Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (7): 205-214.DOI: 10.11686/cyxb2023328
Xiang-jiao TAN1,4(), Kui-cai DONG2, Hua ZHANG3, Chuan-chuan TANG1, Yan YANG1()
Received:
2023-09-06
Revised:
2023-11-09
Online:
2024-07-20
Published:
2024-04-08
Contact:
Yan YANG
Xiang-jiao TAN, Kui-cai DONG, Hua ZHANG, Chuan-chuan TANG, Yan YANG. Effects of snow addition on soil phosphorus availability in an alpine meadow of the Tibetan Plateau[J]. Acta Prataculturae Sinica, 2024, 33(7): 205-214.
环境因子 Environmental factors | 有效磷 Available phosphorus | 全磷 Total phosphorus | 有机磷 Organic phosphorus | Ca2-P | Ca8-P | Al-P | Fe-P | O-P | Ca10-P |
---|---|---|---|---|---|---|---|---|---|
温度Temperature | 0.033 | 0.218 | -0.621* | 0.575 | -0.735** | 0.401 | 0.136 | 0.564 | 0.371 |
水分Water content | 0.167 | -0.085 | -0.143 | -0.405 | -0.002 | -0.336 | 0.090 | 0.083 | 0.276 |
磷酸酶活性Soil phosphatase activity | 0.025 | 0.076 | -0.418 | 0.560 | -0.842** | 0.360 | 0.361 | 0.633* | 0.491 |
有机质Soil organic matter | 0.143 | 0.248 | -0.378 | 0.483 | -0.727** | 0.536 | 0.855** | 0.802** | 0.564 |
全氮Total nitrogen | 0.190 | 0.263 | -0.391 | 0.441 | -0.713** | 0.547 | 0.861** | 0.822** | 0.595* |
碱解氮Alkali nitrogen | 0.352 | -0.040 | -0.249 | 0.041 | -0.521 | 0.227 | 0.749** | 0.628* | 0.609* |
Table 1 Correlations between soil physicochemical properties and soil phosphatase activity and different forms of phosphorus in soil
环境因子 Environmental factors | 有效磷 Available phosphorus | 全磷 Total phosphorus | 有机磷 Organic phosphorus | Ca2-P | Ca8-P | Al-P | Fe-P | O-P | Ca10-P |
---|---|---|---|---|---|---|---|---|---|
温度Temperature | 0.033 | 0.218 | -0.621* | 0.575 | -0.735** | 0.401 | 0.136 | 0.564 | 0.371 |
水分Water content | 0.167 | -0.085 | -0.143 | -0.405 | -0.002 | -0.336 | 0.090 | 0.083 | 0.276 |
磷酸酶活性Soil phosphatase activity | 0.025 | 0.076 | -0.418 | 0.560 | -0.842** | 0.360 | 0.361 | 0.633* | 0.491 |
有机质Soil organic matter | 0.143 | 0.248 | -0.378 | 0.483 | -0.727** | 0.536 | 0.855** | 0.802** | 0.564 |
全氮Total nitrogen | 0.190 | 0.263 | -0.391 | 0.441 | -0.713** | 0.547 | 0.861** | 0.822** | 0.595* |
碱解氮Alkali nitrogen | 0.352 | -0.040 | -0.249 | 0.041 | -0.521 | 0.227 | 0.749** | 0.628* | 0.609* |
1 | Rixen C, Hoye T T, Macek P, et al. Winters are changing: Snow effects on Arctic and alpine tundra ecosystems. Arctic Science, 2022, 8(3): 572-608. |
2 | Pulliainen J, Luojus K, Derksen C, et al. Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018. Nature, 2020, 581: 294-298. |
3 | Notarnicola C. Hotspots of snow cover changes in global mountain regions over 2000-2018. Remote Sensing of Environment, 2020, 243: 111781. |
4 | Che T, Hao X H, Dai L Y, et al. Snow cover variation and its impacts over the Qinghai-Tibet Plateau. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1247-1253. |
车涛, 郝晓华, 戴礼云, 等. 青藏高原积雪变化及其影响. 中国科学院院刊, 2019, 34(11): 1247-1253. | |
5 | Zhou X Y, Zhao C Y, Li N, et al. Spatiotemporal variation of snow and its response to climate change in Northeast China. Plateau Meteorology, 2021, 40(4): 875-886. |
周晓宇, 赵春雨, 李娜, 等. 东北地区积雪变化及对气候变化的响应. 高原气象, 2021, 40(4): 875-886. | |
