Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (8): 133-144.DOI: 10.11686/cyxb2023354
Ying-ying ZHANG(), Dan-dan HU, Chun-hui MA, Qian-bing ZHANG()
Received:
2023-09-20
Revised:
2023-10-23
Online:
2024-08-20
Published:
2024-05-13
Contact:
Qian-bing ZHANG
Ying-ying ZHANG, Dan-dan HU, Chun-hui MA, Qian-bing ZHANG. Leaf structure and photosynthetic properties of alfalfa in response to bacteria and phosphorus addition[J]. Acta Prataculturae Sinica, 2024, 33(8): 133-144.
处理 Treatment | 叶片厚度Leaf thickness | 上表皮厚度 Upper epidermal thickness | 下表皮厚度Lower epidermal thickness | |||
---|---|---|---|---|---|---|
第1茬First cut | 第2茬Second cut | 第1茬First cut | 第2茬Second cut | 第1茬First cut | 第2茬Second cut | |
J0P0 | 183.54±6.56Cb | 183.52±5.62Bb | 11.45±1.85Ba | 9.65±1.02Bb | 8.25±1.73Cb | 7.07±1.15Bb |
J0P1 | 208.67±4.92Da | 218.18±8.16Ba | 12.41±1.29Ca | 12.25±1.10Ba | 12.57±1.10Ca | 10.26±1.18Ba |
J1P0 | 200.37±5.52Bb | 188.26±6.47ABb | 17.08±2.94Ab | 11.06±1.19ABb | 16.98±3.03Ab | 9.90±2.29ABb |
J1P1 | 223.84±7.30Ca | 223.21±8.05Ba | 21.28±1.06ABa | 14.10±1.02ABa | 20.86±2.03Aa | 12.75±2.00ABa |
J2P0 | 206.51±5.50Bb | 188.03±6.58ABb | 11.54±2.23Bb | 10.92±1.10ABb | 11.90±1.19Bb | 9.42±1.59ABa |
J2P1 | 246.65±4.00Ba | 221.24±8.81Ba | 18.29±1.27Ba | 13.62±1.18Ba | 16.16±3.49Ba | 11.38±1.36ABa |
J3P0 | 218.58±5.89Ab | 197.62±2.71Ab | 19.72±1.11Ab | 13.06±1.52Ab | 17.72±1.05Ab | 10.55±1.41Ab |
J3P1 | 263.39±6.87Aa | 258.39±3.33Aa | 23.07±1.59Aa | 16.27±2.28Aa | 21.63±1.14Aa | 13.91±1.69Aa |
J | ** | ** | ** | ** | ** | * |
P | ** | ** | ** | ** | ** | ** |
J×P | * | ** | ns | ns | ns | ns |
Table 1 Leaf thickness, upper epidermal thickness and lower epidermal thickness of alfalfa under different bacterial and phosphorus treatment (μm)
处理 Treatment | 叶片厚度Leaf thickness | 上表皮厚度 Upper epidermal thickness | 下表皮厚度Lower epidermal thickness | |||
---|---|---|---|---|---|---|
第1茬First cut | 第2茬Second cut | 第1茬First cut | 第2茬Second cut | 第1茬First cut | 第2茬Second cut | |
J0P0 | 183.54±6.56Cb | 183.52±5.62Bb | 11.45±1.85Ba | 9.65±1.02Bb | 8.25±1.73Cb | 7.07±1.15Bb |
J0P1 | 208.67±4.92Da | 218.18±8.16Ba | 12.41±1.29Ca | 12.25±1.10Ba | 12.57±1.10Ca | 10.26±1.18Ba |
J1P0 | 200.37±5.52Bb | 188.26±6.47ABb | 17.08±2.94Ab | 11.06±1.19ABb | 16.98±3.03Ab | 9.90±2.29ABb |
J1P1 | 223.84±7.30Ca | 223.21±8.05Ba | 21.28±1.06ABa | 14.10±1.02ABa | 20.86±2.03Aa | 12.75±2.00ABa |
J2P0 | 206.51±5.50Bb | 188.03±6.58ABb | 11.54±2.23Bb | 10.92±1.10ABb | 11.90±1.19Bb | 9.42±1.59ABa |
J2P1 | 246.65±4.00Ba | 221.24±8.81Ba | 18.29±1.27Ba | 13.62±1.18Ba | 16.16±3.49Ba | 11.38±1.36ABa |
J3P0 | 218.58±5.89Ab | 197.62±2.71Ab | 19.72±1.11Ab | 13.06±1.52Ab | 17.72±1.05Ab | 10.55±1.41Ab |
J3P1 | 263.39±6.87Aa | 258.39±3.33Aa | 23.07±1.59Aa | 16.27±2.28Aa | 21.63±1.14Aa | 13.91±1.69Aa |
J | ** | ** | ** | ** | ** | * |
P | ** | ** | ** | ** | ** | ** |
J×P | * | ** | ns | ns | ns | ns |
