Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (9): 199-213.DOI: 10.11686/cyxb2023398
Rong GUO1,2(), Hai-fei JING1,2, Yi YANG2,3, Guo-sheng XIN2,3,4(), Ting YANG5
Received:
2023-10-19
Revised:
2023-12-15
Online:
2024-09-20
Published:
2024-06-20
Contact:
Guo-sheng XIN
Rong GUO, Hai-fei JING, Yi YANG, Guo-sheng XIN, Ting YANG. Effects of nano selenium on growth performance, blood biochemistry and metabolome of Tan sheep[J]. Acta Prataculturae Sinica, 2024, 33(9): 199-213.
项目Items | 含量Content |
---|---|
原料Ingredients (%) | |
豆粕Soybean meal | 7.00 |
菜粕Rapeseed meal | 5.00 |
芝麻粕Sesame meal | 5.00 |
预混料Premix1) | 5.00 |
小苏打NaHCO3 | 0.80 |
喷浆玉米皮Sprayed corn pell | 14.00 |
大豆油Soybean oil | 0.50 |
玉米Corn | 40.00 |
麦麸Wheat bran | 5.00 |
花生壳Peanut shell | 17.70 |
合计Total | 100.00 |
营养水平Nutrient levels2) | |
粗蛋白Crude protein (CP,%) | 14.22 |
粗纤维Crude fiber (CF,%) | 17.79 |
粗灰分Ash (%) | 5.38 |
钙Ca (%) | 0.94 |
磷P (%) | 0.43 |
硒Se (mg·kg-1) | 0.02 |
赖氨酸Lysine (Lys,%) | 0.47 |
Table 1 Composition and nutrient level of basal diets (dry matter basis)
项目Items | 含量Content |
---|---|
原料Ingredients (%) | |
豆粕Soybean meal | 7.00 |
菜粕Rapeseed meal | 5.00 |
芝麻粕Sesame meal | 5.00 |
预混料Premix1) | 5.00 |
小苏打NaHCO3 | 0.80 |
喷浆玉米皮Sprayed corn pell | 14.00 |
大豆油Soybean oil | 0.50 |
玉米Corn | 40.00 |
麦麸Wheat bran | 5.00 |
花生壳Peanut shell | 17.70 |
合计Total | 100.00 |
营养水平Nutrient levels2) | |
粗蛋白Crude protein (CP,%) | 14.22 |
粗纤维Crude fiber (CF,%) | 17.79 |
粗灰分Ash (%) | 5.38 |
钙Ca (%) | 0.94 |
磷P (%) | 0.43 |
硒Se (mg·kg-1) | 0.02 |
赖氨酸Lysine (Lys,%) | 0.47 |
项目 Items | 时期 Time (d) | 组别Groups | P值 P-value | |||
---|---|---|---|---|---|---|
CON | Ⅰ | Ⅱ | Ⅲ | |||
平均日增重 Average daily gain (ADG,g·d-1) | 1~30 | 99.50±9.86 | 133.33±21.09 | 142.50±27.81 | 124.17±19.70 | 0.191 |
31~60 | 154.45±3.85 | 174.17±23.94 | 151.67±28.88 | 163.33±8.82 | 0.732 | |
61~90 | 175.84±39.28 | 180.00±40.41 | 210.67±37.96 | 216.67±14.53 | 0.669 | |
1~90 | 144.44±7.28 | 159.17±28.56 | 175.89±34.78 | 165.42±10.13 | 0.422 |
Table 2 Effects of nano-selenium on growth performance of Tan sheep
项目 Items | 时期 Time (d) | 组别Groups | P值 P-value | |||
---|---|---|---|---|---|---|
CON | Ⅰ | Ⅱ | Ⅲ | |||
平均日增重 Average daily gain (ADG,g·d-1) | 1~30 | 99.50±9.86 | 133.33±21.09 | 142.50±27.81 | 124.17±19.70 | 0.191 |
31~60 | 154.45±3.85 | 174.17±23.94 | 151.67±28.88 | 163.33±8.82 | 0.732 | |
61~90 | 175.84±39.28 | 180.00±40.41 | 210.67±37.96 | 216.67±14.53 | 0.669 | |
1~90 | 144.44±7.28 | 159.17±28.56 | 175.89±34.78 | 165.42±10.13 | 0.422 |
项目 Items | 组别Groups | |||
---|---|---|---|---|
CON | Ⅰ | Ⅱ | Ⅲ | |
饲料单价Feed price (CNY·kg-1) | 2.51 | 2.74 | 3.19 | 3.64 |
饲料成本Feed cost (CNY·piece-1) | 163.14 | 196.26 | 252.49 | 270.96 |
育肥羊销售价格Lamb sale price (CNY·kg-1) | 27 | 27 | 27 | 27 |
增重收入Weight gain profits (CNY·piece-1) | 350.99 | 386.78 | 427.41 | 401.97 |
经济效益Economic benefits (CNY·piece-1) | 187.85 | 190.52 | 174.92 | 131.01 |
Table 3 Effects of nano-selenium on economic benefits of Tan sheep
项目 Items | 组别Groups | |||
---|---|---|---|---|
CON | Ⅰ | Ⅱ | Ⅲ | |
饲料单价Feed price (CNY·kg-1) | 2.51 | 2.74 | 3.19 | 3.64 |
饲料成本Feed cost (CNY·piece-1) | 163.14 | 196.26 | 252.49 | 270.96 |
育肥羊销售价格Lamb sale price (CNY·kg-1) | 27 | 27 | 27 | 27 |
增重收入Weight gain profits (CNY·piece-1) | 350.99 | 386.78 | 427.41 | 401.97 |
经济效益Economic benefits (CNY·piece-1) | 187.85 | 190.52 | 174.92 | 131.01 |
项目 Items | 组别Groups | P值 P-value | |||
---|---|---|---|---|---|
CON | Ⅰ | Ⅱ | Ⅲ | ||
总蛋白Total protein (TP,g·L-1) | 71.63±3.11 | 65.35±6.40 | 75.75±6.30 | 68.40±0.10 | 0.068 |
白蛋白Albumin (ALB,g·L-1) | 33.77±3.07 | 33.45±4.63 | 33.28±2.47 | 33.25±1.18 | 0.996 |
球蛋白Globulin (GLOB,g·L-1) | 34.13±0.35b | 31.90±3.31b | 42.48±7.81a | 35.70±0.61ab | 0.048 |
白球比A/G | 0.88±0.17 | 1.05±0.17 | 0.80±0.22 | 0.93±0.06 | 0.267 |
天门冬氨酸氨基转移酶Aspartate aminotransferase (AST,U·L-1) | 97.00±15.02 | 91.50±10.02 | 77.25±12.15 | 91.75±18.14 | 0.445 |
丙氨酸氨基转移酶Alanine aminotransferase (ALT,U·L-1) | 23.00±4.76a | 13.75±3.77b | 13.25±0.96b | 18.50±2.65ab | 0.004 |
