
发芽率 GP | Ce | 3 | 0.737 | ||
ABA | 3 | 0.000 | |||
ABA×Ce | 3 | 0.416 | |||
活力指数 VI | Ce | 3 | 0.181 | ||
ABA | 3 | 0.000 | |||
ABA×Ce | 3 | 0.507 | |||
发芽指数 GI | Ce | 3 | 0.067 | ||
ABA | 3 | 0.000 | |||
ABA×Ce | 3 | 0.123 | |||
芽长 SL | Ce | 3 | |||
ABA | 3 | 0.000 | |||
ABA×Ce | 3 | ||||
根长 RL | Ce | 3 | |||
ABA | 3 | ||||
ABA×Ce | 3 | ||||
根粗 RT | Ce | 3 | 0.007 | ||
ABA | 3 | ||||
ABA×Ce | 3 | ||||
下胚轴长HL | Ce | 3 | |||
ABA | 3 | ||||
ABA×Ce | 3 |
项目 Item | 来源 Source | 叶Shoot | 根Root | ||||||
---|---|---|---|---|---|---|---|---|---|
自由度df | 均方MS | F | P | 自由度df | 均方MS | F | P | ||
叶绿素a和b Chlorophyll a and b | Ce | ||||||||
ABA | |||||||||
ABA×Ce | |||||||||
丙二醛 MDA | Ce | ||||||||
ABA | |||||||||
ABA×Ce | |||||||||
可溶性蛋白 Soluble protein | Ce | ||||||||
ABA | |||||||||
ABA×Ce | |||||||||
超氧化物歧化酶 SOD | Ce | 3 | 215.338 | 5.094 | 0.012 | ||||
ABA | 3 | 1431.685 | 33.868 | 0.000 | |||||
ABA×Ce | 3 | 507.794 | 12.012 | 0.126 | |||||
过氧化物酶 POD | Ce | ||||||||
ABA | |||||||||
ABA×Ce | |||||||||
过氧化氢酶 CAT | Ce | ||||||||
ABA | |||||||||
ABA×Ce | |||||||||
抗坏血酸过氧化物酶APX | Ce | ||||||||
ABA | |||||||||
ABA×Ce |
Table 2 Two-way ANOVA of effects of cerium nitrate and ABA treatment on physiological characteristics of alfalfa seedlings at germination stage
项目 Item | 来源 Source | 叶Shoot | 根Root | ||||||
---|---|---|---|---|---|---|---|---|---|
自由度df | 均方MS | F | P | 自由度df | 均方MS | F | P | ||
叶绿素a和b Chlorophyll a and b | Ce | ||||||||
ABA | |||||||||
ABA×Ce | |||||||||
丙二醛 MDA | Ce | ||||||||
ABA | |||||||||
ABA×Ce | |||||||||
可溶性蛋白 Soluble protein | Ce | ||||||||
ABA | |||||||||
ABA×Ce | |||||||||
超氧化物歧化酶 SOD | Ce | 3 | 215.338 | 5.094 | 0.012 | ||||
ABA | 3 | 1431.685 | 33.868 | 0.000 | |||||
ABA×Ce | 3 | 507.794 | 12.012 | 0.126 | |||||
过氧化物酶 POD | Ce | ||||||||
ABA | |||||||||
ABA×Ce | |||||||||
过氧化氢酶 CAT | Ce | ||||||||
ABA | |||||||||
ABA×Ce | |||||||||
抗坏血酸过氧化物酶APX | Ce | ||||||||
ABA | |||||||||
ABA×Ce |
1 | Adeel M, Lee J Y, Zain M, et al. Cryptic footprints of rare earth elements on natural resources and living organisms. Environment International, 2019, 127: 785-800. |
2 | Liang X D, Ye M, Yang L, et al. Evaluation and policy research on the sustainable development of China’s rare earth resources. Sustainability, 2018, 10(10): 1-16. |
3 | Zhu W, Kennedy M, De Leer E W B, et al. Distribution and modeling of rare earth elements in Chinese river sediments. Science of the Total Environment, 1997, 204(3): 233-243. |
4 | Ma Y H, Kuang L L, He X, et al. Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere, 2020, 78(3): 273-279. |
5 | Hong F S, Qu C X, Wang L. Cerium improves growth of maize seedlings via alleviating morphological structure and oxidative damages of leaf under different stresses. Journal of Agricultural and Food Chemistry, 2017, 65(41): 9022-9030. |
6 | García-Jiménez A, Gómez-Merino F C, Tejeda-Sartorius O, et al. Lanthanum affects bell pepper seedling quality depending on the genotype and time of exposure by differentially modifying plant height, stem diameter and concentrations of chlorophylls, sugars, amino acids, and proteins. Frontiers in Plant Science, 2017, 8(308): 1-14. |