处理 Treatment | 导管直径Vessel diameter | 筛管直径Sieve tube diameter | ||
---|---|---|---|---|
第1茬First cut | 第2茬Second cut | 第1茬First cut | 第2茬Second cut | |
J0P0 | 11.04±0.97Cb | 9.26±0.49Cb | 3.40±0.25Cb | 2.13±0.14Ba |
J0P1 | 13.69±0.94Ba | 10.77±0.54Ca | 4.16±0.29Ca | 2.25±0.47Ca |
J1P0 | 13.87±0.66ABb | 9.78±0.28Cb | 4.45±0.31Bb | 2.59±0.70Ba |
J1P1 | 15.70±0.42Aa | 12.07±0.67Ba | 5.29±0.15Ba | 3.23±0.36Ba |
J2P0 | 12.79±0.71Bb | 10.75±0.45Bb | 4.85±0.23Bb | 2.24±0.28Ba |
J2P1 | 15.11±0.18Aa | 12.80±0.49Ba | 5.54±0.34Ba | 2.67±0.45BCa |
J3P0 | 14.12±0.48Ab | 13.10±0.23Ab | 5.34±0.11Ab | 3.59±0.26Aa |
J3P1 | 16.28±0.97Aa | 14.67±0.87Aa | 6.05±0.16Aa | 4.00±0.61Aa |
J | ** | ** | ** | ** |
P | ** | ** | ** | * |
J×P | ns | ns | ns | ns |
Table 2 Vessel diameter and sieve tube diameter of alfalfa leaves under different bacterial and phosphorus treatment (μm)
处理 Treatment | 导管直径Vessel diameter | 筛管直径Sieve tube diameter | ||
---|---|---|---|---|
第1茬First cut | 第2茬Second cut | 第1茬First cut | 第2茬Second cut | |
J0P0 | 11.04±0.97Cb | 9.26±0.49Cb | 3.40±0.25Cb | 2.13±0.14Ba |
J0P1 | 13.69±0.94Ba | 10.77±0.54Ca | 4.16±0.29Ca | 2.25±0.47Ca |
J1P0 | 13.87±0.66ABb | 9.78±0.28Cb | 4.45±0.31Bb | 2.59±0.70Ba |
J1P1 | 15.70±0.42Aa | 12.07±0.67Ba | 5.29±0.15Ba | 3.23±0.36Ba |
J2P0 | 12.79±0.71Bb | 10.75±0.45Bb | 4.85±0.23Bb | 2.24±0.28Ba |
J2P1 | 15.11±0.18Aa | 12.80±0.49Ba | 5.54±0.34Ba | 2.67±0.45BCa |
J3P0 | 14.12±0.48Ab | 13.10±0.23Ab | 5.34±0.11Ab | 3.59±0.26Aa |
J3P1 | 16.28±0.97Aa | 14.67±0.87Aa | 6.05±0.16Aa | 4.00±0.61Aa |
J | ** | ** | ** | ** |
P | ** | ** | ** | * |
J×P | ns | ns | ns | ns |
处理 Treatment | 栅栏组织厚度 Palisade parenchyma thickness (μm) | 海绵组织厚度 Spongy parenchyma thickness (μm) | 栅海比 PPT/SPT | |||
---|---|---|---|---|---|---|
第1茬First cut | 第2茬Second cut | 第1茬First cut | 第2茬Second cut | 第1茬First cut | 第2茬Second cut | |
J0P0 | 85.77±4.33Cb | 84.52±4.98Bb | 47.60±3.48Cb | 45.73±4.23Cb | 1.80±0.07Aa | 1.86±0.16Aa |
J0P1 | 104.15±5.69Da | 94.42±4.45Ca | 73.60±5.47Ba | 59.92±3.89Da | 1.42±0.03Ab | 1.58±0.08Ab |
J1P0 | 95.53±6.56Bb | 92.57±2.45ABb | 53.40±7.33BCb | 67.04±4.18Bb | 1.81±0.26Aa | 1.38±0.07Bb |
J1P1 | 115.69±6.54Ca | 116.88±7.47Ba | 83.18±2.37Aa | 73.93±2.46Ca | 1.39±0.12Ab | 1.58±0.05Aa |
J2P0 | 88.84±1.04BCb | 87.86±1.55ABb | 56.80±3.26Ba | 62.81±2.21Bb | 1.57±0.08Ba | 1.40±0.04Ba |
J2P1 | 127.13±3.85Ba | 100.31±6.36Ca | 85.87±4.81Aa | 79.76±2.55Ba | 1.49±0.13Aa | 1.26±0.09Ba |
J3P0 | 110.37±7.77Ab | 94.76±6.44Ab | 66.00±6.67Ab | 76.18±3.28Ab | 1.68±0.06ABa | 1.25±0.13Bb |
J3P1 | 136.56±2.21Aa | 138.51±2.91Aa | 91.42±3.35Aa | 88.33±1.35Aa | 1.50±0.06Aa | 1.57±0.05Aa |
J | ** | ** | ** | ** | ns | ** |
P | ** | ** | ** | ** | * | ns |
J×P | ** | ** | ns | ns | ns | ** |
Table 3 Palisade parenchyma (PPT) and spongy parenchyma thickness (SPT) of alfalfa leaves under different bacterial and phosphorus treatment