6 | Immerzeel W W, Van Beek L P H, Bierkens M F P. Climate change will affect the Asian water towers. Science, 2010, 328(5984): 1382-1385. |
7 | Bai S Y, Shi J Q, Gao J X. Analysis of spatial-temporal variations of snow depth over the Qinghai-Tibetan Plateau during 1979-2010. Journal of Geo-information Science, 2014, 16(4): 628-637. |
白淑英, 史建桥, 高吉喜. 1979-2010年青藏高原积雪深度时空变化遥感分析. 地球信息科学学报, 2014, 16(4): 628-637. | |
8 | Zhao Q, Zeng D H. Phosphorus cycling in terrestrial ecosystems and its controlling factors. Chinese Journal of Plant Ecology, 2005, 29(1): 153-163. |
赵琼, 曾德慧. 陆地生态系统磷素循环及其影响因素. 植物生态学报, 2005, 29(1): 153-163. | |
9 | Filippelli G M. The global phosphorus cycle: Past, present, and future. Elements, 2008, 4(2): 89-95. |
10 | Vitousek P M, Porder S, Houlton B Z, et al. Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 2010, 20(1): 5-15. |
11 | Chen X, Gong L, Zhao J, et al. Litter decomposition, microbial community dynamics and their relationships under seasonal snow cover. Ecological Engineering, 2021, 159: 106089. |
12 | Xiang W S, Huang M, Li X Y. Progress on fractioning of soil phosphorous and availability of various phosphorous fractions to crops in soil. Journal of Plant Nutrition and Fertilizers, 2004, 10(6): 663-670. |
向万胜, 黄敏, 李学垣. 土壤磷素的化学组分及其植物有效性. 植物营养与肥料学报, 2004, 10(6): 663-670. | |
13 | Wipf S, Rixen C. A review of snow manipulation experiments in Arctic and alpine tundra ecosystems. Polar Research, 2010, 29(1): 95-109. |
14 | Tang C C, Wang G X, Zhang L, et al. Responses of plant community biomass and below-ground CNP stocks to snow addition in alpine swamp meadow on the Tibetan Plateau. Journal of Glaciology and Geocryology, 2021, 43(2): 618-627. |
唐川川, 王根绪, 张莉, 等. 青藏高原高寒沼泽化草甸群落生物量及地下CNP对积雪增加的响应. 冰川冻土, 2021, 43(2): 618-627. | |
15 | Bombonato L, Gerdol R. Manipulating snow cover in an alpine bog: Effects on ecosystem respiration and nutrient content in soil and microbes. Climatic Change, 2012, 114: 261-272. |
16 | Li P, Sayer E J, Jia Z, et al. Deepened snow cover mitigates soil carbon loss from intensive land-use in a semi-arid temperate grassland. Functional Ecology, 2022, 36(3): 635-645. |
17 | Zhang N, Guo R, Song P, et al. Effects of warming and nitrogen deposition on the coupling mechanism between soil nitrogen and phosphorus in Songnen Meadow Steppe, Northeastern China. Soil Biology and Biochemistry, 2013, 65: 96-104. |
18 | Yano Y, Brookshire E N J, Holsinger J, et al. Long-term snowpack manipulation promotes large loss of bioavailable nitrogen and phosphorus in a subalpine grassland. Biogeochemistry, 2015, 124: 319-333. |
19 | Chen L X, Huang L Y, Qiao L, et al. Influence of simulated nitrogen deposition on soil nitrogen mineralization rate under different forest stands. Journal of Soil and Water Conservation, 2012, 26(6): 139-146. |
陈立新, 黄兰英, 乔璐, 等. 模拟氮沉降对温带不同森林类型土壤氮矿化速率的影响. 水土保持学报, 2012, 26(6): 139-146. | |
20 | Hui R, Zhao R M, Liu L C, et al. Effect of snow cover on water content, carbon and nutrient availability, and microbial biomass in complexes of biological soil crusts and subcrust soil in the desert. Geoderma, 2022, 406: 115505. |