7 | Ramírez-Olvera S M, Trejo-Téllez L I, García-Morales S, et al. Cerium enhances germination and shoot growth, and alters mineral nutrient concentration in rice. PLoS One, 2018, 13: e0194691. |
8 | Liu D W, Wang X, Chen Z W. Effects of rare earth elements and REE-binding proteins on physiological responses in plants. Protein and Peptide Letters, 2012, 19(2): 198-202. |
9 | Pourkhorsandi H, Debaille V, De Jong J, et al. Cerium stable isotope analysis of synthetic and terrestrial rock reference materials by MC-ICPMS. Talanta, 2021, 224(121877): 1-8. |
10 | Kostova I, Manolov I, Momekov G, et al. Cytotoxic activity of new cerium (Ⅲ) complexes of bis-coumarins. European Journal of Medicinal Chemistry, 2005, 40(12): 1246-1254. |
11 | Redlin K. Rare earth elements in agriculture with emphasis on animal husbandry. Munich, Germany, Ludwig-Maximilians-Universität München, 2006. |
12 | Kovaříková M, Tomášková I, Soudek P. Rare earth elements in plants. Biologia Plantarum, 2019, 63: 20-32. |
13 | Orlando S B, Fernando C G M, Gabriel A G, et al. Biostimulant effects of cerium on seed germination and initial growth of tomato seedlings. Agronomy, 2021, 11(8): 1-13. |
14 | Wang L H, He J F, Yang Q, et al. Abnormal pinocytosis and valence-variable behaviors of cerium suggested a cellular mechanism for plant yield reduction induced by environmental cerium. Environmental Pollution, 2017, 230(2017): 902-910. |
15 | Cutler S R, Rodriguez P L, Finkelstein R R, et al. Abscisic acid: Emergence of a core signaling network. Annual Review of Plant Biology, 2010, 61(1): 651-679. |
16 | Negin B, Moshelion M. The evolution of the role of ABA in the regulation of water-use efficiency: From biochemical mechanisms to stomatal conductance. Plant Science, 2016, 251: 82-89. |
17 | Hong E J, Lim C W, Han S W, et al. Functional analysis of the pepper ethylene-responsive transcription factor, caAIEF1, in enhanced ABA sensitivity and drought tolerance. Frontiers in Plant Science, 2017, 8(1407): 1-13. |
18 | Chen K, Li G J, Bressan R A, et al. Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology, 2020, 62(1): 25-54. |
19 | Gianinetti A. In dormant red rice seeds, the inhibition of early seedling growth, but not of germination, requires extracellular ABA. Plants, 2022, 11: 1023. |
20 | Lopez-Molina L, Mongrand S, Chua N H. A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(8): 4782-4787. |
21 | Wang J R, Wang L, Hu T, et al. Effects of lanthanum on abscisic acid regulation of root growth in Arabidopsis. Journal of Rare Earths, 2014, 32(1): 78-82. |
22 | Yu C, Wang Y M, Ma L, et al. An annual rotation model of alfalfa and corn in Yangtze River area. Pratacultural Science, 2022, 39(5): 996-1005. |
于晨, 王仪明, 马力, 等. 长江中下游地区紫花苜蓿与玉米周年轮作栽培模式. 草业科学, 2022, 39(5): 996-1005. | |
23 | Miao Y, Zhang H Y, Zhang L J, et al. Effects of small amounts of NaCl on alleviating damage caused to the photosynthetic activity of alfalfa seedling roots and leaves by KCl stress. Pratacultural Science, 2022, 39(5): 930-939. |
苗宇, 张浩阳, 张丽佳, 等. 少量NaCl缓解KCl胁迫对紫花苜蓿幼苗根系和叶片光合活性的影响. 草业科学, 2022, 39(5): 930-939. | |