处理 Treatment | 栅栏组织厚度 Palisade parenchyma thickness (μm) | 海绵组织厚度 Spongy parenchyma thickness (μm) | 栅海比 PPT/SPT | |||
---|---|---|---|---|---|---|
第1茬First cut | 第2茬Second cut | 第1茬First cut | 第2茬Second cut | 第1茬First cut | 第2茬Second cut | |
J0P0 | 85.77±4.33Cb | 84.52±4.98Bb | 47.60±3.48Cb | 45.73±4.23Cb | 1.80±0.07Aa | 1.86±0.16Aa |
J0P1 | 104.15±5.69Da | 94.42±4.45Ca | 73.60±5.47Ba | 59.92±3.89Da | 1.42±0.03Ab | 1.58±0.08Ab |
J1P0 | 95.53±6.56Bb | 92.57±2.45ABb | 53.40±7.33BCb | 67.04±4.18Bb | 1.81±0.26Aa | 1.38±0.07Bb |
J1P1 | 115.69±6.54Ca | 116.88±7.47Ba | 83.18±2.37Aa | 73.93±2.46Ca | 1.39±0.12Ab | 1.58±0.05Aa |
J2P0 | 88.84±1.04BCb | 87.86±1.55ABb | 56.80±3.26Ba | 62.81±2.21Bb | 1.57±0.08Ba | 1.40±0.04Ba |
J2P1 | 127.13±3.85Ba | 100.31±6.36Ca | 85.87±4.81Aa | 79.76±2.55Ba | 1.49±0.13Aa | 1.26±0.09Ba |
J3P0 | 110.37±7.77Ab | 94.76±6.44Ab | 66.00±6.67Ab | 76.18±3.28Ab | 1.68±0.06ABa | 1.25±0.13Bb |
J3P1 | 136.56±2.21Aa | 138.51±2.91Aa | 91.42±3.35Aa | 88.33±1.35Aa | 1.50±0.06Aa | 1.57±0.05Aa |
J | ** | ** | ** | ** | ns | ** |
P | ** | ** | ** | ** | * | ns |
J×P | ** | ** | ns | ns | ns | ** |
Fig.2 Daily mean values of the photosynthetic parameters and relative chlorophyll content of alfalfa under different bacterial and phosphorus treatment
1 | Liu J Y, Hui J F, Sun M Y, et al. Effects of phosphorus application and inoculation arbuscular mycorrhizae fungi (AMF) and phosphate solubilizing bacteria on dry matter yield and phosphorus use efficiency of alfalfa. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(19): 142-149. |
刘俊英, 回金峰, 孙梦瑶, 等. 施磷水平和接种AMF与解磷细菌对苜蓿产量及磷素利用效率的影响. 农业工程学报, 2020, 36(19): 142-149. | |
2 | Hou E Q, Luo Y Q, Kuang Y W, et al. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nature Communications, 2020, 11(1): 1-9. |
3 | Shu Y, Huang G J, Zhang Q Q, et al. Reduction of photosynthesis under P deficiency is mainly caused by the decreased CO2 diffusional capacities in wheat (Triticum aestivum L.). Plant Physiology and Biochemistry, 2023, 198: 10768. |
4 | Cao L Q, Zhong Q P, Zou Y L, et al. Leaf structural and photosynthetic characteristics of different Vcmicia montana germplasms. Journal of Forest and Environment, 2022, 42(6): 592-599. |
曹林青, 钟秋平, 邹玉玲, 等. 不同千年桐种质叶片结构及光合特性. 森林与环境学报, 2022, 42(6): 592-599. | |
5 | Li J X, Tian Q, Li J Z, et al. The leaf anatomical structure of 9 garden plants in different air environments in Lanzhou city. Ecology and Environmental Sciences, 2020, 29(11): 2189-2198. |
李娟霞, 田青, 李娇珍, 等. 兰州市不同空气环境下9种园林植物叶片解剖结构特征. 生态环境学报, 2020, 29(11): 2189-2198. | |
6 | Fleisher D H, Wang Q G, Timlin D J, et al. Response of potato gas exchange and productivity to phosphorus deficiency and carbon dioxide enrichment. Crop Science, 2012, 52(4): 1803-1815. |
7 | Yue H F, Zhou M, Hou X K, et al. Effects of nitrogen, phosphorus and potassium on phenotype, photosynthesis and biomass accumulation at juvenile phase of Prunus armeniaca×sibirica. Pakistan Journal of Botany, 2022, 54(2): 577-588. |