21 | Li W, Wu J, Bai E, et al. Response of terrestrial nitrogen dynamics to snow cover change: A meta-analysis of experimental manipulation. Soil Biology and Biochemistry, 2016, 100: 51-58. |
22 | Li W, Wu J, Bai E, et al. Response of terrestrial carbon dynamics to snow cover change: A meta-analysis of experimental manipulation (II). Soil Biology and Biochemistry, 2016, 103: 388-393. |
23 | Wu Q Q, Wu F Z, Yang W Q, et al. Effect of snow cover on phosphorus release from leaf litter in the alpine forest in eastern Qinghai-Tibet plateau. Acta Ecologica Sinica, 2015, 35(12): 4115-4127. |
武启骞, 吴福忠, 杨万勤, 等. 冬季雪被对青藏高原东缘高海拔森林凋落叶P元素释放的影响. 生态学报, 2015, 35(12): 4115-4127. | |
24 | Walker M D, Walker D A, Welker J M, et al. Long-term experimental manipulation of winter snow regime and summer temperature in Arctic and alpine tundra. Hydrological Processes, 1999, 13(14/15): 2315-2330. |
25 | Wen Y Q, Guo Y, Zhang G Q. Research on determination of soil total phosphorous by colorimetry methods. Journal of Anhui Agricultural Sciences, 2013, 41(6): 2442-2444. |
文衍秋, 郭烨, 张国庆. 土壤全磷测定中显色方法的研究. 安徽农业科学, 2013, 41(6): 2442-2444. | |
26 | Di C X, Zhang S F, Sha N, et al. The use of national standard soil in available phosphorus testing and quality control. Soil and Fertilizer Science in China, 2013(1): 100-104. |
狄彩霞, 张三粉, 莎娜, 等. 国标土样在土壤有效磷含量检测和质控中的应用. 中国土壤与肥料, 2013(1): 100-104. | |
27 | Bao S D. Soil agro-chemistrical analysis (The Third Edition). Beijing: China Agriculture Press, 2000: 12. |
鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2000: 12. | |
28 | Qian B, Liu L, Xiao X. Comparative tests on different methods for content of soil organic matter. Journal of Hohai University (Natural Sciences), 2011, 39(1): 34-38. |
钱宝, 刘凌, 肖潇. 土壤有机质测定方法对比分析. 河海大学学报(自然科学版), 2011, 39(1): 34-38. | |
29 | Qin L, Huang S Q, Zhong L L, et al. Comparison of Dumas combustion and Kjeldahl methods for determining total nitrogen content in soil. Soil and Fertilizer Science in China, 2020(4): 258-265. |
秦琳, 黄世群, 仲伶俐, 等. 杜马斯燃烧法和凯氏定氮法在土壤全氮检测中的比较研究. 中国土壤与肥料, 2020(4): 258-265. | |
30 | Wang X L, Kalibinuer, Yang W N. Comparison of methods for determining alkali-hydrolyzer nitrogen in soil. Journal of Beijing Normal University (Natural Science), 2010, 46(1): 76-78. |
王晓岚, 卡丽毕努尔, 杨文念. 土壤碱解氮测定方法比较. 北京师范大学学报(自然科学版), 2010, 46(1): 76-78. | |
31 | Lu R K. Analysis method of soil agricultural chemistry. Beijing: China Agricultural Science and Technology Press, 2000. |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. | |
32 | Wu J F, Liu J S, Li Z M, et al. Grassland soil phosphorus cycle and its response to global change. Chinese Journal of Grassland, 2021, 43(6): 102-111. |
吴金凤, 刘鞠善, 李梓萌, 等. 草地土壤磷循环及其对全球变化的响应. 中国草地学报, 2021, 43(6): 102-111. | |
33 | Kang H, Freeman C. Phosphatase and arylsulphatase activities in wetland soils: Annual variation and controlling factors. Soil Biology and Biochemistry, 1999, 31(3): 449-454. |
34 | Wick B, Kühne R F, Vlek P L G. Soil microbiological parameters as indicators of soil quality under improved fallow management systems in south-western Nigeria. Plant and Soil, 1998, 202: 97-107. |