碱性磷酸酶Alkaline phosphatase (ALP,U·L-1) | 262.75±45.14b | 228.00±49.65b | 250.50±41.91b | 494.75±78.34a | 0.008 |
尿素Urea (UREA,mmol·L-1) | 10.19±1.01a | 8.26±0.63b | 8.11±0.69b | 7.52±0.28b | <0.001 |
肌酐Creatinine (CREA,μmol·L-1) | 42.50±2.38 | 46.50±9.80 | 48.00±10.03 | 33.25±3.50 | 0.406 |
总胆固醇Total cholesterol (TC,mmol·L-1) | 1.97±0.10 | 1.71±0.33 | 1.70±0.06 | 1.73±0.27 | 0.687 |
甘油三酯Triglycerid (TR,mmol·L-1) | 0.59±0.12 | 0.39±0.15 | 0.44±0.12 | 0.58±0.15 | 0.147 |
空腹血糖Glucose (GLU,mmol·L-1) | 4.26±0.30 | 2.78±0.63 | 3.70±0.48 | 4.66±0.39 | 0.054 |
Table 4 Effects of nano-selenium on serum biochemical indexes of Tan sheep
项目 Items | 组别Groups | P值 P-value | |||
---|---|---|---|---|---|
CON | Ⅰ | Ⅱ | Ⅲ | ||
总蛋白Total protein (TP,g·L-1) | 71.63±3.11 | 65.35±6.40 | 75.75±6.30 | 68.40±0.10 | 0.068 |
白蛋白Albumin (ALB,g·L-1) | 33.77±3.07 | 33.45±4.63 | 33.28±2.47 | 33.25±1.18 | 0.996 |
球蛋白Globulin (GLOB,g·L-1) | 34.13±0.35b | 31.90±3.31b | 42.48±7.81a | 35.70±0.61ab | 0.048 |
白球比A/G | 0.88±0.17 | 1.05±0.17 | 0.80±0.22 | 0.93±0.06 | 0.267 |
天门冬氨酸氨基转移酶Aspartate aminotransferase (AST,U·L-1) | 97.00±15.02 | 91.50±10.02 | 77.25±12.15 | 91.75±18.14 | 0.445 |
丙氨酸氨基转移酶Alanine aminotransferase (ALT,U·L-1) | 23.00±4.76a | 13.75±3.77b | 13.25±0.96b | 18.50±2.65ab | 0.004 |
碱性磷酸酶Alkaline phosphatase (ALP,U·L-1) | 262.75±45.14b | 228.00±49.65b | 250.50±41.91b | 494.75±78.34a | 0.008 |
尿素Urea (UREA,mmol·L-1) | 10.19±1.01a | 8.26±0.63b | 8.11±0.69b | 7.52±0.28b | <0.001 |
肌酐Creatinine (CREA,μmol·L-1) | 42.50±2.38 | 46.50±9.80 | 48.00±10.03 | 33.25±3.50 | 0.406 |
总胆固醇Total cholesterol (TC,mmol·L-1) | 1.97±0.10 | 1.71±0.33 | 1.70±0.06 | 1.73±0.27 | 0.687 |
甘油三酯Triglycerid (TR,mmol·L-1) | 0.59±0.12 | 0.39±0.15 | 0.44±0.12 | 0.58±0.15 | 0.147 |
空腹血糖Glucose (GLU,mmol·L-1) | 4.26±0.30 | 2.78±0.63 | 3.70±0.48 | 4.66±0.39 | 0.054 |
项目 Items | 组别Groups | P值 P-value | |||
---|---|---|---|---|---|
CON | Ⅰ | Ⅱ | Ⅲ | ||
总抗氧化能力Total antioxidant capacity (T-AOC,U·mL-1) | 4.93±0.34b | 8.59±0.56a | 9.91±1.94a | 4.14±0.67b | 0.001 |
丙二醛Malondialdehyde (MDA,nmol·mL-1) | 1.48±0.25 | 1.27±0.22 | 1.11±0.38 | 0.78±0.12 | 0.082 |
过氧化氢酶Catalase (CAT,U·mL-1) | 4.41±0.38 | 4.52±0.46 | 4.89±0.85 | 4.08±0.44 | 0.274 |
谷胱甘肽过氧化物酶Glutathione peroxidase (GSH-Px,U·mL-1) | 89.53±14.28bc | 125.59±19.75b | 183.93±26.88a | 73.22±17.13c | 0.001 |
超氧化物歧化酶Superoxide dismutase (SOD,U·mL-1) | 13.87±0.19 | 12.81±1.88 | 13.65±1.21 | 13.71±0.82 | 0.585 |
Table 5 Effects of nano-selenium on antioxidation indexes of Tan sheep
项目 Items | 组别Groups | P值 P-value | |||
---|---|---|---|---|---|
CON | Ⅰ | Ⅱ | Ⅲ | ||
总抗氧化能力Total antioxidant capacity (T-AOC,U·mL-1) | 4.93±0.34b | 8.59±0.56a | 9.91±1.94a | 4.14±0.67b | 0.001 |
丙二醛Malondialdehyde (MDA,nmol·mL-1) | 1.48±0.25 | 1.27±0.22 | 1.11±0.38 | 0.78±0.12 | 0.082 |
过氧化氢酶Catalase (CAT,U·mL-1) | 4.41±0.38 | 4.52±0.46 | 4.89±0.85 | 4.08±0.44 | 0.274 |
谷胱甘肽过氧化物酶Glutathione peroxidase (GSH-Px,U·mL-1) | 89.53±14.28bc | 125.59±19.75b | 183.93±26.88a | 73.22±17.13c | 0.001 |
超氧化物歧化酶Superoxide dismutase (SOD,U·mL-1) | 13.87±0.19 | 12.81±1.88 | 13.65±1.21 | 13.71±0.82 | 0.585 |
分组信息 Group information | 差异显著代谢物 Significantly different metabolites | 下调代谢物 Down-regulated metabolites | 上调代谢物 Up-regulated metabolites |
---|---|---|---|
CON vs Ⅰ | 59 | 32 | 27 |
CON vs Ⅱ | 64 | 44 | 20 |
CON vs Ⅲ | 64 | 41 | 23 |
Table 6 Statistics of the number of different metabolites
分组信息 Group information | 差异显著代谢物 Significantly different metabolites | 下调代谢物 Down-regulated metabolites | 上调代谢物 Up-regulated metabolites |
---|---|---|---|
CON vs Ⅰ | 59 | 32 | 27 |
CON vs Ⅱ | 64 | 44 | 20 |
CON vs Ⅲ | 64 | 41 | 23 |
组别 Group | 代谢物 Metabolites | 差异倍数 Fold change (FC) | 变量重要性投影 Variable importance project (VIP) | 类型 Type | 通路号 Pathway ID |
---|---|---|---|---|---|
CON vs Ⅰ | 2′-脱氧尿苷2′-deoxyuridine | 0.70 | 1.85 | 下调Down | ko00240, ko01100, ko01232, ko02010 |
2,4-二乙酰氨基-2,4,6-三苯氧基-D-甘露吡喃糖2,4-diacetamino-2,4,6-triphenoxy-D-mannopyranose | 0.43 | 2.08 | 下调Down | ko00520, ko01100, ko01250 | |