8 | Xu B. Effects of different phosphorous fertilizer and phosphorus fractions on leaf micromorphology, N/P acquisition and yield of sickle lucerne (Medicago falcata L). Hohhot: Inner Mongolia University, 2021. |
徐勃. 不同磷肥和磷形态对黄花苜蓿(Medicago falcata L.)叶片微观结构、氮磷吸收及产量的影响. 呼和浩特: 内蒙古大学, 2021. | |
9 | Wang X X, Zhang M, Zhang X Y, et al. Effects of different varieties of phosphate fertilizer application on soil phosphorus transformation and phosphorus uptake and utilization of winter wheat. Scientia Agricultura Sinica, 2023, 56(6): 1113-1126. |
王箫璇, 张敏, 张鑫尧, 等. 不同磷肥对砂姜黑土和红壤磷库转化及冬小麦磷素吸收利用的影响. 中国农业科学, 2023, 56(6): 1113-1126. | |
10 | Suriyagod L D B, Ryan M H, Renton M, et al. Above- and belowground interactions of grass and pasture legume species when grown together under drought and low phosphorus availability. Plant and Soil, 2011, 348(1): 281-297. |
11 | Pratibha R, Sudeshna D, Deepti S C, et al. Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. Journal of Soil Science and Plant Nutrition, 2021, 21(1): 49-68. |
12 | Kafi M, Nabati J, Rezazadeh E B, et al. Single and poly capsule sesame (Sesamum indicum L.) productivity in response to plant growth-promoting rhizobacteria and foliar application of silicon potassium and calcium. Acta Physiologiae Plantarum, 2022, 44(10): 4-14. |
13 | Nacoon S, Seemakram W, Ekprasert J, et al. Promoting growth and production of sunchoke (Helianthus tuberosus) by co-inoculation with phosphate solubilizing bacteria and arbuscular mycorrhizal fungi under drought. Frontiers in Plant Science, 2022, 13: 1-18. |
14 | Liu X S, Sun Y L, An X X, et al. Effects of phosphorus application and inoculation with arbuscular mycorrhizal fungi and phosphorus-solubilizing bacteria on the photosynthetic characteristics and biomass of alfalfa. Acta Prataculturae Sinica, 2023, 32(3): 189-199. |
刘选帅, 孙延亮, 安晓霞, 等. 施磷和接种解磷菌对紫花苜蓿光合特性及生物量的影响. 草业学报, 2023, 32(3): 189-199. | |
15 | Sun Y L, Wang X Z, Ma C H, et al. Effects of nitrogen and phosphorus addition on agronomic characters, photosynthetic performance and anatomical structure of alfalfa in northern Xinjiang, China. Agronomy, 2022, 12(7): 1-21. |
16 | Ren S F. Allometric growth and ecological adaptability of the leaf anatomical structure of Nitraria spp. Acta Agrestia Sinica, 2022, 30(5): 1150-1158. |
任尚福. 白刺叶片解剖结构性状异速生长与生态适应性研究. 草地学报, 2022, 30(5): 1150-1158. | |
17 | Aguraijuja K, Klõšeiko J, Ots K, et al. Effect of wood ash on leaf and shoot anatomy photosynthesis and carbohydrate concentrations in birch on a cutaway peatland. Environmental Monitoring and Assessmente, 2015, 18(7): 1-13. |
18 | Sun Y Q, Yan F, Cui X Y, et al. Plasticity in stomatal size and density of potato leaves under different irrigation and phosphorus regimes. Journal of Plant Physiology, 2014, 171(14): 1248-1255. |