35 | Rui Y C, Wang Y F, Chen C R, et al. Warming and grazing increase mineralization of organic P in an alpine meadow ecosystem of Qinghai-Tibet Plateau, China. Plant and Soil, 2012, 357: 73-87. |
36 | Ade L J, Zi H B, Liu M, et al. Response of belowground root growth dynamics to snow cover change in alpine meadow. Acta Ecologica Sinica, 2017, 37(20): 6773-6784. |
阿的鲁骥, 字洪标, 刘敏, 等. 高寒草甸地下根系生长动态对积雪变化的响应. 生态学报, 2017, 37(20): 6773-6784. | |
37 | Xu W Y, Prieme A, Cooper E J, et al. Deepened snow enhances gross nitrogen cycling among Pan-Arctic tundra soils during both winter and summer. Soil Biology and Biochemistry, 2021, 160: 108356. |
38 | Chen M L, Chen H, Mao Q G, et al. Effect of nitrogen deposition on the soil phosphorus cycle in forest ecosystems: A review. Acta Ecologica Sinica, 2016, 36(16): 4965-4976. |
陈美领, 陈浩, 毛庆功, 等. 氮沉降对森林土壤磷循环的影响. 生态学报, 2016, 36(16): 4965-4976. | |
39 | Zhang L, Wu N, Wu Y, et al. Soil phosphorus form and fractionation scheme: A review. Chinese Journal of Applied Ecology, 2009, 20(7): 1775-1782. |
张林, 吴宁, 吴彦, 等. 土壤磷素形态及其分级方法研究进展. 应用生态学报, 2009, 20(7): 1775-1782. | |
40 | Li R N, Wang Z P, Batbayar J, et al. Relationship between soil available phosphorus and inorganic phosphorus forms under equivalent organic matter condition in a tier soil. Scientia Agricultura Sinica, 2019, 52(21): 3852-3865. |
李若楠, 王政培, Batbayar J, 等. 等有机质塿土有效磷和无机磷形态的关系. 中国农业科学, 2019, 52(21): 3852-3865. | |
41 | Guo Z F, Tu S X, Li X H, et al. Contribution of different forms of inorganic phosphates in calcareous soils to phosphorus nutrition of crops. Scientia Agricultura Sinica, 1997, 30(1): 27-33. |
郭智芬, 涂书新, 李晓华, 等. 石灰性土壤不同形态无机磷对作物磷营养的贡献. 中国农业科学, 1997, 30(1): 27-33. | |
42 | Gu Y C, Qin S W. Effect of long-term phosphorus fertilization on accumulation, transformation and availability of phosphorus in moisture soil. Soils, 1997, 29(1): 13-17. |
顾益初, 钦绳武. 长期施用磷肥条件下潮土中磷素的积累、形态转化和有效性. 土壤, 1997, 29(1): 13-17. | |
43 | Wang X. Responses of plant community and root to snowpack change in an alpine meadow of Northwestern Sichuan, China. Chengdu: Southwest Minzu University, 2020. |
王鑫. 川西北高寒草甸植被与根系对积雪变化的响应. 成都: 西南民族大学, 2020. | |
44 | Lajtha K, Schlesinger W H. The biogeochemistry of phosphorus cycling and phosphorus availability along a desert soil chronosequence. Ecology, 1988, 69(1): 24-39. |
45 | Kellogg L E, Bridgham S D. Phosphorus retention and movement across an ombrotrophic-minerotrophic peatland gradient. Biogeochemistry, 2003, 63(3): 299-315. |
46 | Huang L M, Jia X X, Zhang G L, et al. Soil organic phosphorus transformation during ecosystem development: A review. Plant and Soil, 2017, 417: 17-42. |
47 | Achat D L, Bakker M R, Zeller B, et al. Long-term organic phosphorus mineralization in spodosols under forests and its relation to carbon and nitrogen mineralization. Soil Biology and Biochemistry, 2010, 42(9): 1479-1490. |
48 | Robles-Aguilar A A, Pang J, Postma J A, et al. The effect of pH on morphological and physiological root traits of Lupinus angustifolius treated with struvite as a recycled phosphorus source. Plant and Soil, 2019, 434(1/2): 65-78. |