24 | Song K X, Gao J Z, Li S, et al. Experimental and theoretical study of the effects of rare earth elements on growth and chlorophyll of alfalfa (Medicago sativa L.) seedling. Frontiers in Plant Science, 2021, 12(731838): 1-11. |
25 | He X Q, You P, Sun Y F. Lanthanum and abscisic acid coregulate chlorophyll production of seedling in switchgrass. PLoS One, 2020, 15(5): e0232750. |
26 | Li Y F, Chu X H, Li J Y, et al. Allelopathic effects of Euphorbia jolkinii on seed germination and seedling growth of alfalfa. Acta Agrestia Sinica, 2022, 30(2): 394-402. |
李彦飞, 初晓辉, 李嘉懿, 等. 大狼毒对紫花苜蓿种子萌发及幼苗生长的化感效应研究. 草地学报, 2022, 30(2): 394-402. | |
27 | Ma T Y, Li Y Z. Effects of exogenous betaine on alfalfa seed germination and seedling resistance under NaCl stress. Pratacultural Science, 2019, 36(12): 3100-3110. |
马婷燕, 李彦忠. 外源甜菜碱对NaCl胁迫下紫花苜蓿种子萌发及幼苗抗性的影响. 草业科学, 2019, 36(12): 3100-3110. | |
28 | Nie Y Y, Xu L J, Xin X P, et al. Effects of different concentrations of gibberellin on seed germination of alfalfa. Animal Husbandry and Feed Science, 2020, 41(6): 72-77. |
聂莹莹, 徐丽君, 辛晓平, 等.赤霉素浓度对苜蓿种子萌发的影响. 畜牧与饲料科学, 2020, 41(6): 72-77. | |
29 | Lian H N, Li C J. Effects of soaking seeds in salicylic acid on seed germination and seedling growth of Achnatherum inebrians under salt stress. Pratacultural Science, 2022, 39(8): 1540-1549. |
连鹤娜, 李春杰. 水杨酸浸种对盐胁迫下醉马草种子萌发和幼苗生长的影响. 草业科学, 2022, 39(8): 1540-1549. | |
30 | Rowan K S. Photosynthetic pigments of algae. New York: Cambridge University Press,1989. |
31 | Aebi H. Catalase in vitro. Methods in Enzymology, 1984, 105: 121-126. |
32 | Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiology, 1981, 22(5): 867-880. |
33 | Hemeda H M, Klein B P. Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. Journal of Food Science, 1990, 55(1): 184-185. |
34 | Beauchamp C, Fridovich I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 1971, 44(1): 276-287. |
35 | Angelini R, Cona A, Federico R, et al. Plant amine oxidases “on the move”: An update. Plant Physiology and Biochemistry, 2010, 48(7): 560-564. |
36 | Xiong Q E. Experimental course of plant physiology. Chengdu: Sichuan Publishing Group, 2003. |
熊庆娥. 植物生理学实验教程. 成都: 四川出版集团, 2003. | |
37 | Hong F S, Fang N H, Zhao G W. Physiological effects of Ce(NO3)3 on promoting germination of rice seed. Acta Agronomica Sinica, 2000, 26(1): 77-82. |
洪法水, 方能虎, 赵贵文. 硝酸铈促进水稻种子萌发的生理效应. 作物学报, 2000, 26(1): 77-82. | |
38 | Hong F S. Study on the mechanism of cerium nitrate effects on germination of aged rice seed. Biological Trace Element Research, 2002, 87(1/2/3): 191-200. |
39 | Gianinetti A, Vernieri P. On the role of abscisic acid in seed dormancy of red rice. Journal of Experimental Botany, 2007, 58(12): 3449-3462. |
40 | Cao J, Li X R, Wang C, et al. Effects of exogenous abscisic acid on heteromorphic seed germination of Suaeda aralocaspica, a typical halophyte of Xinjiang desert region. Acta Ecologica Sinica, 2015, 35(20): 6666-6677. |
曹婧, 李晓荣, 王翠, 等. 外源激素ABA影响新疆荒漠盐生植物异子蓬异型种子萌发机制. 生态学报, 2015, 35(20): 6666-6677. | |
41 | He X Q, Shaya H, Zhang Y F, et al. Effect of plant exogenous growth substances on seed germination of switchgrass. Acta Agrestia Sinica, 2018, 26(3): 684-690. |