19 | Cai Q, Ji C J, Yan Z B, et al. Anatomical responses of leaf and stem of Arabidopsis thaliana to nitrogen and phosphorus addition. Journal of Plant Research, 2017, 130(6): 1035-1045. |
20 | Gashash E A, Ashmawi A E, El-Taher A, et al. Effect of fertilizing with different levels of phosphorous and zinc on the botanical characteristics of table beet (Beta vulgaris L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2022, 50(1): 12579. |
21 | Delgado M N, Gomes M R D, Bao S N, et al. Fertilisation residues alter leaf scleromorphy in an evergreen savannah shrub (Maprounea brasiliensis, Euphorbiaceae). Australian Journal of Botany, 2013, 61(4): 266-273. |
22 | Khajeeyan R, Salehi A, Dehnavi M, et al. Growth parameters, water productivity and aloin content of Aloe vera affected by mycorrhiza and PGPR application under different irrigation regimes. South African Journal of Botany, 2021, 147(2): 1188-1198. |
23 | Kim J H, Kim S J, Nam I H. Effect of treating acid sulfate soils with phosphate solubilizing bacteria on germination and growth of tomato (Lycopersicon esculentum L.). International Journal of Environmental Research and Public Health, 2021, 18(17): 1-10. |
24 | Li Z W. Study on the influence of different bacteria on the quality and soil environment of Paris polyphylla var. yunnanensis. Chongqing:Chongqing Three GorgesUniversity, 2023. |
李卓蔚. 施加不同解有机磷细菌对滇重楼品质与土壤环境影响研究. 重庆: 重庆三峡学院, 2023. | |
25 | Sahandi M S, Mehrafarin A, Badi H N, et al. Improving growth phytochemical and antioxidant characteristics of peppermint by phosphate-solubilizing bacteria along with reducing phosphorus fertilizer use. Industrial Crops and Products, 2019, 141: 1-10. |
26 | Majid M, Ali M, Shahzad K, et al. Mitigation of osmotic stress in cotton for the improvement in growth and yield through inoculation of rhizobacteria and phosphate solubilizing bacteria coated diammonium phosphate. Sustainability, 2020, 12(24): 2-14. |
27 | Bakhshandeh E, Rahimian H, Pirdashti H, et al. Evaluation of phosphate-solubilizing bacteria on the growth and grain yield of rice (Oryza sativa L.) cropped in northern Iran. Journal of Applied Microbiology, 2015, 119(5): 1371-1382. |
28 | Guan S H, Chai Y Q, Cui H X, et al. Effects of low temperature stress on photosynthetic parameters and physiological characteristics for seedlings of two pomegranate varieties. Journal of Fruit Science, 2023, 40(5): 946-958. |
关思慧, 柴亚倩, 崔洪鑫, 等. 低温胁迫对2个石榴品种幼苗光合参数和生理特性的影响. 果树学报, 2023, 40(5): 946-958. | |
29 | Yang Q, Han J L, Li Y M, et al. Effects of phosphorus fertilization on flag leaves photosynthesis and yield components in wheat. Journal of Plant Nutrition and Fertilizers, 2006, 12(6): 816-821. |
杨晴, 韩金玲, 李雁鸣, 等. 不同施磷量对小麦旗叶光合性能和产量性状的影响. 植物营养与肥料学报, 2006, 12(6): 816-821. | |
30 | Warren C R. How does P affect photosynthesis and metabolite profiles of Eucalyptus globulus? Tree Physiology, 2011, 31(7): 727-739. |