5-羟基-DL-赖氨酸5-hydroxy-DL-lysine | 0.68 | 1.86 | 下调Down | ko00310, ko01100 | |
3-脲基丙酸3-ureidopropionate | 0.69 | 1.87 | 下调Down | ko00240, ko00410, ko00770, ko01100 | |
4-脱氧-5-甲硫腺苷4′-deoxy-5′-(methylthio) adenosine | 0.60 | 1.91 | 下调Down | ko00270, ko01100 | |
5-羟基吲哚乙醛5-hydroxyindole acetaldehyde | 2.06 | 1.94 | 上调Up | ko00380, ko01100 | |
己内酰胺Caprolactam | 1.43 | 2.36 | 上调Up | ko01100 | |
乌头酸Cis-aconitic acid | 1.19 | 2.08 | 上调Up | ko00020, ko00630, ko00660, ko01100, ko01210 | |
肌酸Creatine | 1.52 | 2.04 | 上调Up | ko00260, ko00330, ko01100 | |
麦角硫因Ergothioneine | 1.74 | 1.68 | 上调Up | ko00340, ko01100 | |
棕榈油酸Palmitoleic acid | 2.92 | 2.05 | 上调Up | ko00061, ko01100 | |
鸟苷3′,5′-环一磷酸Guanosine 3′,5′-cyclic monophosphate | 0.64 | 1.53 | 下调Down | ko00230, ko01100, ko04022, ko04270, ko04540, ko04610, ko04713, ko04714, ko04730, ko04740, ko04744, ko04921, ko04923, ko04924, ko04925, ko04970, ko04976 | |
吲哚-3-乙酸Indole-3-acetic acid | 2.17 | 2.20 | 上调Up | ko00380, ko01100 | |
L-脯氨酸L-proline | 0.69 | 1.66 | 下调Down | ko00330, ko00470, ko00970, ko01100, ko01230, ko02010, ko04974, ko04978, ko05230 | |
L-缬氨酸L-valine | 0.64 | 1.60 | 下调Down | ko00280, ko00290, ko00311, ko00770, ko00970, ko01100, ko01210, ko01230, ko01240, ko02010, ko04974, ko04978, ko05230 | |
溶血磷脂酸_(20∶4)Lysophosphatidic acid_(20∶4) | 0.76 | 1.82 | 下调Down | ko00561, ko00564, ko01100, ko04072, ko04080, ko04540, ko04810, ko04975, ko04977, ko05130, ko05200 | |
乳糖Lactose | 0.86 | 1.73 | 下调Down | ko00052, ko01100, ko02010, ko04973 | |
麦芽糖Maltose | 0.86 | 1.73 | 下调Down | ko00500, ko01100, ko02010, ko04742, ko04973 | |
蛋氨酸亚砜Methionine sulfoxide | 0.00 | 2.27 | 下调Down | ko00270, ko01100 | |
N-乙酰天冬氨酸N-acetylaspartate | 1.76 | 1.85 | 上调Up | ko00250, ko01100 | |
尿嘧啶Uracil | 1.71 | 1.85 | 下调Down | ko00240, ko00410, ko00770, ko01100, ko01232 | |
CON vs Ⅱ | D-生物素Biotin | 1.86 | 1.92 | 上调Up | ko00780, ko01100, ko01240, ko02010, ko04977 |
溶血磷脂酸_(20∶4)Lysophosphatidic acid_(20∶4) | 0.65 | 2.06 | 下调Down | ko00561, ko00564, ko01100, ko04072, ko04080, ko04540, ko04810, ko04975, ko04977, ko05130, ko05200 | |
溶血磷脂酸_(20∶5)Lysophosphatidic acid_(20∶5) | 0.74 | 2.10 | 下调Down | ko00561, ko00564, ko01100, ko04072, ko04080, ko04540, ko04810, ko04975, ko04977, ko05130, ko05200 | |
核黄素Riboflavin | 0.61 | 2.04 | 下调Down | ko00740, ko01100, ko01240, ko02010, ko04977 | |
CON vs Ⅲ | D-(+)-蔗糖D-(+)-sucrose | 1.83 | 1.82 | 上调Up | ko00052, ko00500, ko01100, ko02010, ko04742, ko04973 |
乳糖Lactose | 0.81 | 2.16 | 下调Down | ko00052, ko01100, ko02010, ko04973 | |
麦芽糖Maltose | 0.81 | 2.16 | 下调Down | ko00500, ko01100, ko02010, ko04742, ko04973 |
Table 7 Enrichment analysis of KEGG metabolic pathway of differential metabolites
组别 Group | 代谢物 Metabolites | 差异倍数 Fold change (FC) | 变量重要性投影 Variable importance project (VIP) | 类型 Type | 通路号 Pathway ID |
---|---|---|---|---|---|
CON vs Ⅰ | 2′-脱氧尿苷2′-deoxyuridine | 0.70 | 1.85 | 下调Down | ko00240, ko01100, ko01232, ko02010 |
2,4-二乙酰氨基-2,4,6-三苯氧基-D-甘露吡喃糖2,4-diacetamino-2,4,6-triphenoxy-D-mannopyranose | 0.43 | 2.08 | 下调Down | ko00520, ko01100, ko01250 | |
5-羟基-DL-赖氨酸5-hydroxy-DL-lysine | 0.68 | 1.86 | 下调Down | ko00310, ko01100 | |
3-脲基丙酸3-ureidopropionate | 0.69 | 1.87 | 下调Down | ko00240, ko00410, ko00770, ko01100 | |
4-脱氧-5-甲硫腺苷4′-deoxy-5′-(methylthio) adenosine | 0.60 | 1.91 | 下调Down | ko00270, ko01100 | |
5-羟基吲哚乙醛5-hydroxyindole acetaldehyde | 2.06 | 1.94 | 上调Up | ko00380, ko01100 | |
己内酰胺Caprolactam | 1.43 | 2.36 | 上调Up | ko01100 | |
乌头酸Cis-aconitic acid | 1.19 | 2.08 | 上调Up | ko00020, ko00630, ko00660, ko01100, ko01210 | |
肌酸Creatine | 1.52 | 2.04 | 上调Up | ko00260, ko00330, ko01100 | |
麦角硫因Ergothioneine | 1.74 | 1.68 | 上调Up | ko00340, ko01100 | |
棕榈油酸Palmitoleic acid | 2.92 | 2.05 | 上调Up | ko00061, ko01100 | |
鸟苷3′,5′-环一磷酸Guanosine 3′,5′-cyclic monophosphate | 0.64 | 1.53 | 下调Down | ko00230, ko01100, ko04022, ko04270, ko04540, ko04610, ko04713, ko04714, ko04730, ko04740, ko04744, ko04921, ko04923, ko04924, ko04925, ko04970, ko04976 | |