何学青, 沙亚·海拉提, 张依凡, 等. 不同外源植物生长物质对柳枝稷种子萌发特性的影响. 草地学报, 2018, 26(3): 684-690. | |
42 | Li Y, Yu X J, Zhao Y S, et al. Effects of seed soaking with salicylic acid and abscisic acid on seed germination and seedling growth of Medicago ruthenica at low temperature. Acta Agrestia Sinica, 2021, 29(1): 174-181. |
李颖, 鱼小军, 赵一珊, 等. 水杨酸和脱落酸浸种对低温下扁蓿豆种子萌发和幼苗生长的影响. 草地学报, 2021, 29(1): 174-181. | |
43 | Huang Y H, Tang R S, Ye X Q, et al. Effect of ABA on the germination of white-grain wheat seeds and growth of its seedlings. Journal of Triticeae Crops, 2009, 29(3): 503-507. |
黄益洪, 汤日圣, 叶晓青, 等. 脱落酸(ABA)对白粒小麦种子萌发及幼苗生长的影响. 麦类作物学报, 2009, 29(3): 503-507. | |
44 | Hayashi Y, Takahashi K, Inoue S, et al. Abscisic acid suppresses hypocotyl elongation by dphosphorylating plasma membrane H+-ATPase in Arabidopsis thaliana. Plant Cell Physiology, 2014, 55(4): 845-853. |
45 | Li D, Zhao S L, Duo L A. Effects of rare earths and water-retaining agent added in municipal solid waste compost medium on initial growth of Festuca arundinacea L. Chinese Journal of Grassland, 2012, 34(3): 88-93. |
李丹, 赵树兰, 多立安. 施加稀土和保水剂对高羊茅初期生长的影响. 中国草地学报, 2012, 34(3): 88-93. | |
46 | Shyam R, Aery N C. Effect of cerium on growth, dry matter production, biochemical constituents and enzymatic activities of cowpea plants [Vigna unguiculata (L.) Walp.]. Journal of Soil Science and Plant Nutrition, 2012, 12(1): 1-14. |
47 | Hong F S, Wang L, Meng X X, et al. The effect of cerium (Ⅲ) on the chlorophyll formation in spinach. Biological Trace Element Research, 2002, 89(3): 263-276. |
48 | Chen G J, Zheng D F, Feng N J, et al. Effects of ABA on growth and physiological metabolism of rice at germinating stage and booting stage under salt stress. Hybrid Rice, 2022, 37(2): 100-108. |
陈观杰, 郑殿峰, 冯乃杰, 等. 盐胁迫下ABA对水稻萌芽期及孕穗期生长、生理代谢的影响. 杂交水稻, 2022, 37(2): 100-108. | |
49 | Chang Y C, Walling L L. Abscisic acid negatively regulates expression of chlorophyll a/b binding protein genes during soybean embryogeny. Plant Physiology, 1991, 97(3): 1260-1264. |
50 | Qian Q Q, Liu L, Yang J, et al. Physiological effects of cerium on seed germination and seeding of eggplant under chilling stress. Acta Horticulturae Sinica, 2005, 32(4): 710-712. |
钱琼秋, 刘莉, 杨静, 等. 铈对低温胁迫下茄子种子发芽及幼苗生理的影响. 园艺学报, 2005, 32(4): 710-712. | |
51 | Xu L M, Zhang Z B, Liang X L, et al. Advances in genetic engineering for drought tolerance in plants. Acta Prataculturae Sinica, 2014, 23(6): 293-303. |
徐立明, 张振葆, 梁晓玲, 等. 植物抗旱基因工程研究进展. 草业学报, 2014, 23(6): 293-303. |
[1] | Zhao-ben QI, Xiao-yan REN, Yi-tong LI, Jin-yun MA, Quan LIU. Enzyme extraction method and antioxidant activity of polysaccharides from red clover [J]. Acta Prataculturae Sinica, 2024, 33(6): 105-115. |
[2] | Hai-ming KONG, Jia-xing SONG, Jing YANG, Qian LI, Pei-zhi YANG, Yu-man CAO. Identification and transcript profiling of the CAMTA gene family under abiotic stress in alfalfa [J]. Acta Prataculturae Sinica, 2024, 33(5): 143-154. |
[3] | Sheng-ran HE, Xiao-jing LIU, Ya-jiao ZHAO, Xue WANG, Jing WANG. Effects of alfalfa/sweet sorghum intercropping on rhizosphere soil characteristics and microbial community characteristics [J]. Acta Prataculturae Sinica, 2024, 33(5): 92-105. |