49 | Hayes P, Turner B L, Lambers H, et al. Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient-acquisition strategies along a 2-million-year dune chronosequence. Journal of Ecology, 2014, 102(2): 396-410. |
50 | Margalef O, Sardans J, Fernández-Martínez M, et al. Global patterns of phosphatase activity in natural soils. Scientific Reports, 2017, 7(1): 1-13. |
51 | Liu D, You G H, Song X Y, et al. Effects of phosphorus fertilization on soil phosphorus fractions and availability in an alpine grassland of northwestern Sichuan. Acta Ecologica Sinica, 2023, 43(6): 2378-2387. |
刘丹, 游郭虹, 宋小艳, 等. 施磷对川西北高寒草地土壤磷形态及有效性的影响. 生态学报, 2023, 43(6): 2378-2387. | |
52 | Zhao Z, De Frenne P, Peñuelas J, et al. Effects of snow cover-induced microclimate warming on soil physicochemical and biotic properties. Geoderma, 2022, 423: 115983. |
53 | Zhang T. Influence of the seasonal snow cover on the ground thermal regime: An overview. Reviews of Geophysics, 2005, 43(4): DOI: 10.1029/2004RG000157. |
54 | Campbell J L, Socci A M, Templer P H. Increased nitrogen leaching following soil freezing is due to decreased root uptake in a northern hardwood forest. Global Change Biology, 2014, 20(8): 2663-2673. |
55 | Moore T R, Trofymow J A, Taylor B, et al. Litter decomposition rates in Canadian forests. Global Change Biology, 1999, 5(1): 75-82. |
56 | Yang L, Gross A, Christine S O, et al. Anoxic conditions maintained high phosphorus sorption in humid tropical forest soils. Biogeosciences, 2020, 17(1): 89-101. |
57 | Tan B, Wu F Z, Yang W Q, et al. Effects of snow pack removal on the dynamics of winter-time soil temperature, carbon, nitrogen, and phosphorus in alpine forests of west Sichuan. Chinese Journal of Applied Ecology, 2011, 22(10): 2553-2559. |
谭波, 吴福忠, 杨万勤, 等. 雪被去除对川西高山森林冬季土壤温度及碳、氮、磷动态的影响. 应用生态学报, 2011, 22(10): 2553-2559. | |
58 | Dalling J W, Heineman K, Lopez O R, et al. Nutrient availability in tropical rain forests: The paradigm of phosphorus limitation. Tropical Tree Physiology, 2016(6): 261-273. |
[1] | Rui-min QIN, Si-jia CHENG, Li MA, Zhong-hua ZHANG, Jing-jing WEI, Hong-ye SU, Zheng-chen SHI, Tao CHANG, Xue HU, De-ha-ze A, Fang YUAN, Shan LI, Hua-kun ZHOU. Effects of grazing exclusion and fertilization on alpine meadow community characteristics and vegetation carbon and nitrogen pools [J]. Acta Prataculturae Sinica, 2024, 33(4): 1-11. |
[2] | Zhi-yuan YOU, Shu-juan MA, Chang-ting WANG, Lu-ming DING, Xiao-yan SONG, Gao-fei YIN, Jun MAO. Using the model MaxEnt to predict plant distribution patterns of different functional groups in the alpine meadow ecosystem on Sichuan-Yunnan Plateau [J]. Acta Prataculturae Sinica, 2024, 33(3): 1-12. |
[3] | Yuan MA, Xiao-li WANG, Yu-shou MA, De-gang ZHANG. Effects of the degree of alpine meadow degradation on the rhizosphere soil fungal community and the ecological network of dominant species [J]. Acta Prataculturae Sinica, 2024, 33(2): 125-137. |
[4] | Lin-zhi LI, De-gang ZHANG, Yuan MA, Zhu-zhu LUO, Dong LIN, Long HAI, Lan-ge BAI. Ecological stoichiometry characteristics of soil aggregates in alpine meadows with differing degrees of degradation [J]. Acta Prataculturae Sinica, 2023, 32(8): 48-60. |