吲哚-3-乙酸Indole-3-acetic acid | 2.17 | 2.20 | 上调Up | ko00380, ko01100 | |
L-脯氨酸L-proline | 0.69 | 1.66 | 下调Down | ko00330, ko00470, ko00970, ko01100, ko01230, ko02010, ko04974, ko04978, ko05230 | |
L-缬氨酸L-valine | 0.64 | 1.60 | 下调Down | ko00280, ko00290, ko00311, ko00770, ko00970, ko01100, ko01210, ko01230, ko01240, ko02010, ko04974, ko04978, ko05230 | |
溶血磷脂酸_(20∶4)Lysophosphatidic acid_(20∶4) | 0.76 | 1.82 | 下调Down | ko00561, ko00564, ko01100, ko04072, ko04080, ko04540, ko04810, ko04975, ko04977, ko05130, ko05200 | |
乳糖Lactose | 0.86 | 1.73 | 下调Down | ko00052, ko01100, ko02010, ko04973 | |
麦芽糖Maltose | 0.86 | 1.73 | 下调Down | ko00500, ko01100, ko02010, ko04742, ko04973 | |
蛋氨酸亚砜Methionine sulfoxide | 0.00 | 2.27 | 下调Down | ko00270, ko01100 | |
N-乙酰天冬氨酸N-acetylaspartate | 1.76 | 1.85 | 上调Up | ko00250, ko01100 | |
尿嘧啶Uracil | 1.71 | 1.85 | 下调Down | ko00240, ko00410, ko00770, ko01100, ko01232 | |
CON vs Ⅱ | D-生物素Biotin | 1.86 | 1.92 | 上调Up | ko00780, ko01100, ko01240, ko02010, ko04977 |
溶血磷脂酸_(20∶4)Lysophosphatidic acid_(20∶4) | 0.65 | 2.06 | 下调Down | ko00561, ko00564, ko01100, ko04072, ko04080, ko04540, ko04810, ko04975, ko04977, ko05130, ko05200 | |
溶血磷脂酸_(20∶5)Lysophosphatidic acid_(20∶5) | 0.74 | 2.10 | 下调Down | ko00561, ko00564, ko01100, ko04072, ko04080, ko04540, ko04810, ko04975, ko04977, ko05130, ko05200 | |
核黄素Riboflavin | 0.61 | 2.04 | 下调Down | ko00740, ko01100, ko01240, ko02010, ko04977 | |
CON vs Ⅲ | D-(+)-蔗糖D-(+)-sucrose | 1.83 | 1.82 | 上调Up | ko00052, ko00500, ko01100, ko02010, ko04742, ko04973 |
乳糖Lactose | 0.81 | 2.16 | 下调Down | ko00052, ko01100, ko02010, ko04973 | |
麦芽糖Maltose | 0.81 | 2.16 | 下调Down | ko00500, ko01100, ko02010, ko04742, ko04973 |
1 | Huang Y, Su E, Ren J, et al. The recent biological applications of selenium-based nanomaterials. Nano Today, 2021, 38: 101205. |
2 | Morschbacher A P, Dullius A, Dullius C H, et al. Assessment of selenium bioaccumulation in lactic acid bacteria. Journal of Dairy Science, 2018, 101(12): 10626-10635. |
3 | Li S, Banuelos G S, Wu L, et al. The changing selenium nutritional status of Chinese residents. Nutrients, 2014, 6(3): 1103-1114. |
4 | Gu X, Gao C. New horizons for selenium in animal nutrition and functional foods. Animal Nutrition, 2022, 11: 80-86. |
5 | He Y D, Zou J B, Wang M Q, et al. Feed production in different selenium source of toxicity and new development and application progress of selenium source. Animal Science Abroad (Pigs and Poultry), 2012, 32(9): 69-70. |
和玉丹, 邹君彪, 王敏奇, 等. 饲料生产中不同硒源的毒性及新型硒源的开发与应用进展. 国外畜牧学(猪与禽), 2012, 32(9): 69-70. | |
6 | Nabi F, Arain M A, Hassan F, et al. Nutraceutical role of selenium nanoparticles in poultry nutrition: a review. Worlds Poultry Science Journal, 2020, 76(3): 459-471. |
7 | Kumar A, Prasad K S. Role of nano-selenium in health and environment. Journal of Biotechnology, 2021, 325: 152-163. |
8 | Debata N R, Sethy K, Swain R K, et al. Supplementation of nano-selenium (SeNPs) improved growth, immunity, antioxidant enzyme activity, and selenium retention in broiler chicken during summer season. Tropical Animal Health and Production, 2023, 55(4): 260. |
9 | Hosseini M, Behehsti F, Marefati N, et al. Nano-selenium relieved hepatic and renal oxidative damage in hypothyroid rats. Physiological Reports, 2023, 11(9): e15682. |
10 | Shen X Y, Huo B, Gan S Q. Effects of nano-selenium on antioxidant capacity in se-deprived Tibetan gazelle (Procapra picticaudata) in the Qinghai-Tibet Plateau. Biological Trace Element Research, 2021, 199(3): 981-988. |
11 | Saffari S, Keyvanshokooh S, Zakeri M, et al. Effects of dietary organic, inorganic, and nanoparticulate selenium sources on growth, hemato-immunological, and serum biochemical parameters of common carp (Cyprinus carpio). Fish Physiology and Biochemistry, 2018, 44(4): 1087-1097. |