[4] | Hao LIU, Xian-yang LI, Fei HE, Xue WANG, Ming-na LI, Rui-cai LONG, Jun-mei KANG, Qing-chuan YANG, Lin CHEN. Identification of the alfalfa SAUR gene family and its expression pattern under abiotic stress [J]. Acta Prataculturae Sinica, 2024, 33(4): 135-153. |
[5] | Xian-yang LI, Hao LIU, Fei HE, Xue WANG, Ming-na LI, Rui-cai LONG, Jun-mei KANG, Qing-chuan YANG, Lin CHEN. Identification and expression pattern of the WRKY transcription factor family in Medicago sativa [J]. Acta Prataculturae Sinica, 2024, 33(4): 154-170. |
[6] | Yan LI, Fu-long MA, Lu HAN, Hai-zhen WANG. Productivity and adaptability of ‘WL’ alfalfa varieties with different fall dormancy in the extremely arid region of Southern Xinjiang [J]. Acta Prataculturae Sinica, 2024, 33(3): 139-149. |
[7] | Xue WANG, Xiao-jing LIU, Jing WANG, Yong WU, Chang-chun TONG. Root and carbon-nitrogen metabolism characteristics of alfalfa-oat mixed stands under continuous intercropping [J]. Acta Prataculturae Sinica, 2024, 33(3): 85-96. |
[8] | Ying TANG, Xiao-jing LIU, Ya-jiao ZHAO, Lin DONG. Characteristics and driving factors of lactic acid bacteria communities in silage made from alfalfa in different regions of Gansu Province [J]. Acta Prataculturae Sinica, 2024, 33(2): 112-124. |
[9] | Kong-qin WEI, Jun-wei ZHAO, Qian-bing ZHANG. Effects of phosphorus application on soil respiration rate and active organic carbon components of alfalfa [J]. Acta Prataculturae Sinica, 2024, 33(2): 80-92. |
[10] | Jian-ling ZHOU, Qiao-lan LIANG, Lie-xin WEI, Qi-yu ZHOU, Long TIAN, Ying-e CHEN, Cun-ying WANG, Guo-yin ZHANG. Detection of AMV pathogen of alfalfa virus diseases with different symptom types and its host ranges [J]. Acta Prataculturae Sinica, 2024, 33(1): 126-137. |
[11] | Xuan-shuai LIU, Yan-liang SUN, Chun-hui MA, Qian-bing ZHANG. Dry matter yield and spatial distribution characteristics of phosphorus in alfalfa under bacterial-phosphorus coupling [J]. Acta Prataculturae Sinica, 2023, 32(9): 104-115. |
[12] | Rui XU, Zheng WANG, Yi-ming WANG, Lian-tai SU, Li GAO, Peng ZHOU, Yuan AN. Effect of alfalfa on the yield and sucrose metabolism of rice in an alfalfa-rice rotation system [J]. Acta Prataculturae Sinica, 2023, 32(8): 129-140. |
[13] | Bao-qiang WANG, Wen-jing MA, Xian WANG, Xiao-lin ZHU, Ying ZHAO, Xiao-hong WEI. Nitric oxide regulation of secondary metabolite accumulation in Medicago sativa seedlings under drought stress [J]. Acta Prataculturae Sinica, 2023, 32(8): 141-151. |
[14] | Wen-qing LING, Lei ZHANG, Jue LI, Qi-xian FENG, Yan LI, Yi ZHOU, Yi-jia LIU, Fu-lin YANG, Jing ZHOU. Effects of Lentilactobacillus buchneri combined with different sugars on nutrient composition, fermentation quality, rumen degradation rate, and aerobic stability of alfalfa silage [J]. Acta Prataculturae Sinica, 2023, 32(7): 122-134. |
[15] | Shao-peng WANG, Jia LIU, Jun HONG, Ji-zhen LIN, Yi ZHANG, Kun SHI, Zan WANG. Cloning and function analysis of MsPPR1 in alfalfa under drought stress [J]. Acta Prataculturae Sinica, 2023, 32(7): 49-60. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||