[5] | Xiao-qin LIAO, Chang-ting WANG, Dan LIU, Guo TANG, Jun MAO. Effects of combined nitrogen and phosphorus application on root characteristics of alpine meadow [J]. Acta Prataculturae Sinica, 2023, 32(7): 160-174. |
[6] | Xin LU, Juan QI, Shang-li SHI, Mei-mei CHE, Xia LI, Shuang-shuang DU, Ning-gang SAI, Yan-wei JIA. Effects of broad-leaved grass inhibitors combined with nitrogen on soil characteristics of alpine meadow [J]. Acta Prataculturae Sinica, 2023, 32(7): 38-48. |
[7] | Cai-feng LIU, Yuan-yuan DUAN, Ling-ling WANG, Yi-mo WANG, Zheng-gang GUO. Effects of plateau pika (Ochotona curzoniae) disturbance on the relationship between plant species diversity and soil ecological stoichiometry in alpine meadows [J]. Acta Prataculturae Sinica, 2023, 32(6): 157-166. |
[8] | Yu SUN, Yong-sheng YANG, Qi HE, Jun-bang WANG, Xiu-juan ZHANG, Hui-ting LI, Xing-liang XU, Hua-kun ZHOU, Yu-heng ZHANG. Responses of soil water conservation function and soil physicochemical properties to a range of degradation conditions in alpine meadows of the Three River Headwater Region [J]. Acta Prataculturae Sinica, 2023, 32(6): 16-29. |
[9] | Zhi-qiang YANG, Dan LIU, Xiao-qin LIAO, Dan-yang CHEN, Xiao-yan SONG, Yang LIU, Chang-ting WANG. Changes in soil phosphorus fractions and their causes under alpine meadows with different degradation status in Zoigê [J]. Acta Prataculturae Sinica, 2023, 32(12): 36-46. |
[10] | Juan-juan ZHOU, Yun-fei LIU, Jing-long WANG, Wei WEI. Effect of short-term nutrient addition on aboveground biomass, plant diversity, and functional traits of swampy alpine meadow in Tibet [J]. Acta Prataculturae Sinica, 2023, 32(11): 17-29. |
[11] | Guo-hong YOU, Dan LIU, Yan-li WANG, Chang-ting WANG. Response of plant leaf ecological stoichiometric characteristics to long-term nitrogen addition in alpine meadow [J]. Acta Prataculturae Sinica, 2022, 31(9): 50-62. |
[12] | Yan PENG, Jing-yuan SUN, Su-jie MA, Xiang-tao WANG, Xue-hong WEI, Lei SUN. Plant community composition and soil nutrient status of degraded alpine meadow sites in Northern Tibet [J]. Acta Prataculturae Sinica, 2022, 31(8): 49-60. |
[13] | Yu-zhuo ZHANG, Zhi-gui YANG, Hong-yan YU, Qiang ZHANG, Shu-xia YANG, Ting ZHAO, Hua-hua XU, Bao-ping MENG, Yan-yan LV. Estimating grassland above ground biomass based on the STARFM algorithm and remote sensing data——A case study in the Sangke grassland in Xiahe County, Gansu Province [J]. Acta Prataculturae Sinica, 2022, 31(6): 23-34. |
[14] | Yang LI, Yi WANG, Guo-dong HAN, Jian SUN, Ya-feng WANG. Soil microbial biomass carbon and nitrogen levels and their controlling factors in alpine grassland, Qinghai-Tibet Plateau [J]. Acta Prataculturae Sinica, 2022, 31(6): 50-60. |
[15] | Xiao-lei ZHOU, Yue-e YAN, Jing ZHANG, Xu-jiao ZHOU, Yong-qin YAN, Fu-qiang YANG, Xue-ping CAO, An ZHAO, Yan-li ZHAO, Jing-yi SU. Vegetation community structure and diversity in a burned area of Picea asperata-Abies fabri forest on different aspects on the northeastern margin of the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2022, 31(5): 144-155. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||