12 | Ghaniem S, Nassef E, Zaineldin A, et al. A comparison of the beneficial effects of inorganic, organic, and elemental nano-selenium on nile tilapia: growth, immunity, oxidative status, gut morphology, and immune gene expression. Biological Trace Element Research, 2022, 200(12): 5226-5241. |
13 | Peng B, Li H, Peng X. Functional metabolomics: from biomarker discovery to metabolome reprogramming. Protein & Cell, 2015, 6(9): 628-637. |
14 | Li L, Liu Z, Quan J, et al. Metabonomics analysis reveals the protective effect of nano-selenium against heat stress of rainbow trout (Oncorhynchus mykiss). Journal of Proteomics, 2022, 259: 104545. |
15 | Xin G, Yang J, Li R, et al. Dietary supplementation of hemp oil in teddy dogs: Effect on apparent nutrient digestibility, blood biochemistry and metabolomics. Bioengineered, 2022, 13(3): 6173-6187. |
16 | Shahid A B, Malhi M, Soomro S A, et al. Influence of dietary selenium yeast supplementation on fermentation pattern, papillae morphology and antioxidant status in rumen of goat. Pakistan Journal of Zoology, 2020, 52(2): 565-571. |
17 | Bai X, Li F, Li F D, et al. Different dietary sources of selenium alter meat quality, shelf life, selenium deposition, and antioxidant status in Hu lambs. Meat Science, 2022, 194: 108961. |
18 | Bano I, Malhi M, Khatri P, et al. Effect of dietary selenium yeast supplementation on morphology and antioxidant status in testes of young goat. Pakistan Journal of Zoology, 2019, 51(3): 979-988. |
19 | Limited content of selenium in feeds. Hunan Feed, 2012(6): 3. |
饲料中硒的允许量. 湖南饲料, 2012(6): 3. | |
20 | National Research Council, Division on Earth and Life Studies, Board on Agriculture and Natural Resources, et al. Nutrient requirements of small ruminants: sheep, goats, cervids and new world camelids. Washington, D. C.: National Academy press, 2007. |
21 | GB/T 6432-2018. Determination of crude protein in feeds-Kjeldahl method. |
GB/T 6432-2018. 饲料中粗蛋白的测定 凯氏定氮法. | |
22 | GB/T 6434-2022. Determination of crude fiber content in feeds. |
GB/T 6434-2022. 饲料中粗纤维的含量测定. | |
23 | GB/T 6438-2007. Animal feeding stuffs-Determination of crude ash. |
GB/T 6438-2007. 饲料中粗灰分的测定. | |
24 | GB/T 6436-2018. Determination of calcium in feeds. |
GB/T 6436-2018. 饲料中钙的测定. | |
25 | GB/T 6437-2018. Determination of phosphorus in feeds-Spectrophotometry. |
GB/T 6437-2018. 饲料中总磷的测定 分光光度法. | |
26 | GB/T 13883-2008. Determination of selenium in feeds. |
GB/T 13883-2008. 饲料中硒的测定. | |
27 | GB/T 18246-2019. Determination of amino acids in feeds. |
GB/T 18246-2019. 饲料中氨基酸的测定. | |
28 | Zhang Y N, Wang S, Huang X B, et al. Estimation of dietary manganese requirement for laying duck breeders: effects on productive and reproductive performance, egg quality, tibial characteristics, and serum biochemical and antioxidant indices. Poultry Science, 2020, 99(11): 5752-5762. |
29 | Jamima J, Veeramani P, Kumanan K, et al. Production performance, hematology and serum biochemistry of commercial broilers supplemented with nano selenium and other anti-stressors during summer. Indial Journal of Animal Research, 2020, 54(11): 1385-1390. |
30 | Tao X Z, Chen A L, Ma T T, et al. Effects of supplementation of different selenium sources in diets of breeding pigeons on growth performance, liver antioxidant capacity and glutathione peroxidase system gene expression of squabs. Chinese Journal of Animal Nutrition, 2023, 35(7): 4564-4574. |
陶旭哲, 陈艾玲, 马婷婷, 等. 种鸽饲粮添加不同硒源对乳鸽生长性能、肝脏抗氧化能力和谷胱甘肽过氧化物酶系基因表达的影响. 动物营养学报, 2023, 35(7): 4564-4574. | |
31 | Liu Y W, Liu X, Xiang X H, et al. Effects of different levels of nano-selenium on growth performance, antioxidant capacity, biochemical parameters, and selenium content in Landes geese. Revista Braileira de Zootecnia, 2023, 52: e20220031. |
32 | Bakhshalinejad R, Hassanabadi A, Swick R A. Dietary sources and levels of selenium supplements affect growth performance, carcass yield, meat quality and tissue selenium deposition in broilers. Animal Nutrition, 2019, 5(3): 256-263. |
33 | Wasti S, Sah N, Mishra B. Impact of heat stress on poultry health and performances, and potential mitigation strategies. Animals, 2020, 10(8): 1266. |