31 | Li N, Qiao Z W, Hong J P, et al. Phosphorus solubilizing bacteria growth and effects on soil phosphorus adsorption-desorption characteristics in reclaimed soils. Chinese Journal of Eco-Agriculture, 2015, 23(8): 964-972. |
李娜, 乔志伟, 洪坚平, 等. 磷细菌在复垦土壤上生长规律及对磷解析特性的影响. 中国生态农业学报, 2015, 23(8): 964-972. | |
32 | Zhao J, Yu D B, Meng F G, et al. Regulation of phosphorus supply level on phosphorus-iron ratio and photosynthetic efficiency at different growth stages of soybean. Journal of Plant Nutrition and Fertilizers, 2021, 27(4): 665-674. |
赵婧, 于德彬, 孟凡钢, 等. 磷供应水平对大豆不同生育期磷铁比及光合效率的调节. 植物营养与肥料学报, 2021, 27(4): 665-674. | |
33 | Li H J, Hu Y T, Liu M J, et al. Growth and photosynthetic physiological characteristics of Leymus chinensis in response to applications of phosphorus at differing intensities. Pratacultural Science, 2021, 38(10): 2041-2049. |
李会军, 胡雨彤, 刘美君, 等. 羊草生长和光合生理特性对不同施磷强度的响应. 草业科学, 2021, 38(10): 2041-2049. | |
34 | Wang Y, Liu C H, Hu K H, et al. Effects of different phosphorus levels on leaf nutrition, photosynthesis and chlorophyll fluorescence characteristics of walnut seedlings. China Fruits, 2021, 62(6): 13-18. |
王阳, 刘春花, 胡凯红, 等. 不同供磷水平对核桃实生幼苗叶片营养、光合及叶绿素荧光特性的影响. 中国果树, 2021, 62(6): 13-18. | |
35 | Mihalache G, Zamfirache M M, Hamburda S, et al. Synergistic effect of Pseudomonas lini and Bacillus pumilus on runner bean growth enhancement. Environmental Engineering and Management Journal, 2016, 15(8): 1823-1831. |
36 | Rawat P, Shankhdhar D, Shankhdhar S C, et al. Synergistic impact of phosphate solubilizing bacteria and phosphorus rates on growth, antioxidative defense system and yield characteristics of upland rice (Oryza sativa L.). Journal of Plant Growth Regulation, 2022, 41(6): 2449-2461. |
37 | Nosheen A, Yasmin H, Naz R, et al. Pseudomonas putida improved soil enzyme activity and growth of kasumbha under low input of mineral fertilizers. Soil Science and Plant Nutrition, 2018, 64(4): 520-525. |
[1] | Xiang-jiao TAN, Kui-cai DONG, Hua ZHANG, Chuan-chuan TANG, Yan YANG. Effects of snow addition on soil phosphorus availability in an alpine meadow of the Tibetan Plateau [J]. Acta Prataculturae Sinica, 2024, 33(7): 205-214. |
[2] | Cheng-lan ZHANG, Chun-zeng LIU, Yu-hu LYU, Ben-yin LI, Lin ZHANG, Li DING, Guang-hui DU, Xiang-ning ZHANG, Chun-feng ZHENG, Ji-shi ZHANG, Min LI, Wei-dong CAO. Effects of Chinese milk vetch combined with reduced chemical fertilizer on soil phosphorus adsorption and desorption characteristics in different years [J]. Acta Prataculturae Sinica, 2024, 33(7): 41-52. |
[3] | Jin-zhu GAO, Dong-hao ZHAO, Le GAO, Xi-hao SU, Xue-qing HE. Effects of cerium nitrate and abscisic acid treatment on alfalfa seed germination and seedling physiological characteristics [J]. Acta Prataculturae Sinica, 2024, 33(6): 175-186. |
[4] | Min WANG, Li LI, Rong JIA, Ai-ke BAO. Evaluation of physiological characteristics and cold resistance of 10 alfalfa varieties under low temperature stress [J]. Acta Prataculturae Sinica, 2024, 33(6): 76-88. |
[5] | Hai-ming KONG, Jia-xing SONG, Jing YANG, Qian LI, Pei-zhi YANG, Yu-man CAO. Identification and transcript profiling of the CAMTA gene family under abiotic stress in alfalfa [J]. Acta Prataculturae Sinica, 2024, 33(5): 143-154. |
[6] | Sheng-ran HE, Xiao-jing LIU, Ya-jiao ZHAO, Xue WANG, Jing WANG. Effects of alfalfa/sweet sorghum intercropping on rhizosphere soil characteristics and microbial community characteristics [J]. Acta Prataculturae Sinica, 2024, 33(5): 92-105. |
[7] | Dan-na CHANG, Zi-ying CHEN, Mei HAN, Zheng-peng LI, Qing-biao YAN, Shuai-lei LV, Guo-peng ZHOU, Xiao-feng SUN, Wei-dong CAO. Differences in phosphorus acquisition characteristics and rhizosphere properties among different hairy vetch genotypes [J]. Acta Prataculturae Sinica, 2024, 33(4): 122-134. |
[8] | Hao LIU, Xian-yang LI, Fei HE, Xue WANG, Ming-na LI, Rui-cai LONG, Jun-mei KANG, Qing-chuan YANG, Lin CHEN. Identification of the alfalfa SAUR gene family and its expression pattern under abiotic stress [J]. Acta Prataculturae Sinica, 2024, 33(4): 135-153. |
[9] | Xian-yang LI, Hao LIU, Fei HE, Xue WANG, Ming-na LI, Rui-cai LONG, Jun-mei KANG, Qing-chuan YANG, Lin CHEN. Identification and expression pattern of the WRKY transcription factor family in Medicago sativa [J]. Acta Prataculturae Sinica, 2024, 33(4): 154-170. |
[10] | Yan LI, Fu-long MA, Lu HAN, Hai-zhen WANG. Productivity and adaptability of ‘WL’ alfalfa varieties with different fall dormancy in the extremely arid region of Southern Xinjiang [J]. Acta Prataculturae Sinica, 2024, 33(3): 139-149. |
[11] | Xue WANG, Xiao-jing LIU, Jing WANG, Yong WU, Chang-chun TONG. Root and carbon-nitrogen metabolism characteristics of alfalfa-oat mixed stands under continuous intercropping [J]. Acta Prataculturae Sinica, 2024, 33(3): 85-96. |
[12] | Yuan-jun LUO, Yu-lin PU, Da-gang YUAN, Ya-li LI, Hong-yu QIAN. Evolution of soil phosphorus forms and factors influencing their formation based on 31P nuclear magnetic resonance analyses of degraded alpine wetland [J]. Acta Prataculturae Sinica, 2024, 33(2): 1-12. |
[13] | Ying TANG, Xiao-jing LIU, Ya-jiao ZHAO, Lin DONG. Characteristics and driving factors of lactic acid bacteria communities in silage made from alfalfa in different regions of Gansu Province [J]. Acta Prataculturae Sinica, 2024, 33(2): 112-124. |
[14] | Yan QU, Kun ZHAO, Zi-chen HAN, Shi-hai LV, Qiang WO, Yu-ping RONG. Effects of short-term nitrogen and phosphorus addition on soil greenhouse gas emissions under different moisture conditions in the Hui River Basin of Hulun Buir [J]. Acta Prataculturae Sinica, 2024, 33(2): 68-79. |
[15] | Kong-qin WEI, Jun-wei ZHAO, Qian-bing ZHANG. Effects of phosphorus application on soil respiration rate and active organic carbon components of alfalfa [J]. Acta Prataculturae Sinica, 2024, 33(2): 80-92. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||