34 | Ren Z, Okyere S K, Zhang M, et al. Glycine nano-selenium enhances immunoglobulin and cytokine production in mice immunized with H9N2 avian influenza virus vaccine. International Journal of Molecular Sciences, 2022, 23(14): 7914. |
35 | Cai S J, Wu C X, Gong L M, et al. Effects of nano-selenium on performance, meat quality, immune function, oxidation resistance, and tissue selenium content in broilers. Poultry Science, 2012, 91(10): 2532-2539. |
36 | Beheshti F, Hosseini M, Sarvtin M T, et al. Protective effect of aminoguanidine against lipopolysaccharide-induced hepatotoxicity and liver dysfunction in rat. Drug and Chemical Toxicology, 2021, 44(2): 215-221. |
37 | Chang Y N, Li H, Ren H, et al. Misclassification of chronic hepatitis B natural history phase: Insight from new ALT, AST, AKP, and GGT reference intervals in Chinese children. Clinica Chimica Acta, 2019, 489: 61-67. |
38 | Eladl A H, Nabil N M, Awad A, et al. Effects of dietary nano-selenium supplementation on Riemerella anatipestifer vaccinated and challenged Pekin ducklings (Anas platyrhynchos). Veterinary Microbiology, 2023, 284: 109816. |
39 | Habibian M, Sadeghi G, Ghazi S, et al. Selenium as a feed supplement for heat-stressed poultry: a review. Biological Trace Element Research, 2015, 165(2): 183-193. |
40 | Khalil H S, Maulu S, Verdegem M, et al. Embracing nanotechnology for selenium application in aquafeeds. Reviews in Aquaculture, 2022, 15(1): 112-129. |
41 | Lan R, Chang Q, Wei L, et al. The protect effects of chitosan oligosaccharides on intestinal integrity by regulating oxidative status and inflammation under oxidative stress. Marine Drugs, 2021, 19(2): 57. |
42 | Naz H, Abdullah S, Abbas K, et al. Toxic effect of insecticides mixtures on antioxidant enzymes in different organs of fish, Labeo rohita. Pakistan Journal of Zoology, 2019, 51(4): 1355-1361. |
43 | Han Z, Wang Y, Li J. Effects of atorvastatin combined with nano-selenium on blood lipids and oxidative stress in atherosclerotic rats. Journal of Nanoscience Nanotechnology, 2021, 21(2): 1331-1337. |
44 | Du H, Zheng Y, Zhang W, et al. Nano-selenium alleviates cadmium-induced acute hepatic toxicity by decreasing oxidative stress and activating the Nrf2 pathway in male Kunming Mice. Frontiers in Veterinary Science, 2022, 9: 942186. |
45 | Huo B, He J, Shen X Y. Effects of selenium-deprived habitat on the immune index and antioxidant capacity of Przewalski’s gazelle. Biological Trace Element Research, 2020, 198(1): 149-156. |
46 | Zheng S, Zhao J, Xing H, et al. Oxidative stress, inflammation, and glycometabolism disorder induced erythrocyte hemolysis in selenium deficient exudative diathesis broilers. Journal of Cellular Physiology, 2019, 234(9): 16328-16337. |
47 | Zhao Y W, Tang J Y, Jia G, et al. Effects of different selenium sources on growth performance, serum and muscle selenium contents, antioxidant capacity and meat quality of broilers. Chinese Journal of Animal Nutrition, 2021, 33(4): 2024-2032. |
赵亚伟, 汤加勇, 贾刚, 等. 不同硒源对肉鸡生长性能、血清和肌肉硒含量、抗氧化能力及肉品质的影响. 动物营养学报, 2021, 33(4): 2024-2032. | |
48 | Lee K H, Jeong D. Bimodal actions of selenium essential for antioxidant and toxic pro-oxidant activities: the selenium paradox (Review). Molecular Medicine Reports, 2012, 5(2): 299-304. |
49 | Yang Q L, Peng Y D, Qu X Y, et al. Effects of nano-selenium on performance, serum immune and biochemical indices and yolk selenium content of laying hens. Chinese Journal of Animal Nutrition, 2017, 29(1): 280-289. |
杨清丽, 彭豫东, 曲湘勇, 等. 纳米硒对产蛋鸡生产性能、血清免疫和生化指标及蛋黄中硒含量的影响. 动物营养学报, 2017, 29(1): 280-289. | |
50 | Ibrahim D, Kishawy A, Khater S I, et al. Effect of dietary modulation of selenium formand level on performance, tissue retention, quality of frozen stored meat and gene expression of antioxidant status in ross broiler chickens. Animals, 2019, 9(6): 342. |
51 | Lan H, Hong W, Qian D, et al. Quercetin modulates the gut microbiota as well as the metabolome in a rat model of osteoarthritis. Bioengineered, 2021, 12(1): 6240-6250. |
52 | Tang J, Zhang B, Liang S, et al. Effects of pantothenic acid on growth performance and antioxidant status of growing male white Pekin ducks. Poultry Science, 2020, 99(9): 4436-4441. |
53 | Bakovic J, Martinez D L, Nikolaou S, et al. Regulation of the CoA biosynthetic complex assembly in mammalian cells. International Journal of Molecular Sciences, 2021, 22(3): 1131. |
54 | Guel E T, Olgun O, Yildiz A, et al. Effect of increasing valine level in the diet on performance, egg quality, and serum components in laying quails. Tropical Animal Health and Production, 2023, 55(1): 54. |
55 | Zhao L Y. Effects of valine on the reproductive performance of sows and its related mechanism during gestation and lactation in a hot humid environment. Nanjing: Nanjing Agricultural University, 2019. |
赵靓瑜. 湿热环境下日粮添加缬氨酸对妊娠哺乳期母猪繁殖性能的影响及相关机制研究. 南京: 南京农业大学, 2019. | |
56 | Chen J, Liu G H, Ahmed P S, et al. Effects of valine supplementation in low-protein diets on growth performance, slaughter performance and serum indices of broilers. Chinese Journal of Animal Nutrition, 2019, 31(4): 1604-1612. |
陈将, 刘国华, Ahmed P S, 等. 低蛋白质饲粮补充缬氨酸对肉鸡生长性能、屠宰性能和血清指标的影响. 动物营养学报, 2019, 31(4): 1604-1612. | |
57 | Fan Z B, Jia W, Du A, et al. Pseudo-targeted metabolomics analysis of the therapeutic effect of phenolics-rich extract from Se-enriched green tea (Camellia sinensis) on LPS-stimulated murine macrophage (RAW264.7). Food Research International, 2022, 159: 111666. |
58 | Suryawanshi P R, Badapanda C, Singh K M, et al. Exploration of the rumen microbial diversity and carbohydrate active enzyme profile of black Bengal goat using metagenomic approach. Animal Biotechnology, 2019, 34(4): 761-774. |
59 | Coelho A I, Berry G T, Rubio-Gozalbo M E. Galactose metabolism and health. Current Opinion in Clinical Nutrition and Metabolic Care, 2015, 18(4): 422-427. |
60 | Zhang Y, Unnikrishnan A, Deepa S S, et al. A new role for oxidative stress in aging: the accelerated aging phenotype in Sod1(-/-) mice is correlated to increased cellular senescence. Redox Biology, 2017, 11: 30-37. |
61 | Wang J J, Zhang T Z, Liu X X, et al. Aqueous extracts of se-enriched Auricularia auricular attenuates D-galactose-induced cognitive deficits, oxidative stress and neuroinflammation via suppressing RAGE/MAPK/NF-KB pathway. Neuroscience Letters, 2019, 704: 106-111. |
62 | Xie D D, Jiang L Q, Lin Y, et al. Antioxidant activity of selenium-enriched Chrysomyia megacephala (Fabricius) larvae powder and its impact on intestinal microflora in D-galactose induced aging mice. BMC Complementary and Medicine and Therapies, 2020, 20(1): 264. |
63 | Skupsky J, Sabui S, Hwang M, et al. Biotin supplementation ameliorates murine colitis by preventing NF-Kappa B activation. Cellular and Molecular Olecular Gastroenterology and Hepatology, 2020, 9(4): 557-567. |
64 | Dimri U, Sharma M C, Singh S K, et al. Amelioration of altered oxidant/antioxidant balance of Indian water buffaloes with subclinical mastitis by vitamins A, D3, E, and H supplementation. Tropical Animal Health and Production, 2013, 45(4): 971-978. |
65 | Feng L, Zhao S, Chen G, et al. Antioxidant status of serum, muscle, intestine and hepatopancreas for fish fed graded levels of biotin. Fish Physiology and Biochemistry, 2014, 40(2): 499-510. |
66 | Wu J P, Wen H, Jiang M, et al. Effects of dietary biotin on growth, body composition and serum biochemical indices of juvenile GIFT Tilapia. Journal of Northwest A & F University (Natural Science Edition), 2016, 44(2): 15-22. |
吴金平, 文华, 蒋明, 等. 生物素对吉富罗非鱼幼鱼生长、体成分及血清生化指标的影响. 西北农林科技大学学报(自然科学版), 2016, 44(2): 15-22. | |
67 | Powers H J. Riboflavin (vitamin B2) and health. American Journal of Clinical Nutrition, 2003, 77(6): 1352-1360. |
68 | Caldinelli L, Iametti S, Barbiroli A, et al. Relevance of the flavin binding to the stability and folding of engineerd cholesterol oxidase containing noncovalently bound FAD. Protein Science, 2008, 17(3): 409-419. |
[1] | Ting-ting ZHANG, Yu-le LIU, Hong CHEN, Ling-xin XU, Xiang-wei CHEN, En-heng WANG, Jun-xin YAN. Effects of different exogenous substances on the seed germination, seedling growth, and physiology of Melilotus suaveolens under salt, alkali, and drought stress [J]. Acta Prataculturae Sinica, 2024, 33(8): 122-132. |
[2] | Bang-yin HE, Jing-hong PEI, Qi-rui YE, Jia-jia HU, Cai-xue ZHENG, Jiang-wen LI. Allelopathic effects of different artificial economic forest litter extracts on Fabaceae and Poaceae species [J]. Acta Prataculturae Sinica, 2024, 33(8): 199-208. |
[3] | Zhao-ben QI, Xiao-yan REN, Yi-tong LI, Jin-yun MA, Quan LIU. Enzyme extraction method and antioxidant activity of polysaccharides from red clover [J]. Acta Prataculturae Sinica, 2024, 33(6): 105-115. |
[4] | Jin-zhu GAO, Dong-hao ZHAO, Le GAO, Xi-hao SU, Xue-qing HE. Effects of cerium nitrate and abscisic acid treatment on alfalfa seed germination and seedling physiological characteristics [J]. Acta Prataculturae Sinica, 2024, 33(6): 175-186. |
[5] | Xu-qin BAI, Chun-yun JIA, Wen-shuan LI, Ya-min LI, Chang-feng LIU, Xiu-yun HAN, Mei-han CHU, Zong-qiang GONG, Xiao-jun LI. An investigation of foliar spraying of selenium fertilizer for selenium enrichment and cadmium reduction in alfalfa [J]. Acta Prataculturae Sinica, 2024, 33(1): 50-60. |
[6] | Chao-nan LI, Lei WANG, Ji-qiang ZHOU, Chang-xing ZHAO, Xiao-rong XIE, Jin-rong LIU. Effect of microplastics on the growth and physiological characteristics of alfalfa (Medicago sativa) [J]. Acta Prataculturae Sinica, 2023, 32(5): 138-146. |
[7] | Ai-yu LIU, Chao WANG, Zhan-jun WU, Shou-pei ZHAO, Li-chen ZHAO, Xiao-yu LI, Wei-tao ZHANG, Le-tian WANG, Yu-hong GAO. Impact of heat stress on growth rate, serum antioxidant properties, and rumen flora in weaned lambs [J]. Acta Prataculturae Sinica, 2023, 32(4): 173-182. |
[8] | Shi-min ZHANG, Jiao-yang ZHAO, Hui-sen ZHU, Kai WEI, Yong-xin WANG. Effects of selenium on metabolic transformation and morphogenesis in different varieties of alfalfa during the germination stage [J]. Acta Prataculturae Sinica, 2023, 32(4): 79-90. |
[9] | Li ZHOU, Sheng-zhen HOU, Zhi-you WANG, Bao-chun YANG, Li-juan HAN, Lin-sheng GUI. Changes in small intestinal morphology, digestive enzyme activity and antioxidant enzyme activities of female Tibetan sheep after substituting the maize component of a concentrate diet with palm meal [J]. Acta Prataculturae Sinica, 2023, 32(3): 118-127. |
[10] | Shou-jiang SUN, Yi-han TANG, Wen MA, Man-li LI, Pei-sheng MAO. Response of the mitochondrial AsA-GSH cycle during alfalfa seed germination under low temperature stress [J]. Acta Prataculturae Sinica, 2023, 32(3): 152-162. |
[11] | Jie ZHANG, Kai CHENG, Ying-chun WANG. Analysis of the calcium-dependent protein kinase RtCDPK16 response to abiotic stress in Reaumuria trigyna [J]. Acta Prataculturae Sinica, 2023, 32(2): 97-109. |
[12] | Jiao-yun LU, Hong TIAN, He-shan ZHANG, Jun-bo XIONG, Yang LIU, Zhen-nan WANG. Effects of H2O2 immersion on seed germination and seedling growth of alfalfa under salt stress [J]. Acta Prataculturae Sinica, 2023, 32(10): 141-152. |
[13] | Gui-lian SHAN, Zu-yan MA, Jia-yi LI, Yang LIU, Yong XIE, Jia LIU, Xiao-hui CHU. Effects of Euphorbia jolkinii on physiology and endogenous hormone content of alfalfa seedlings [J]. Acta Prataculturae Sinica, 2023, 32(10): 153-161. |
[14] | Mu-ye LIU, Li-zhu GUO, Yue-sen YUE, Ju-ying WU, Xi-feng FAN, Guo-zeng XIAO, Ke TENG. Physiological and antioxidant enzyme gene expression differences between female and male Buchloe dactyloides plants under drought stress [J]. Acta Prataculturae Sinica, 2023, 32(10): 93-103. |
[15] | Wei-dong CHEN, Yu-xia ZHANG, Qing-xin ZHANG, Ting-yu LIU, Xian-guo WANG, Dong-ru WANG. The effect of last cutting time on the antioxidant system and cold resistance of alfalfa root-neck [J]. Acta Prataculturae Sinica, 2022, 31(9): 129-138. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||